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Abstract

This paper presents a model of the business cycle that highlights the importance of en-
dogenous firm entry. In our framework, short-term supply shifts driven by new firm entries
become a crucial factor in driving the economy’s response to shocks, regardless of whether
those shocks originate from the ’supply’ or ’demand’ blocks. Specifically, an uptick in ag-
gregate demand triggers a cycle of increased firm entry, thereby enhancing aggregate supply
and, in turn, further boosting demand through greater equipment purchases by new entrants.
Monetary policy becomes especially powerful in this context, as it simultaneously impacts
aggregate demand and the entry decisions of firms. This effect is particularly noticeable in
economies with a significant potential for new firm entries. Our analytical approach charac-
terizes the equilibrium of firm entry as a function of the ‘policy room’, a sufficient statistic
related to monetary policy, which turns out to be positively correlated with the effectiveness
of monetary and fiscal policy interventions.
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1 Introduction

Contemporary macroeconomic models frequently classify individual shocks into separate ‘de-
mand’ and ‘supply’ blocks.1 However, distinguishing between them proves challenging in prac-
tice, as shocks often appear to intermingle and co-occur, as observed during the Covid-19 crisis.
This paper contributes to the literature by operationalizing the concept of demand and supply
separability (or lack thereof) in a precise manner, employing modern macroeconomic tools within
a New-Keynesian framework featuring endogenous firm entry and exit.

Figure 1 illustrates our basic problem via the classic aggregate demand (AD) and aggregate
supply (AS) diagram. In the context of endogenous firm entry, a positive demand shock (AD0

to AD1) encourages additional supply via firm entry, as firms find it more profitable to enter the
market. It shifts the aggregate supply curve from AS0 to AS1. As new entrants need to purchase
necessary equipment for operating in the market, this shift in supply further amplifies aggre-
gate demand (AD1 to AD2), initiating a self-reinforcing cycle between the two. Thus, firm entry
generates the following two features: (i) a higher participation rate of firms mitigate the inflation-
ary pressure and raise the output; (ii) demand and supply can be generally intertwined rather
than separate entities, and shocks traditionally attributed to distinct demand-supply blocks have
the potential to induce observationally similar co-movements in output and prices. In this con-
text, the absence of their separability stems from the simultaneous co-movement of supply and
demand, attributed to endogenous firm entry. This differs from the conventional equilibrium,
which implies movement along the aggregate supply curve, rather than a shift of the curve itself
when the economy faces demand shocks. To illustrate the importance of endogenous firm entry
in explaining the business cycle, we offer a detailed analytical breakdown of labor adjustments in
response to economic shocks, focusing on two key aspects: the extensive margin, which involves
hiring by new entrants, and the intensive margin, which involves hiring by existing firms. Our
analysis demonstrates that adjustments on the extensive margin are quantitatively significant in
driving the economy’s responses to various economic shocks.

To facilitate the analysis, we decouple endogenous firm entry from the standard New-Keynesian
framework by separating the production process across downstream and upstream industries.
At the downstream level, a fixed measure of identical but differentiated firms engage in the pro-
duction of a continuum of consumption varieties, face nominal pricing rigidities, and rely on
upstream industry inputs. Upstream firms, conversely, enjoy price flexibility and employ labor,
feature heterogeneous productivity endowments, and are obligated to incur stochastic fixed costs
to enter the market and remain operational in subsequent periods. To further simplify the prob-
lem and obtain intuitive analytical expressions, we follow the literature on endogenous entry and
assume that productivity and entry costs are drawn from independent Pareto distributions.2 Fi-

1In the traditional framework, positive supply shocks (such as technology advancements or decreased cost-push
factors) expand the supply curve and lead to lower equilibrium prices and increased production (as captured by the
New-Keynesian Phillips curve), while demand shocks generate a positive correlation between prices and production.

2For the use of Pareto distributions for tractablity purposes, see e.g., Melitz (2003).
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Figure 1: Convoluted aggregate demand and supply with endogenous firm entry

nally, we impose a cash-in-advance constraint that, coupled with entry costs, generates upstream
industry’s reliance on borrowing from capital markets, linking entry decisions to monetary policy
via loan rates.3 Therefore, monetary accommodation has dual roles: it raises aggregate demand
as well as encourages additional firm entries by reducing the loan rates faced by firms, triggering
a self-reinforcing cycle between demand and supply.

Our model yields several interesting analytical outcomes, one of which is the formulation of
a minimum policy rate, termed the “Satiation Bound (SB)”, which is defined as the threshold rate
that ensures full market participation of firms with comparable fixed costs. When the policy rate
falls below the Satiation Bound (SB), firms with even the lowest productivity will find market
entry profitable. As a result,4 market entry becomes less responsive to further monetary policy
easing and other expansionary economic shocks. In such scenarios, the horizontal shift of the
aggregate supply (AS) curve depicted in Figure 1 gradually diminishes as the policy rate falls.
Consequently, the effectiveness of monetary policy in stimulating production diminishes, leading
to reduced output multipliers and more pronounced inflationary responses, among others. This
observation suggests that the gap between the current policy rate and the average Satiation Bound
(SB), which we refer to as the “policy room”, acts as a sufficient metric for gauging the supply-

3Therefore, given a fixed cost level, a lower policy rate raises the likelihood that a firm operates in the market in
the subsequent period.

4As a firm with the lowest productivity has already entered the market, additional easing of monetary policy does
not trigger a new wave of firm entry.
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side impact of monetary policy. Through non-linear estimation of monetary policy multipliers
under varying initial conditions, we demonstrate a significant correlation between our “policy
room” measure and the potency of monetary policy, as well as general responses to other shocks.

Related literature Our business cycle setting with endogenous (upstream) firm entry follows
previous works in the literature, e.g., Bilbiie et al. (2007), Bergin and Corsetti (2008),5 Stebunovs
(2008), Kobayashi (2011) Bilbiie et al. (2012), Uusküla (2016), Hamano and Zanetti (2017). While
some papers assume equity financing for newly entering firms, e.g., Bilbiie et al. (2007), Bergin
and Corsetti (2008), Bilbiie et al. (2012),6 we assume that new firms finance their entry costs via
borrowing from the financial markets, as in Stebunovs (2008), Kobayashi (2011), Uusküla (2016),
so that firm entry is boosted under monetary accommodation, which aligns with the evidence
presented in Colciago and Silvestrini (2022).7 In addition, we express the equilibrium firm entry
as a function of the “policy room”, a sufficient statistic we devise.

Guerrieri et al. (2023) explore the circumstances under which a sectoral supply shock exhibits
‘Keynesian’ properties. Specifically, they study when a supply shock prompts a shift in aggregate
demand that exceeds the shock’s original magnitude. Their analysis primarily revolves around
two contexts: (i) the presence of multiple sectors in conjunction with incomplete markets, and
(ii) scenarios where the impacted sector either complements or utilizes inputs from sectors that
remain unaffected by the shock.8 In contrast, we separate the production sector into downstream
and upstream industries, facilitating a comprehensive examination of the interplay between sup-
ply and demand. In our framework, supply shocks to upstream firms affect aggregate demand
via their impact on labor markets and loan demand. Conversely, demand shocks induce shifts in
the upstream’s supply curve through endogenous firm entry. These changes subsequently ripple
through to the downstream industries via their influence on input prices, instigating successive
shifts in demand until equilibrium is reached.

Our characterization of the Satiation Bound (SB) hinges on the idea that (i) monetary ex-
pansion facilitates an upswing in firm entry, and (ii) upon the monetary policy rate reaching a
specified lower bound, all potential firms associated with a particular fixed entry cost have ven-

5Our assumption that fixed costs for market entry are paid in units of the final consumption goods aligns with the
framework proposed by Bergin and Corsetti (2008). However, we deviate from their assumption of “pre-set” output
procurement prices in favor of market prices.

6Under the equity financing for new entrants, an expansionary monetary shock leads to an increase in the aggre-
gate demand for products, raising labor demand and wages. Higher labor costs for potential entrants can lower their
net present value and reduce the entry rate of new firms, which is counterfactual. For the role of “real wage rigidity”
in resolving this problem, see e.g., Lewis and Poilly (2012).

7Colciago and Silvestrini (2022) find the empirical evidence that expansionary monetary policy leads to an initial
decrease and then an overshooting in the average productivity of the economy, as well as an initial increase and then
undershooting in the firm’s entry rate.

8Within the framework of Guerrieri et al. (2023), a negative supply shock to one sector engenders several counter-
vailing effects: (i) it raises the aggregate price level, leading to a decline in overall consumption; (ii) it shifts demand
towards goods produced in unaffected sectors. This reallocation is attenuated when the two sectors are complements,
or when the unaffected sectors supply inputs to the affected sector, thereby causing the aggregate demand to decline
by more than the initial supply shock itself; (iii) the decline of activity in a sector results in income losses, which, in
the presence of incomplete markets and borrowing constraints, generally suppresses aggregate demand.
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tured into the market. Beyond this juncture, the positive supply effects stemming from further
monetary accommodation and subsequent firm entry begin to wane. This phenomenon resonates
with the insights of Ulate (2021) and Abadi et al. (2022), who incorporate analogous concepts in
the context of banking profitability and the negative interest rates.

Layout Section 2 presents our New-Keynesian framework with endogenous firm entry. Section
3 discusses our calibration, steady-state analysis, and comparative statics. The model economy’s
impulse response functions to various shocks are explored in Section 4. Concluding remarks
are presented in Section 5. For supplementary tables and figures, readers are directed to Ap-
pendix A. Derivations and proofs are detailed in Appendix B. A comprehensive summary of the
equilibrium conditions, inclusive of the flexible-price and steady-state benchmarks, can be found
in Appendix C. Lastly, Appendix D provides the derivation of the model under a simplified
framework with homogeneous entry costs.

2 Model

2.1 Representative Household

The representative household maximizes lifetime utility given by

max Et

∞

∑
j=0

βj

[
ϕc,t · log (Ct)−

(
η

η + 1

)
· N

(
η+1

η

)
t

]
,

where Ct is consumption, Nt is labor, and ϕc,t ≡ exp (uc,t) is an aggregate demand shock defined
as uc,t = ρc · uc,t−1 + εc,t, εc,t ∼ N

(
0, σ2

c
)
. The household’s budget constraint is

Ct +
Dt

Pt
+

Bt

Pt
=

RD
t−1Dt−1

Pt
+

RB
t−1Bt−1

Pt
+

WtNt

Pt
+

Υt

Pt
,

where Dt represents bank deposits, and Bt denotes government bonds, which are in zero net
supply in equilibrium. The corresponding gross interest rates for these assets are represented
by RD

t and RB
t , respectively.9 Υt captures lump-sum transfers to households. Such transfers may

originate from various sources, including fiscal policies (such as subsidies to firms) or residual
firm profits.

The first-order conditions bring the following standard intertemporal and intratemporal equa-

9We do not consider issues pertaining to the zero lower bound (ZLB) in this paper, so it is possible for interest
rates to be negative, RD

t < 1.
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tions: The first-order conditions of this problem are

1
RD

t
=

1
RB

t
= βEt

[
ϕc,t+1

ϕc,t
· Ct

Ct+1Πt+1

]
, (1)

N
1
η

t = ϕc,t · C−1
t · Wt

Pt
. (2)

The household is indifferent between investing in bonds or deposits in equilibrium, and central
bank policy via RB

t has a one-to-one pass-through on RD
t .

2.2 Firms

The model stratifies firms into two discrete categories: those belonging to the downstream in-
dustry and those in the upstream industry. In both layers, firms operate in an environment of
monopolistic competition. Notably, only downstream firms encounter nominal price rigidities
à la Calvo (1983). Operational dynamics are structured such that upstream firms employ labor
to generate intermediate input varieties, whose aggregator the downstream firms subsequently
incorporate into the production of consumption good varieties. Representative households own
firms across both industries, and consume the aggregated downstream goods.

One of the defining elements of this framework is the decision-making process for upstream
firms. At each period, firms evaluate whether to continue/start operations in the next period.
Should they decide to remain/enter the market, they must incur certain fixed costs, denominated
in final goods, which are financed through loans from the banking sector.10

2.2.1 Downstream Industry: Aggregator

A representative firm, operating under perfect competition, aggregates the differentiated prod-
ucts produced by a continuum of downstream firms, denoted by u, spanning the interval [0, 1].
This can be formally expressed as:

Yt =

[∫ 1

0
Yt(u)

γ−1
γ du

] γ
γ−1

.

The demand for each distinct variety produced by downstream firms, as well as the aggregate
price, are given by

Yt(u) =
(

Pt(u)
Pt

)−γ

Yt , (3)

Pt =

[∫ 1

0
Pt(u)1−γ du

] 1
1−γ

,

10This dependency on external funding effectively functions as a cash-in-advance production constraint.
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where Yt(u) and Pt(u) are the output and prices of downstream varieties, respectively. Let
Xt = PtYt represent the nominal aggregate expenditure, and Xt(u) = Pt(u)Yt(u) denote the
expenditure for a specific downstream variety u. Given these definitions, the individual demands
can be reformulated as:

Xt(u) = Γt · Pt(u)1−γ , where: Γt = XtP
γ−1
t .

2.2.2 Downstream Industry: Monopolistic Competition with Sticky Prices

Consider a firm u within the downstream industry, belonging to the interval [0, 1]. This firm
employs Jt(u) units of the aggregate product from the upstream industry and produces Yt(u) =
Jt(u), indicating a one-to-one transformation from input to output. Consequently, the aggregate
sum of upstream products, denoted as Jt, satisfies: Jt ≡

∫ 1
0 Jt(u) du =

∫ 1
0 Yt(u) du.

The profit equation for a downstream firm u is given by

Πt(u) = (1 + ζT)Pt(u)Yt(u)− PJ
t Jt(u) ,

where PJ
t represents the price of the aggregate upstream product, and ζT stands for a produc-

tion subsidy to downstream firms. Thus, the present discounted value of profits, which the
downstream firm u seeks to maximize, can be expressed as:

∞

∑
l=0

Et

{
Qt,t+l

[
(1 + ζT)Pt+l(u)Yt+l(u)− PJ

t+l Jt+l(u)
]}

,

with Qt,t+l being the stochastic discount factor between time t and t + l.
Firms in the downstream industry face price stickiness à la Calvo (1983), characterized by a price-
resetting probability of 1 − θ. With reference to equation (3), a firm, when adjusting its price P∗

t ,
aims to:

max
P∗

t

∞

∑
l=0

Et

{
Qt,t+lθ

l
[
(1 + ζT)P∗

t − PJ
t+l

] ( P∗
t

Pt+l

)−γ

Yt+l

}
,

where all firms that adjust their prices select P∗
t as the revised price. The resulting first-order

condition can be articulated as:

P∗
t

Pt
=

∑∞
l=0 Et

{
Qt,t+lθ

l
(
(1 + ζT)−1γ

γ − 1

)(
Pt+l

Pt

)γ+1
(

PJ
t+l

Pt+l

)
Yt+l

}

∑∞
l=0 Et

{
Qt,t+lθl

(
Pt+l

Pt

)γ

Yt+l

} . (4)

2.2.3 Upstream Industry: Aggregator

There exists a continuum of upstream firms spanning the interval [0, 1], each producing a distinct
variety. These firms exhibit heterogeneity in two principal dimensions: productivity, indexed by
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v, and operational fixed costs, indexed by m. The output of a firm, uniquely identified by
the index pair mv, is defined as Jmv,t. A perfectly competitive firm aggregates these upstream
varieties as:

Jt =

[∫ 1

0

∫
v∈Ωm,t

J
σ−1

σ
mv,t dv dm

] σ
σ−1

,

where Ωm,t denotes the subset of upstream firms sharing the same operational fixed cost m that
decide to produce in period t. Given significant fixed costs, only the firms with the highest
productivity levels may find production viable. The demand for an individual upstream variety
(m, v), is:

Jmv,t =

(
PJ

mv,t

PJ
t

)−σ

Jt . (5)

Subsequently, the aggregate price index for the upstream product is:

PJ
t =


∫ 1

0

∫ 1

v∈Ωm,t

(
PJ

mv,t

)1−σ
dv︸ ︷︷ ︸

≡(Pm,t)
1−σ

dm


1

1−σ

=

[∫ 1

0

(
PJ

m,t

)1−σ
dm
] 1

1−σ

, (6)

where PJ
m,t serves as the aggregate price of input for firms bearing the fixed costs indexed by m.

We further define the nominal expenditure on a given upstream variety as X J
mv,t = PJ

mv,t Jmv,t, and
the aggregate expenditure as X J

t = PJ
t Jt, so

X J
mv,t = ΓJ

t · P1−σ
mv,t , where: ΓJ

t = X J
t

(
PJ

t

)σ−1
. (7)

Using equation (3), we can express the aggregate input demand of downstream firms as:

Jt =
∫ 1

0
Yt(u) du = Yt

∫ 1

0

(
Pt(u)

Pt

)−γ

du︸ ︷︷ ︸
≡∆t

= Yt∆t , (8)

where

∆t = (1 − θ)

(
P∗

t
Pt

)−γ

+ θΠγ
t ∆t−1 , (9)

represents a measure of price dispersion. Utilizing equation (8), equation (7) can be expressed as
ΓJ

t = (PJ
t )

σYt∆t.
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2.2.4 Upstream Industry: Monopolistic Competition, Loans, and Entry Decisions

The production function for an arbitrary firm (m, v) features diminishing returns to scale and is
given by

Jmv,t = φmv,t · Nα
mv,t, with 0 < α ≤ 1 ,

where Nmv,t denotes the labor employed, and φmv,t is a firm-specific productivity assumed to be
drawn from a Pareto distribution, φmv,t

iid∼P
((

κ−1
κ

)
At, κ

)
, with At being the average aggregate

productivity. A higher κ implies that the productivity distribution is more concentrated around
its mean, At. The cumulative distribution function is given by:

Ψ(φmv,t) = 1 −
((

κ−1
κ

)
At

φmv,t

)κ

,

with the probability distribution function defined as ψ(φmv,t) ≡ Ψ′(φmv,t).

Profit Function: Firms must pay a pre-determined in-kind fixed cost, Fm,t−1, in the preceding
period (i.e., at t − 1) to operate in each period t. This cost, which might cover expenses such as
equipment acquisition, is assumed to be financed through loans financed at the prevailing gross
rate, RJ

t−1. The profit for an upstream firm, if it chooses to operate in period t, is:

ΠJ
mv,t =

(
1 + ζ J

)
PJ

mv,t Jmv,t︸ ︷︷ ︸
≡rmv,t

−WtNmv,t − RJ
t−1Pt−1Fm,t−1 , (10)

where ζ J is a production subsidy to upstream firms and rmv,t represents their revenue. These
firms operate in a monopolistically competitive market and do not face nominal rigidities, setting
prices as a constant markup over marginal costs (if they decide to produce), formally:

PJ
mv,t =

(
(1 + ζ J)−1σ

(σ − 1)α

)
Wt φ

− 1
α

mv,t J
1−α

α
mv,t . (11)

By substituting the derived price equation into equation (10) and using the demand equations
(5) and (7), we can rewrite the profit function as:

ΠJ
mv,t = Ξt · φ

σ−1
α+σ(1−α)

mv,t − RJ
t−1Pt−1Fm,t−1 , (12)

where

Ξt ≡
α + σ(1 − α)

(σ − 1)α

(
(1 + ζ J)−1σ

(σ − 1)α

) −σ
α+σ(1−α)

W
α(1−σ)

α+σ(1−α)

t (ΓJ
t )

1
α+σ(1−α) . (13)

Entry Decision: Firms’ entry decision is taken one-period ahead in t − 1, and is based on their
expected profits and associated costs in t. We assume that firms know at t − 1 their forthcoming
productivity for period t, φmv,t. However, they remain uninformed about other eventual shocks
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that could impact individual demand in t.11 Should a firm decide to operate, it will subsequently
hire labor in t from the spot market, realizing profits as described in equation (12). Given the
productivity draws, we can pinpoint the productivity threshold, φ∗

m,t, below which a firm would
expect zero profit. Firms with the same fixed cost, Fm,t−1, and their productivity draw below this
threshold will opt out of market entry for period t. Using equation (12), the formal representation
of φ∗

m,t is:

Et−1 [ξt · Ξt] ·
(

φ∗
m,t
) σ−1

α+σ(1−α) − RJ
t−1Pt−1Fm,t−1 = 0 , where: ξt =

Qt−1,t

Et−1 [Qt−1,t]
. (14)

It’s important to note that this threshold, φ∗
m,t, is based on ex-ante expected profits. Once a firm

(m, v) commits to market entry, unforeseen shocks could potentially push profits into negative
figures. Considering the inherent lower limit on productivity,

(
κ−1

κ

)
At, the actual productivity

threshold for entry becomes max
{

φ∗
m,t,
(

κ−1
κ

)
At
}

.12 The proportion of firms with a fixed cost
Fm,t−1 that decide to operate in t is denoted as Mm,t and is given by

Mm,t ≡ Prob
(

φmv,t ≥ φ∗
m,t
)
= min


Et−1 [ξt · Ξt]

[(
κ−1

κ

)
At
] σ−1

α+σ(1−α)

RJ
t−1Pt−1Fm,t−1


κ[α+σ(1−α)]

σ−1

, 1

 , (15)

where we use (14) to substitute for φ∗
m,t in the last expression. From this equation, we can derive

the following proposition:

Proposition 1 For upstream firms with a fixed cost of Fm,t−1, Mm,t = 1 when the policy rate RJ
t−1 is

below a threshold RJ,∗
m,t−1 given by

RJ,∗
m,t−1 ≡

Et−1 [ξt · Ξt]
[(

κ−1
κ

)
At
] σ−1

α+σ(1−α)

Pt−1Fm,t−1
. (16)

We refer to this threshold, RJ,∗
m,t−1, as the “satiation bound” (SB) for firms of fixed cost type m.

As the policy rate, RJ
t−1, falls, more firms with the fixed cost Fm,t−1 opt for market entry in t

due to the reduced loan repayment costs. Upon the policy rate reaching the type-specific bound
RJ,∗

m,t−1, all firms sharing the fixed cost Fm,t−1 (or lower) decide to become operational in t, leading
to a stagnation in market entry for firms of cost type m and below. This fixed cost type-specific
lower bound on the policy rate, RJ,∗

m,t−1, is hence termed the satiation bound (SB).
In addition to the conventional intertemporal substitution effect captured by the Euler equa-

tion (i.e., (1)), monetary policy wields influence over the market entry decisions of upstream

11This contrasts with Burnside et al. (1993), where labor decisions precede the realization of shocks. In our model,
the decision to enter the market precedes the realization of other demand shocks. For simplicity, we assume that firms
possess perfect foresight regarding their next period’s productivity.

12If φ∗
m,t is below

(
κ−1

κ

)
At, then all firms categorized by fixed cost m will operate in t.
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firms. This, in turn, impacts the input market’s prices and quantities, cascading onto the aggre-
gate economy via downstream product markets. Upon the rate hitting the SB for firms with the
fixed cost Fm,t−1, no supplementary entries occur, rendering the supply-side effect of monetary
policy ineffectual for such firms.

Loan Demand: From equation (15), we derive the expression for the aggregate real loan de-
mand of firms with a fixed cost type m:

Lm,t−1

Pt−1
= Mm,t · Fm,t−1 . (17)

Firms opting to operate in period t borrow an amount Lm,t−1 to acquire final goods equivalent
to Fm,t−1. This acquisition connects the entry decisions of firms to the aggregate demand of the
economy via the loan channel.

Fixed Cost Distribution: We assume that the fixed costs of upstream firms, Fm,t, are drawn
from a Pareto distribution, Fm,t

iid∼P
((

ω−1
ω

)
Ft, ω

)
, where Ft represents the average fixed cost

associated with running a business, and ω > 1 is the parameter that determines the variance of
the distribution. The associated cumulative distribution function is:

H(Fm,t) = 1 −
((

ω−1
ω

)
Ft

Fm,t

)ω

, (18)

and its probability distribution function is denoted by h(Fm,t) ≡ H′(Fm,t). From Proposition 1, we
obtain the probability measure of fixed cost types Fm,t−1 that are fully satiated, that is, the share
of all firms with fixed cost Fm,t−1 that have already entered the market by time t, thus resulting
in Mm,t = 1. This leads us to the following proposition:

Proposition 2 Given the distribution in equation (18), the probability that Mm,t = 1 is:

Pr
(

RJ
t−1 ≤ RJ,∗

m,t−1

)
= Pr

Fm,t−1 ≤
Et−1 [ξt · Ξt]

[(
κ−1

κ

)
At
] σ−1

α+σ(1−α)

RJ
t−1Pt−1︸ ︷︷ ︸
≡F∗

t−1

 ≡ H (F∗
t−1) ,

where F∗
t−1 is the fixed cost threshold as defined above. All firms with a fixed cost Fm,t−1 less than or equal

to F∗
t−1, irrespective of their productivity values φmv,t, opt to produce in period t. We term F∗

t−1 the “full
satiation fixed cost threshold”.

Proposition 2 can be interpreted as follows: If a firm’s fixed cost, Fm,t−1, is sufficiently low
—below the threshold F∗

t−1— then even a firm with the lowest productivity draw, κ−1
κ At, would

still deem operations in period t as profitable. Consequently, all firms bearing that fixed cost,
regardless of their respective productivity draws, are active in period t.
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Upstream Industry: Aggregation: The price aggregator for operating upstream firms, denoted
by PJ

t , can be expressed as:

PJ
t

Pt
=

(
Wt

Pt At

)
·
(

Yt∆t

At

) 1−α
α

·
[

Θ3

1 + Θ4 · H
(

F∗
t−1

)]
(

α+σ(1−α)
α(σ−1)

)
, (19)

where Θ3 = κ[α+σ(1−α)]+(ω−1)(σ−1)
Θ1ω(σ−1) and Θ4 = κ[α+σ(1−α)]−(σ−1)

ω(σ−1) are constants. The aggregate mea-
sure of firms that operate during period t, represented by Mt, is given by

Mt =
∫ 1

0

∫
v∈Ωm,t

1 dv dm = 1 − ΘM · [1 − H (F∗
t−1)] , (20)

where ΘM = κ[α+σ(1−α)]
κ[α+σ(1−α)]+ω(σ−1) . Subsequently, the aggregate loan demand from operational

upstream firms can be derived as:

Lt−1

Pt−1
=

1
Pt−1

∫ 1

0
Lm,t−1 dm = Ft−1 ·

[
1 − ΘL · [1 − H (F∗

t−1)]
( ω−1

ω )
]

, (21)

where ΘL = κ[α+σ(1−α)]
κ[α+σ(1−α)]+(σ−1)(ω−1) is another model constant.

In equation (20), notice that as the satiation measure H
(

F∗
t−1
)

rises, the number of operational
firms at time t also increases. From equation (21), the aggregate real loan demand of firms is
proportional to the average fixed cost, Ft−1, and grows with the satiation rate H

(
F∗

t−1
)
. Finally, in

equation (19), the relative price of inputs from upstream firms relates to the technology-adjusted
real wage, Wt

Pt At
, and the aggregate demand for inputs of downstream firms, Yt∆t

At
. When partici-

pation from upstream firms increases, as indicated by H(F∗
t−1), this relative price decreases. This

is due to more upstream varieties being available to downstream firms, leading to greater com-
petition and a reduction in input prices. Therefore, the entry of new firms can reduce marginal
costs for downstream firms and mitigate inflationary pressures.

Average SB: We obtain the average satiation interest rate of the economy by integrating over
equation (16), and denote it by RJ,∗

t−1. This rate serves as a measure of the satiation propensity of
upstream firms. When the prevailing policy rate RJ

t−1 exceeds this average, a marginal reduction
in RJ

t−1 can induce an entry of upstream firms into the market. According to equation (19), this
market entry can lower average input prices and subsequently mitigate inflation. It can also boost
aggregate demand and increase the price level, as new entrants take out loans to meet fixed costs,
thus enabling the acquisition of fixed equipment for the production of final goods.

Proposition 3 The aggregate satiation bound (SB) is expressed as:

RJ,∗
t−1 =

∫ ∞

( ω−1
ω )Ft−1

RJ,∗
m,t−1 dH (Fm,t−1) =

(
ω2

ω2 − 1

)
·

F∗
t−1

Ft−1
· RJ

t−1 , (22)
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where F∗
t−1 is the threshold fixed cost relative to the average fixed cost Ft−1 in the economy.

If the threshold fixed cost for satiation, F∗
t−1, surpasses the economy’s average fixed cost Ft−1,

it signals an elevated likelihood of satiation across diverse fixed cost categories. Consequently,
that results in a high value of the average SB rate, RJ,∗

t−1, relative to the policy rate, RJ
t−1. In such a

situation, a minor ease in RJ
t−1 may not substantially stimulate the entry of new upstream firms.

Limit case, ω → ∞: In this calibration, the fixed cost distribution H(Fm,t) collapses to its mean
value, Ft, thereby becoming degenerate. This results in a uniform fixed cost across all firms.
The economy’s state —whether fully satiated or not— is determined by the relative sizes of
the policy rate RJ

t−1 and the mean satiation bound, RJ,∗
t−1. Specifically, should RJ

t−1 < RJ,∗
t−1, all

upstream firms enter the market and commence production in t. This simplified version of the
model yields analytically tractable expressions concerning the model’s equilibrium. Additional
insights into the equilibrium conditions for this scenario are provided in Appendix D.

2.3 Shock Processes

The average fixed cost Ft is modeled as follows:

Ft = ϕ f · Ȳt · exp(u f ,t) = ϕ f ·
Y
A

· At · exp(u f ,t) , (23)

where u f ,t = ρ f · u f ,t−1 + ε f ,t and ε f ,t is normally distributed with mean 0 and variance σ2
f .

Here, Y
A is the steady-state output level adjusted for technology, and Ȳt =

Y
A · At represents the

balanced-growth path output.13

For technological progress, the model adopts:

GAt ≡
At+1

At
= (1 + µ) · exp{ua,t} ,

where ua,t = ρa · ua,t−1 + εa,t, and εa,t is normally distributed with mean 0 and variance σ2
a .

Additionally, government expenditure Gt is formulated as:

Gt = ϕg · Yt · exp(ug,t) , (24)

where ug,t = ρg · ug,t−1 + εg,t, and εg,t is normally distributed with mean 0 and variance σ2
g . It is

assumed that the government maintains fiscal balance, levying a lump-sum tax Tg,t = Gt on the
representative household each period.14

13We assume that Ft scales with Ȳt, not the contemporaneous output Yt. In practice, this assumption has minimal
quantitative impact.

14Considering a zero net supply of government bonds, the government’s dynamic budget constraint is upheld.
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2.4 Central Bank

We assume that the central bank follows a Taylor rule for interest rate determination. The formal
representation of this rule is given by:

RB
t = RJ

t = RJ ·
(

Πt

Π̄

)τπ
(

Yt

Ȳt

)τy

· exp{εr,t} ,

where εr,t is a normally distributed idiosyncratic monetary policy shock with mean 0 and vari-
ance σ2

r . The variable Ȳt denotes the balanced-growth path output level, and Π̄ indicates the
steady-state trend inflation rate. Financial markets are competitive, and the rate that households
face, i.e., RB

t , equals RJ
t in equilibrium, the loan rate faced by upstream firms.

2.5 Aggregation

Here, we aggregate the equations presented in Section 2.2 to obtain the economy-wide conditions.
Consider first the aggregate labor demand Nt, given by

Nt = ΘN ·
(

Yt∆t

At

) 1
α

· (1 + Θ4Ht−1)
− α+σ(1−α)

(σ−1)α , (25)

where Ht−1 ≡ H(F∗
t−1) for simplicity, and

ΘN =

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)
·
(

ω(σ − 1)
κ[α + σ(1 − α)] + (ω − 1)(σ − 1)

)
Θ

(
σ

α(σ−1))

)
3 > 0 .

(26)

From equation (25), it becomes evident that aggregate labor demand, Nt, is positively correlated
with the demand for upstream varieties, denoted by Jt. Conversely, the demand for labor de-
creases as the satiation measure, Ht−1, rises. An increase in Ht−1 results in a higher aggregate
measure of operating firms, Mt, as indicated in equation (20). This increase consequently stimu-
lates employment through new entrants on the extensive margin. However, this surge in market

entry also exerts downward pressure on the relative input price, PJ
t

Pt
, and dampens the individual

labor demand of existing firms, Nmv,t, due to intensified competition. In practice, the latter effect
dominates and the reduction in labor demand at the intensive margin outweighs the increase at
the extensive margin induced by new market entrants, provided that Jt is held constant.

The real wage, based on the household’s intratemporal optimization condition in equation (2)
and equation (25), is given by

Wt

Pt At
= Θ

1
η

N

(
Ct

At

)(
Yt∆t

At

) 1
ηα

(1 + Θ4Ht−1)
− α+σ(1−α)

η(σ−1)α · exp {−uc,t} . (27)
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Substituting equation (27) into equation (19) yields:

PJ
t

Pt
= Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3

(
Ct

At

)(
Yt∆t

At

)( (1−α)η+1
ηα

)
(1 + Θ4Ht−1)

− (1+η)[α+σ(1−α)]
η(σ−1)α · exp {−uc,t} . (28)

Analysis of equations (25), (27), and (28) confirms that, given fixed aggregate demand measures
such as Ct and Jt, an increase in Ht−1 results in a reduction of both individual and aggregate
labor demand. Consequently, this drives down the equilibrium wage. Hence, an increase in the
entry of upstream firms exerts a deflationary impact on the economy, signaling a positive shift
in aggregate supply.

Market clearing: Market clearing in this economy is given by

Ct +
Lt

Pt
+ Gt = Yt , (29)

which, in conjunction with equations (21), (23), and (24), can be reformulated as:

Ct

Yt
= 1 − ϕg · exp

{
ug,t
}
− ϕ f ·

(
Ỹt

Ỹ

)−1

·
[
1 − ΘL · [1 − Ht]

( ω−1
ω )
]
· exp

{
u f ,t
}

. (30)

Notice that real loan demand is present on the left-hand side of equation (29). When upstream
firms opt to operate in the next period, they secure loans from financial institutions and utilize
them to pay for in-kind fixed costs in terms of the final consumption good. This raises aggregate
demand, exerting an inflationary influence in the economy as shown in equations (27) and (28):
in those equations, stronger aggregate demand translates to inflation.15

Consequently, the entry of upstream firms into the market has the dual effect of shifting both
the aggregate supply and demand curves. Depending on the relative magnitudes of these shifts,
market entry can exhibit either inflationary or deflationary tendencies. Section 4 will elaborate
on the economy’s short-run responses to demand and supply shocks within this framework,
underscoring the inherent linkage between the two.

In the study by Guerrieri et al. (2023), a sectoral supply shock —such as the closing of high-
contact sectors due to Covid-19— is more likely to become Keynesian, triggering a more sub-
stantial shift in aggregate demand than in supply, especially in multi-sector economies with
incomplete markets. While their focus is primarily on an economy where the sector affected
by the supply shock either complements or utilizes inputs from unaffected sectors, our dual-
layered structure (comprising downstream and upstream industries) enables an exploration of
the reciprocal impacts between supply and demand. Specifically, in our model, supply shocks
to upstream firms engender shifts in aggregate demand via the labor market and loan demand.

15A Keynesian-cross structure becomes evident in equation (29) when endogenous entry of upstream firms is
considered. As Yt expands, the measure of operating upstream firms, Mt, along with their loan demand, Lt

Pt
, rises,

thus generating successive increments in demand.
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Conversely, demand shocks initiate shifts in the upstream supply curve, affecting downstream
supply through their impact on input prices, and thereby resulting in successive rounds of de-
mand shifts.

Average SB and satiation: Upon substituting equation (B.22) into equation (22), we obtain an
expression for the average SB rate:

RJ,∗
t =

(
ω

ω + 1

)
· (1 − Ht)

− 1
ω · RB

t . (31)

This expression allows us to interpret the “policy room”, denoted as RB
t

RJ,∗
t

, as a decreasing function
of the satiation measure Ht.

Corollary 1 re-expresses the policy room RB
t

RJ,∗
t

as a sufficient statistic for the aggregate partici-
pation rate of firms, Mt+1. Importantly, a wider policy room amplifies the impact of monetary
easing on the entry of upstream firms.16 This finding rests on the following straightforward logic:
a relatively high current policy rate RB

t compared to the average SB, RJ,∗
t , increases the scope for

additional firms to enter the market as the policy rate declines.17 Note from equation (31) above
that

RB
t

RJ,∗
t

≤ ω + 1
ω

. (32)

Corollary 1 The total measure of upstream firms opting to operate in period t + 1 is:

Mt+1 = 1 − ΘM ·
[(

ω

ω + 1

)
· RB

t

RJ,∗
t

]ω

, (33)

and a decrease in the policy room RB
t

RJ,∗
t

yields a larger increment in Mt+1 when starting from a higher initial
policy room level.

Proof. Directly from equation (33), we find:

dMt+1

d
(

RB
t

RJ,∗
t

) = −ΘM

[(
ω

ω + 1

)
· RB

t

RJ,∗
t

]ω−1

· ω

ω + 1
< 0 ,

whose absolute magnitude is increasing in the level of RB
t

RJ,∗
t

, given ω > 1.

Flexible Price Model: Under flexible prices, the price of consumption varieties produced by
downstream firms exhibits a constant markup over the cost of upstream inputs. Mathematically,

16This is consistent with the concave and decreasing function Mt+1 in relation to the policy rate, RB
t , as seen in

(33).
17This pertains to scenarios where the fixed cost cutoff F∗

t is low, thus allowing middle-range fixed cost firms with
suboptimal productivity to enter the market.
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this relationship is expressed as:

Pt

PJ
t

=
(1 + ζT)−1γ

γ − 1
. (34)

This establishes that the flexible price equilibrium is money-neutral, signifying that the policy
rate RJ exerts no influence on the real allocation of resources. Additional equilibrium conditions
are provided in Appendix B.

2.6 Summary Equilibrium Conditions

For analytical tractability, balanced growth path-adjusted variables are denoted with a tilde, for
example, Ỹt ≡ Yt

At
. In our simulation results, we assume the government implements optimal

transfers to neutralize real distortions arising from monopolistic competition. Specifically, this
involves setting ζT = 1

γ−1 and ζ J = 1
σ−1 . A comprehensive list of equilibrium conditions is

provided in Appendix C.

3 Steady State Results

3.1 Calibration

The values of calibrated parameters are presented in Table 1. Our model incorporates two key
factors influencing the operation of upstream firms in the market: fixed costs and productivity.
These variables are assumed to follow independent Pareto distributions. The model is designed
such that the proportion of operating upstream firms is sensitive to parameters associated with
these Pareto distributions. Utilizing the calibrated parameters outlined in Table 1, our model
effectively replicates the moments commonly targeted in the literature. Key steady-state values
are displayed in Table 2.

Fixed cost to balanced growth path output ratio, ϕ f : We set ϕ f = 0.37 based on two key
considerations. First, according to the Business Dynamics Statistics (BDS), the average annual
exit and entry rates from 1977 to 2016 were 10.6% and 12.3%, respectively. Our chosen value of
ϕ f = 0.37 yields a steady-state participation rate M = 0.9, in which the exit rate is precisely 10%.
Second, the fixed cost in our model can be interpreted as a composite of capital and non-capital
costs. In the existing literature, the capital-to-output cost ratio is approximately estimated to be
around 30%. According to Table 5 in Domowitz et al. (1988), the non-capital fixed cost-to-output
ratio varies between 0.05 and 0.18 across industries. Our model’s steady-state fixed cost-to-output
ratio of 0.37 aligns well within this empirical range.

Shape parameters in Pareto distributions, κ and ω: We select κ = ω = 3.4 based on the work
of Ghironi and Melitz (2005), who choose this shape parameter for the productivity distribution
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to align with the standard deviation of log U.S. plant sales, estimated at 1.67 by Bernard et al.
(2003). In our model, the standard deviation of log sales for operating upstream firms is given
by equation (35),18

σ (log rmv,t) =
σ − 1

α + σ(1 − α)

√
1
κ2 +

(
α + σ(1 − α)

σ − 1

)2 1
ω2 . (35)

With κ = ω = 3.4, our model predicts the standard deviation of upstream firms’ revenues to be
0.51. The residual variability in Bernard et al. (2003) may stem from factors we do not account for,
such as taste heterogeneity or different demand weights for product types. Additionally, their
estimates are based on U.S. manufacturing plants, whereas our framework focuses on upstream
firms.

Regarding productivity variability, the standard deviation of log productivity for operating
upstream firms in our model is proportional to equation (35) and is expressed as

σ (log φmv,t) =

√
1
κ2 +

(
α + σ(1 − α)

σ − 1

)2 1
ω2 , (36)

resulting in 0.36 when κ = ω = 3.4. According to Bernard et al. (2003), their model-generated
standard deviation of log value-added per worker is 0.35, while the empirical figure stands at
0.75.19 Given the potential for measurement errors, our calibration is closely aligned with their
model-generated moment and falls within a plausible range.

Elasticity of substitution, γ and σ: We select γ = σ = 3.79 based on the work of Bernard et al.
(2003), who calibrate the elasticity of substitution to align with U.S. plant-level and macro trade
data. Specifically, the value of 3.79 is chosen to match the productivity and size advantages of
U.S. exporters.20

The conventional calibration in existing literature suggests γ = 4.3, resulting in a 30% markup
over marginal costs. In contrast, our model distinguishes between downstream firms, which face
no fixed costs and whose marginal costs equals average input costs, and upstream firms which
incur period-by-period fixed costs to remain operational. Consequently, for upstream firms, the
average total cost exceeds the marginal cost. While γ = 3.79 generates a higher markup over
marginal costs, it yields a reasonable markup over average costs when both industry tiers are
considered.21

18The derivation of equations (35) and (36) is provided in Appendix B.
19Bernard et al. (2003) note that some degree of under-prediction could result from measurement errors in Census

data.
20Several studies, including Ghironi and Melitz (2005), Bilbiie et al. (2012), and Fasani et al. (2023), also adopt this

elasticity of substitution, following Bernard et al. (2003).
21Jones (2011) explores the substitutability and complementarity of intermediate goods by assuming two different

elasticities of substitution: 3 for final goods, and 0.5 for intermediate goods. We opt for a uniform elasticity of
substitution for both industry layers. The choice between γ and σ depends on the model’s interpretation. If upstream
firms are viewed as producers of essential commodities —like electricity, transportation services, or raw materials—
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Parameter Description Value Source
β Discount factor 0.99 Average annualized real interest rate of 3.5%.
η Frisch labor supply elasticity 1 Standard.
γ Elasticity of substitution (of

downstream market)
3.79 Calibrated by Bernard et al. (2003) to fit the US plant

and macro trade data.
σ Elasticity of substitution (of

upstream market)
3.79 Set to be the same as downstream products.

α labor share in the upstream
production function

0.7 Standard.

θ Calvo (1983) price stickiness 0.75 Standard.
κ Shape parameter: Pareto dis-

tribution of productivity
3.4 Ghironi and Melitz (2005).

ω Shape parameter: Pareto dis-
tribution of fixed cost

3.4 Keep it the same with the productivity distribution.

ϕ f Fixed cost - steady state out-
put ratio

0.37 The steady state mass of firms operating in the market
M = 0.9. The real loan to output ratio, L

PAȲ , equals 30%.
ϕg Government spending - out-

put ratio
18% Smets and Wouters (2007).

τπ Taylor parameter (inflation) 1.5 Standard.
τy Taylor parameter (output) 0.15 Standard.
µ Long-run TFP growth rate 0.005 Match a yearly growth rate at 2%.
Π Long-run inflation 1.02 Long-run inflation target at 2%.
ρa Autoregression for TFP 0.95 Smets and Wouters (2007).
ρc Autoregression for demand

shock
0.6 The autocorrelation of the preference shock that affects

the marginal utility of consumption estimated by Naka-
jima (2005).

ρg Autoregression for govern-
ment spending

0.97 Smets and Wouters (2007).

ρ f Autoregression for fixed cost 0.8 Gutiérrez et al. (2005) use data on entry, investment, and
stock market valuations of the US economy to recover
entry cost shocks. The estimated persistence is 0.72.

σa SD for ϵa 0.5 Within admissible intervals in Smets and Wouters
(2007).

σc SD for ϵc 0.2 The standard deviation of the preference shock esti-
mated by Nakajima (2005) using U.S. data on consump-
tion, labor, and output is 0.017.

σg SD for ϵg 0.2 In Smets and Wouters (2007), the estimated admissible
interval is [0.48, 0.58]. For our purposes, we do not need
large disturbances to generate sizable responses.

σf SD for ϵ f 0.2 Gutiérrez et al. (2005) uses data on entry, investment,
and stock market valuations of the US to recover entry
cost shocks. The estimated standard deviation is 0.087.

σr SD for ϵr 0.08 In Smets and Wouters (2007), the estimated admissible
interval is [0.22, 0.27]. For our purposes, we do not need
large disturbances to generate sizable responses.

Table 1: Calibrated parameters.
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Variable Value Description
H 0.74 Mass of productivity-irrelevant firms.
M 0.9 Mass of firms operating in the market.
RB 1.02 Gross risk-free rate.
RJ,∗ 1.17 Gross satiation rate.
F̃∗ 0.43 Cutoff fixed cost-to-output ratio.
∆ 1.0006 Price dispersion.
Wt

Pt At
0.67 Real wage.

Ct
Yt

0.52 Consumption-to-output ratio.
Wt Nt
PtYt

0.7 Labor cost-to-output ratio.
Lt/Pt

Ȳt
0.3 Loan-to-output ratio.

Table 2: Steady state values.

3.2 Comparative statics

In this section, we conduct comparative statics analyses on the steady-state equilibrium under
varying parameter calibrations. This will illustrate the relationship between individual parame-
ters and the internal mechanics of the model.

Fraction of Operating Upstream Firms: The steady-state proportion of active upstream firms,
denoted as M, is described by 1 − ΘM[1 − H], as derived from equation (20). Figure 2 visualizes
how M responds to shifts in model parameters: κ, ω, ϕ f , β, µ, and Π. We decompose M as
follows:

M = Prob(F < F∗) +(((((((Prob(F > F∗)
∫ ∞

F∗

(
Fm

F∗

)− κ[α+σ(1−α)]
σ−1 dH(Fm)

������1 − H(F∗)

= H(F∗)︸ ︷︷ ︸
≡M1

+
ω(σ − 1)

κ[α + σ(1 − α)] + ω(σ − 1)
(1 − H(F∗))︸ ︷︷ ︸

≡M2

.

Here, M1 = H(F∗) represents the mass of firms with sufficiently low fixed costs (Fm,t ≤ F∗) to
remain active irrespective of their productivity. M2 comprises firms that are operational but not
at the lowest fixed-cost tier; these firms do not operate if they draw a low productivity level.

The following key points can be drawn from Figure 2: (i) An increase in κ raises both M1 and
M by narrowing the productivity distribution around its mean, thereby raising the lower bound
of productivity and the likelihood of satiation for any given fixed cost; (ii) An increase in ω mani-
fests via two opposing effects on firm participation, M. On one hand, it raises the minimum fixed
cost ω−1

ω F, thereby reducing M. On the other hand, it narrows the fixed-cost distribution around

their products would exhibit lower substitutability, implying σ < γ. Conversely, if they produce different brands of
the same product, higher substitutability would suggest σ > γ. We remain agnostic about this interpretational aspect
and choose γ = σ = 3.79.
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Figure 2: Comparative Statics: M.

Notes: Benchmark parameters are fixed as listed in Table 1. Ranges for κ, ω, ϕ f , β, µ, and Π
are [2.8, 8], [1.01, 8], [0.001, 0.6], [0.9, 0.999], [0.001, 0.025], and [1.001, 1.0709], respectively. The red
dashed line marks the minimum mass of active firms, Mmin = 1 − ΘM, attained when no firm
is satiated, Ht = 0. We partition M into productivity-irrelevant M1 and jointly determined M2
components for various parameter values.

its mean F, potentially reducing the mass of high fixed-cost firms and subsequently increasing
M. The net effect on M depends on the relative magnitudes of these two forces. Moreover, the
satiation measure M1 typically declines as ω rises due to an increased lower bound on fixed
costs, ω−1

ω F, affecting firms that are typically satiated. These general characteristics relating ω

and M are further elaborated in Figure A.1 in Appendix A, which explores the influence of other
parameters on the functional relationship between M and each parameter; (iii) An increment in
ϕ f shifts the fixed-cost distribution to the right, thereby reducing both M and M1.
Following from equation (33), it is evident that the policy room RB

RJ,∗ maintains an inverse rela-
tionship with M. Variations in the parameters will produce effects on the policy room that are
opposite to their impacts on M, as documented in Figure A.2 in Appendix A.

The Real Loan-to-Output Ratio: At the steady state, the following inequality is derived from
equations (21) and (32):

ϕ f (1 − ΘL) ≤
L/P

Ȳ
= ϕ f

[
1 − ΘL(1 − H(F∗))

ω−1
ω

]
= ϕ f

[
1 − ΘL

(
ω

ω + 1
RB

RJ,∗

)ω−1]
≤ ϕ f ,

where the real loan-to-output ratio, L/P
Ȳ , is a decreasing function of the policy room RB

RJ,∗ , but
increasing with respect to the satiation measure H(F∗), and total firm participation, M.22

Figure 3 describes how L/P
Ȳ varies with key model parameters: κ, ω, ϕ f , β, µ, and Π. Our

22Note that M increases with H at the steady state as per equation (20).
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observations can be summarized as follows: (i) An increase in κ raises firm participation M, as
illustrated in Figure 2, and narrows the policy room RB

RJ,∗ , as seen in equation (33) and Figure
A.2, resulting on a higher aggregate loan demand; (ii) An increase in ω gives rise to conflicting
outcomes: it initially depresses firm participation M when ω is below a certain threshold, which
can be attributed to an increase in the minimum fixed cost of entry, ω−1

ω F, as seen in Figure
2. However, this negative extensive margin effect is eventually counterbalanced by a positive
intensive margin effect, where each active firm incurs a greater fixed cost, hence raising the
real loan-to-output ratio; (iii) An increase in ϕ f results in a reduction of firm participation M,
evident from Figure 2, thus reducing aggregate loan demand. As before, this decrease via the
extensive margin is eventually neutralized by an increase via the intensive margin, where each
active firm shoulders a higher fixed cost.23 The dynamics between the policy room RB

RJ,∗ and the
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Figure 3: Comparative statistics: Output-scaled real lending.

Notes: The red-dashed lines indicate the upper and lower bounds for output-scaled lending,
corresponding to ϕ f and ϕ f (1 − ΘL), respectively.

real loan-to-output ratio L/P
Ȳ are captured in Figure 4. An increase in either ϕ f or ω decreases

firm participation, M, and widens the policy room, RB

RJ,∗ , with the net effect being an increase
of aggregate loan issuance. In contrast, a rise in κ raises both M and L/P

Ȳ , inducing a negative
correlation with the policy room RB

RJ,∗ .

4 Quantitative Analysis

4.1 Supply vs. Demand Shocks

Technology shock: Figure 5 shows how a positive technology shock, ua,t, affects various vari-
ables in our model. Following the shock, a group of previously inactive firms enters the market,

23The functional relationship between L/P
Ȳ and other parameters is further explored in Figure A.3.
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Notes: This figure illustrates the co-movements between RB

RJ,∗ and L/P
Ȳ driven by variations in κ, ω,

and ϕ f . The solid triangular marker denotes the steady-state value under benchmark calibration.

boosting aggregate firm participation Mt, the measure of productivity-insensitive entrants Ht,
and aggregate loans Lt

Pt At
.24 As firms pay their fixed costs in units of the final consumption good,

the increase in firm entry contributes to an expansion in aggregate demand, as detailed in equa-

tion (29). An uptick in market participation typically depresses the real price of inputs, PJ
t

Pt
, due

to heightened competition, as expressed in equation (28). Yet in this case, the rising aggregate
demand dominates, increasing real input prices along with labor demand Nt and real wages.
This causes inflation Πt and interest rates RB

t to rise, thereby narrowing the policy room RB
t

RJ,∗
t

.25

We also examine the technology shock’s impact under varying levels of the fixed cost param-
eter, ϕ f . Higher entry costs mean a greater steady-state prevalence of inactive firms, 1 − M. In
such conditions, a positive ua,t shock triggers substantial new firm entry and larger increases in
Mt and Ht. The increase in aggregate demand brought by stronger entry is further amplified
by the elevated fixed costs associated with a higher ϕ f . Consequently, there’s a sharper initial
increase in loan demand, real input prices, wages, and labor demand, followed by a faster re-
version to steady-state levels due to increased competition. In this setting, inflation Πt shows a
more moderate response due to larger shifts in firm entry.26

24In Figures 5 and 6, the percentage increase in the loan-to-output ratio, Lt/Pt
Ȳt

, is equal to Lt
Pt At

A
Y , coming from a

net rise in aggregate loan demand, Lt
Pt At

. For small values of ϕ f , changes in loan demand around the steady-state are
negligible.

25This result is consistent with the positive correlation between the policy room, RB
t

RJ,∗
t

, and firm participation, Mt,

outlined in equation (33)
26This observation is consistent with the findings of Cecioni (2010), who argue that greater firm entry can mitigate

inflationary pressures in the U.S. economy.
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These dynamics align with a traditional AD-AS framework as follows: (i) a positive technol-
ogy shock moves the supply curve rightward; (ii) it leads to an outward movement of the demand
curve due to increased loan and labor demands, causing more firm entry and further shifts in
the supply curve; and (iii) when entry costs are high, more inactive firms enter the market after
a positive supply shock. Consequently, both the aggregate supply and aggregate demand curves
shift more extensively rightward, resulting in moderate inflation and increased output.
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Figure 5: Impulse response functions to TFP shock.

Notes: The figures display the deviation for 1 standard deviation (0.01) in ua,t which increases
the growth rate of the average productivity for upstream firms. The autoregressive coefficient is
0.6. The gradient blue lines denote the responses under calibration with varying ϕ f . From the
light blue to the dark blue, ϕ f s are 0.02, 0.25, 0.37 (benchmark), 0.5, and 0.6, with corresponding
Ms equal to 0.99, 0.96, 0.9, 0.78, and 0.69. The variables below are plotted in deviations from
their steady states: H, M, RB, Π, and RJ,∗. The rest of the variables are plotted in log deviations
from their steady states (in lower case letters or with a log). ∆ is the price dispersion for the
downstream products.

Demand shock: Figure 6 illustrates the effects of a consumption demand shock, uc,t. The figure
exhibits impulse responses that are qualitatively analogous to the ones displayed in Figure 5.
Specifically, a positive shock to uc,t prompts an increase in firm entry that results in an expansion
of the aggregate supply capacity of the economy.

In summary, our model highlights the reciprocal relationship between supply and demand
that exists as a result of endogenous firm entry. Accordingly, the initial origin of the shock —be it
supply- or demand-driven— yields no qualitative distinctions in the behavior of the key variables
within our model. Nonetheless, economies with a larger pool of potential new entrants generate
stronger responses to shocks in the form of larger output and moderate inflation movements.
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Figure 6: Impulse response functions to demand shock.

Notes: The figures display the deviation for 1 standard deviation (0.08) in uc,t, the demand shock.
The autoregressive coefficient is 0.6. The gradient blue lines denote the responses under calibra-
tion with varying ϕ f . From the light blue to the dark blue, ϕ f are 0.02, 0.25, 0.37 (benchmark),
0.5, and 0.6, with corresponding Ms equal to 0.99, 0.96, 0.9, 0.78, and 0.69. The below variables
are plotted in deviations in level from their steady states: H, M, RB, Π, and RJ,∗. The rest of the
variables are plotted in deviations in logs from their steady states (in lower case letters or with a
log). ∆ is the price dispersion for the downstream products.

Other shocks In Appendix A, impulse response functions are presented for fixed cost shocks
u f ,t (Figure A.4), monetary policy shocks εr,t (Figure A.5), and government spending shocks ug,t

(Figure A.6). A positive fixed cost shock induces a decrease in both firm entry Mt and the sati-
ation measure Ht. This decline is attributed to the elevated productivity cutoff φ∗

m,t, as specified
in equation (14), which rises for each firm type m due to increased entry costs. This shock has
dual, opposing impacts on aggregate demand: First, reduced firm participation diminishes fixed
equipment demand at the extensive margin, thereby contracting aggregate demand. Second, the
increased fixed costs boost the demand from incumbent firms, thereby augmenting aggregate
demand at the intensive margin. Under the model’s benchmark calibration, the latter effect pre-
vails, leading to a net expansion in aggregate demand. This subsequently results in an increase
in equilibrium levels of production, labor demand, real wages, and inflation.

A negative monetary policy shock, indicative of policy loosening, yields an impulse response
function akin to that produced by a consumption demand shock. A reduction in interest rates
promotes a rise in aggregate participation Mt, which in turn increases loan demand, inflation, real
wages, and production levels. A positive government spending shock, depicted in Figure A.6,
crowds out consumption via higher real interest rates while simultaneously reducing inflation
through increased participation by upstream firms, as evidenced by rises in Mt and Ht. The
government spending multiplier is amplified under higher values of ϕ f , which is attributable to
stronger firm entry following the shock.
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4.2 Intensive vs. Extensive Margin in Labor Adjustment

Changes in aggregate labor Nt as specified in equation (25) are attributable to two primary
factors: (i) variations in an operating firm’s labor demand, denoted Nmv,t, over time —referred
to as intensive margin adjustment; and (ii) fluctuations in the number of active upstream firms
Mt across business cycles —known as extensive margin adjustment. The aggregate labor Nt is
formally expressed in equation (37) as:

Nt =
∫ 1

0

∫
v∈Ωm,t

Nmv,t dv dm , (37)

where the individual labor demand Nmv,t derives from equation (B.14). We now proceed to
consider an upstream firm (m, v) operating across two periods t and t + ι, where ι ≥ 1. Utilizing
equation (B.14), we define:

gDensity
t,t+ι ≡ Nmv,t+i − Nmv,t

Nmv,t
=

[
1 + Θ4 · Ht−1

1 + Θ4 · Ht+ι−1

]( σ
(σ−1)α

)( Yt+ι∆t+ι

At+ι

Yt∆t
At

) 1
α

− 1 , (38)

which represents the percentage change between periods t and t+ ι in an individual firm (m, v)’s
labor demand Nmv,t, contingent upon the firm’s operation across both periods. Importantly,
gDensity

t,t+ι is solely a function of aggregate variables, independent of the indices (m, v). We term
gDensity

t,t+ι as the “intensive margin” adjustment in labor demand.
From equation (25), we derive an expression for the percentage change in aggregate labor, Nt,

denoted as gN
t,t+ι

27:

gN
t,t+ι ≡

Nt+ι − Nt

Nt
= gDensity

t,t+ι + (1 + gDensity
t,t+ι ) · gEntry

t,t+ι , (39)

where gDensity
t,t+ι is defined as in equation (38) and gEntry

t,t+ι is given by

gEntry
t,t+ι =

(Ht+ι−1 − Ht−1) +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(Ht−1 − Ht+ι−1)

Ht−1 +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(1 − Ht−1)

. (40)

We interpret gEntry
t,t+ι as the extensive margin adjustment in labor, triggered by changes in firm

entry. According to equation (39), the total percentage change in aggregate labor comprises both
intensive and extensive margin adjustments.
Figures 7 and 8 portray how intensive and extensive margins respond, respectively, to different

shocks. For example, for a positive fixed cost shock u f ,t, we note: (i) a negative extensive margin
adjustment due to the exit of less competitive firms, and (ii) an increase in per-firm labor demand
corresponding to higher aggregate output, as evidenced in Figure A.4.

27The derivation is provided in Appendix B.
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Figure 7: Decomposition of labor growth rate: isolines on intensive margin.

Notes: Figures illustrate employment growth rate relative to pre-shock employment level. Gradi-
ent green lines indicate intensive margin responses with varying fixed cost parameter ϕ f values.
Growth rates are reported in net percentage terms.

In contrast, a consumption demand shock, ϕc,t, leads to positive adjustments on both labor mar-
gins due to increased market entry and output (see Figure 6). The extensive margin effect grows
more salient with higher ϕ f , while the intensive margin exhibits a non-monotonic behavior. Ini-
tially, individual firms require more workers, but as market competition intensifies, labor de-
mand flattens, as corroborated by Figure A.4.
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Figure 8: Decomposition of labor growth rate: isolines on extensive margin.

Notes: Figures illustrate employment growth rate relative to pre-shock employment level. Gradi-
ent blue lines indicate extensive margin responses with varying fixed cost parameter ϕ f values.
Growth rates are reported in net percentage terms.

4.3 Multipliers and the Policy Room

We now examine the influence of initial policy room levels on the responses of aggregate variables
to shocks, commonly termed as shock multipliers. To obtain the value of multipliers outside the
steady state, we simulate the model over a span of T = 10, 000 periods, selecting 500 unique
realizations denoted as Yoriginal. For each selected realization, we extend the model dynamics up
to h = 4 periods ahead based on two different scenarios: (i) no additional shocks, which results

in the time series
{

Y
original
t+h

}h=4

h=0
; and, (ii) an initial one standard deviation addition to the shock

of interest, giving rise to the time series
{

Yshock
t+h

}h=4
h=0. The multiplier is subsequently computed
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as
|Yshock

t+h −Y
original
t+h |

σ(shock) for horizons ranging from h = 0 to h = 4.
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Figure 9: Scatter plot between policy room and monetary policy multipliers.

Notes: Figures plot the relationship between policy room and monetary policy multipliers on
output (in logs), labor (in logs), and next period mass of operating firms (in levels). We consider
the next period’s mass of operating firms since the firms paying the fixed cost at t will operate
on the market at t + 1. Figures in the first to third rows display the contemporaneous multipliers
(h = 0), multipliers after 1 quarter (h = 1), and multipliers after 4 quarters (h = 4) correspond-
ingly. The blue circles represent the result from each simulation based on solutions from the
third-order perturbation method. The red solid lines are fitted second-order polynomials.

In Figure 9, we plot the relationship between multipliers and initial policy room levels. The
key findings are:

1. At h = 0, multipliers for output and labor positively correlate with policy room levels. This
effect is due to the higher rate of firm entry (which in turn raises equipment purchases) in
response to a monetary shock when initial policy room is larger, consistent with Corollary
1.

2. At h = 1, although the multipliers decline due to the shock’s lack of persistence, the positive
correlation with the initial policy room remains. This is explained by an increased number
of firms in the market and an associated rise in supply.

3. At h = 4, multipliers approach zero, attributable to the lack of shock persistence.
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In summary, the policy room serves as a sufficient statistic for equilibrium firm entry and is
positively correlated with the multipliers for output, labor, and firm entry in response to mone-
tary shocks. Further details can be found in Figures A.8 and A.928 in Appendix A, which relate
closely to the discussion here.

5 Conclusion

This paper develops a macroeconomic framework to analyze and understand the contributions
of endogenous firm entry to business cycle fluctuations. Based on a dual-industry (i.e., upstream
and downstream industries) model, we tractably characterize the dynamics of endogenous firm
entry within a New-Keynesian framework. In our framework, upstream firms face stochastic
fixed entry costs, denominated in the final consumption good. These firms are also constrained
by cash-in-advance requirements and depend on capital markets for financing their fixed costs.
Downstream firms, on the other hand, are subject to nominal pricing rigidities. Our analysis re-
veals that demand shocks increase firm profitability and entry, thereby expanding the economy’s
aggregate supply. In turn, this increased participation stimulates additional demand for the final
good, as firms seek to finance their entry via loans. This process initiates a self-reinforcing cycle,
rendering the relationship between demand and supply non-separable under general circum-
stances. As a result, conventionally defined ’supply’ and ’demand’ shocks induce comparable
patterns of co-movement in output and prices. Specifically, supply shifts, resulting from the entry
of new firms, lead to disinflationary pressures alongside an increase in output.

Our research identifies a critical threshold for each entry fixed cost level, termed the Satiation
Bound (SB). At this threshold, all firms with identical entry fixed costs fully engage in production,
rendering monetary policy ineffective in further spurring economic growth through new firm
entry. Based on this concept, we introduce a metric known as the “policy room”, which represents
the difference between the current policy rate and the average SB across firms. Our results show
a strong correlation between the rate of firm entry, monetary policy efficacy, and our policy room
measure.

We further analyze changes in aggregate variables such as labor, breaking them down into
two components: the ‘extensive’ margin, involving new firm entries, and the ‘intensive’ margin,
related to incumbent firms. We show that a wider policy room makes firm entry decisions more
responsive to changes in the policy rate, leading to higher policy multipliers. Conversely, when
the policy room is narrow, the intensive margin becomes predominant, and the economy’s re-
sponse to shocks is characterized by lower output multipliers and heightened inflation responses.
Therefore, we believe that understanding the drivers of firm entry is key to figuring out how de-
mand and supply interact at business cycle frequencies.

28Figure A.9 in Appendix A documents the relation between the policy room and the government spending mul-
tiplier, which is similar to the case of monetary policy in Figure 9.

28



Acknowledgements

Seung Joo Lee thanks Hong Kong University of Science and Technology and Princeton University,
where the first draft of the paper is written, for their hospitality. We appreciate Artur Doshchyn
and Yuriy Gorodnichenko for their comments. This paper was previously circulated with a title
“A Theory of Keynesian Demand and Supply Interactions under Endogenous Firm Entry".

Competing interest statement

The authors have no competing interests to declare.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work the authors used ChatGPT 4 in order to improve language
and readability. After using this tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the content of the publication.

References

Abadi, Joseph, Markus Brunnermeier, and Yann Koby, “The Reversal Interest Rate,” American
Economic Review, 2022, 113 (8), 2084–2120.

Bergin, Paul R. and Giancarlo Corsetti, “The extensive margin and monetary policy,” Journal of
Monetary Economics, 2008, 55 (7), 1222–1237.

Bernard, Andrew B., Jonathan Eaton, J. Bradford Jensen, and Samuel Kortum, “Plants and
Productivity in International Trade,” American Economic Review, 2003, 93 (4), 1268–1290.

Bilbiie, Florin O., Fabio Ghironi, and Marc J. Melitz, “Endogenous Entry, Product Variety, and
Business Cycles,” Journal of Political Economy, 2012, 120 (2), 304–345. Publisher: The University
of Chicago Press.

, , , Virgiliu Midrigan, and Julio J. Rotemberg, “Monetary Policy and Business Cycles
with Endogenous Entry and Product Variety [with Comments and Discussion],” NBER Macroe-
conomics Annual, 2007, 22, 299–379. Publisher: The University of Chicago Press.

Burnside, Craig, Martin Eichenbaum, and Sergio Rebelo, “Labor Hoarding and the Business
Cycle,” Journal of Political Economy, 1993, 101 (2), 245–273.

Calvo, Guillermo, “Staggered prices in a utility-maximizing framework,” Journal of Monetary
Economics, 1983, 12 (3), 383–398.

29



Cecioni, Martina, “Firm Entry, Competitive Pressures and the U.S. Ináation Dynamics,” Temi di
discussione (Economic working papers), Bank of Italy, Economic Research Department, 2010.

Colciago, Andrea and Riccardo Silvestrini, “Monetary policy, productivity, and market concen-
tration,” European Economic Review, 2022, 142, 103999.

Domowitz, Ian, Glenn Hubbard, and Bruce C. Petersen, “Market Structure and Cyclical Fluc-
tuations in U.S. Manufacturing,” The Review of Economics and Statistics, 1988, 70 (1), 55–66.

Fasani, Stefano, Haroon Mumtaz, and Lorenza Rossi, “Monetary policy uncertainty and firm
dynamics,” Review of Economic Dynamics, January 2023, 47, 278–296.

Ghironi, Fabio and Marc J. Melitz, “International Trade and Macroeconomic Dynamics with
Heterogeneous Firms*,” The Quarterly Journal of Economics, 2005, 120 (3), 865–915.

Guerrieri, Veronica, Guido Lorenzoni, Ludwig Straub, and Iván Werning, “Macroeconomic
Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?,” The
American Economic Review, 2023, 112 (5), 1437–1474.

Gutiérrez, Germán, Callum Jones, and Thomas Philippon, “Entry costs and aggregate dynam-
ics,” The Review of Economics and Statistics, 2005, 49 (5), 1331–1360.

Hamano, Masashige and Francesco Zanetti, “Endogenous product turnover and macroeconomic
dynamics,” Review of Economic Dynamics, 2017, 26, 263–279.

Jones, Charles I, “Intermediate Goods and Weak Links in the Theory of Economic Development,”
American Economic Journal: Macroeconomics, April 2011, 3 (2), 1–28.

Kobayashi, Teruyoshi, “Firm entry, credit availability and monetary policy,” Journal of Economic
Dynamics and Control, 2011, 35 (8), 1245–1272.

Lewis, Vivien and Céline Poilly, “Firm entry, markups and the monetary transmission mecha-
nism,” Journal of Monetary Economics, 2012, 59 (7), 670–685.

Melitz, Marc J., “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry
Productivity,” Econometrica, 2003, 71 (6), 1695–1725.

Nakajima, Tomoyuki, “A business cycle model with variable capacity utilization and demand
distur- bances,” The Review of Economics and Statistics, 2005, 49 (5), 1331–1360.

Smets, Frank and Rafael Wouters, “Shocks and Frictions in US Business Cycles: A Bayesian
DSGE Approach,” American Economic Review, 2007, 97 (3), 586–606.

Stebunovs, Viktors, “Finance as a Barrier to Entry: U.S. Bank Deregulation and Business Cycle,”
working paper, 2008.

30



Ulate, Mauricio, “Going Negative at the Zero Lower Bound: The Effects of Negative Nominal
Interest Rates,” American Economic Review, 2021, 111 (1), 1–40.

Uusküla, Lenno, “Monetary transmission mechanism with firm turnover,” Journal of Macroeco-
nomics, 2016, 50, 1–18.

31



Appendix A Additional Tables and Figures

A.1 Section 3.2
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Figure A.1: Comparative Statics: M.

Notes: This figure displays how variations in other structural parameters affect the relation be-
tween M and the structural parameters.

32



2 4 6 8

0.6

0.8

1

1.2

1.4

=    0.92

=    0.96

=    1.00

2 4 6 8

0.6

0.8

1

1.2 =    2.35

=    5.18

=    8.00

2 4 6 8

0

0.5

1

1.5

f
=    0.12

f
=    0.36

f
=    0.60

0 2 4 6 8

0

0.5

1

1.5

2

=    0.92

=    0.96

=    1.00

0 2 4 6 8

0

0.5

1

1.5

2

=    3.80

=    5.90

=    8.00

0 2 4 6 8

0

0.5

1

1.5

2

f
=    0.12

f
=    0.36

f
=    0.60

0 0.2 0.4 0.6

f

0

0.5

1

1.5

=    0.92

=    0.96

=    1.00

0 0.2 0.4 0.6

f

0

0.5

1

1.5

=    3.80

=    5.90

=    8.00

0 0.2 0.4 0.6

f

0

0.5

1

1.5

=    2.35

=    5.18

=    8.00

0.9 0.92 0.94 0.96 0.98 1

0.6

0.8

1

1.2

1.4

=    3.80

=    5.90

=    8.00

0.9 0.92 0.94 0.96 0.98 1

0.8

1

1.2

1.4

=    2.35

=    5.18

=    8.00

0.9 0.92 0.94 0.96 0.98 1

0.5

1

1.5

f
=    0.12

f
=    0.36

f
=    0.60

Figure A.2: Comparative Statics: Policy Room.

Notes: This figure display how κ, ω, and ϕ f affect the relationship between the policy room and
the parameters.
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Figure A.3: Comparative Statics: Loan-to-output ratio.

Notes: This figure display how κ, ω, and ϕ f affect the relationship between L/P
Ȳ and the parame-

ters.
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A.2 Section 4.1
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Figure A.4: Impulse response functions to fixed cost shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.08) in u f ,t, the fixed
cost shock. The autoregressive coefficient is 0.6. The gradient blue lines denote the responses
under calibrations with varying ϕ f . From the light blue to the dark blue, ϕ f are 0.02, 0.25, 0.37
(benchmark), 0.5, and 0.6, with corresponding Ms equal to 0.99, 0.96, 0.9, 0.78, and 0.69. The
variables below are plotted in deviations from their steady states: H, M, RB, Π, and RJ,∗ (net
interest rate). The rest of the variables are plotted in log deviations from their steady states
(in lower case letters or with a log). ∆ is the price dispersion for the downstream products.
Wt/(Pt At) is the real wage. PJ

t /Pt measures the aggregate price for the upstream products or the
input price for the downstream firms.
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Figure A.5: Impulse response functions to monetary policy shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.02) in ϵr,t, the mone-
tary policy shock. The gradient blue lines denote the responses under calibrations with varying
ϕ f . From the light blue to the dark blue, ϕ f are 0.02, 0.25, 0.37 (benchmark), 0.5, and 0.6, with
corresponding Ms equal to 0.99, 0.96, 0.9, 0.78, and 0.69. The variables below are plotted in devi-
ations from their steady states: H, M, RB, Π, and RJ,∗ (net interest rate). The rest of the variables
are plotted in log deviations from their steady states (in lower case letters or with a log). ∆ is the
price dispersion for the downstream products.Wt/(Pt At) is the real wage. PJ

t /Pt measures the
aggregate price for the upstream products or the input price for the downstream firms.

36



0 10 20

Quarter

0

5

10

15
10

-3

0 10 20

Quarter

0

2

4

6
10

-3

0 10 20

Quarter

0

2

4

6

8

10
10

-3

0 10 20

Quarter

0

0.1

0.2

0.3

0 10 20

Quarter

0

0.5

1

1.5

2

10
-3

0 10 20

Quarter

0

2

4

6
10

-3

0 10 20

Quarter

-10

-8

-6

-4

-2

0
10

-3

0 10 20

Quarter

0

5

10

15

20
10

-3

0 10 20

Quarter

-4

-2

0

2

4
10

-4

0 10 20

Quarter

0

0.005

0.01

0.015

0.02

0 10 20

Quarter

0

5

10

15
10

-3

0 10 20

Quarter

0

0.005

0.01

0.015

0.02

0 10 20

Quarter

0

2

4

6

8

10
10

-3

0 10 20

Quarter

-8

-6

-4

-2

0
10

-3

0 10 20

Quarter

0

0.02

0.04

0.06

0.08

0.1

Figure A.6: Impulse response functions to government spending shock.

Notes: The figures display the deviation for 1 positive standard deviation (0.08) in ug,t which
denotes the government spending shock. The autoregressive coefficient is 0.97. The gradient
blue lines denote the responses under calibration with varying ϕ f . From the light blue to the
dark blue, ϕ f are 0.02, 0.25, 0.37 (benchmark), 0.5, and 0.6, with corresponding Ms equal to 0.99,
0.96, 0.9, 0.78, and 0.69. The variables below are plotted in level deviations from their steady
states: H, M, RB, Π, and RJ,∗ (net interest rate). The rest of the variables are plotted in log
deviations from their steady states (in lower case letters or with a log). ∆ is the price dispersion
for the downstream products. Wt/(Pt At) is the real wage. PJ

t /Pt measures the aggregate price
for the upstream products or the input price for the downstream firms.
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A.3 Section 4.3
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Figure A.7: Scatter plot between policy room and government spending multipliers.

Notes: Figures plot the relationship between policy room and government spending multipliers
on output (in logs), labor (in logs), and next period mass of operating firms (in levels). We con-
sider the next period’s mass of operating firms since the firms paying the fixed cost at t will
operate on the market at t + 1. Figures in the first to third rows display the contemporaneous
multipliers (h = 0), multipliers after 1 quarter (h = 1), and multipliers after 4 quarters (h = 4)
correspondingly. The blue circles represent the result from each simulation based on solutions
from the third-order perturbation method. The red solid lines are fitted second-order polynomi-
als.
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Figure A.8: Scatter plot between the mass of firms and monetary policy multipliers.

Notes: Figures plot the relationship between the current mass of operating firms and monetary
policy multipliers on output (in logs), labor (in logs), and next period mass of operating firms
(in levels). We consider the next period’s mass of operating firms since the firms paying the
fixed cost at t will operate on the market at t + 1. Figures in the first to third rows display the
contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1), and multipliers after
4 quarters (h = 4) correspondingly. The blue circles represent the result from each simulation
based on solutions from the third-order perturbation method. The red solid lines are fitted
second-order polynomials.
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Figure A.9: Scatter plot between the mass of firms and government spending multipliers.

Notes: Figures plot the relationship between the current mass of operating firms and government
spending multipliers on output (in logs), labor (in logs), and next period mass of operating firms
(in levels). We consider the next period’s mass of operating firms since the firms paying the
fixed cost at t will operate on the market at t + 1. Figures in the first to third rows display the
contemporaneous multipliers (h = 0), multipliers after 1 quarter (h = 1), and multipliers after
4 quarters (h = 4) correspondingly. The blue circles represent the result from each simulation
based on solutions from the third-order perturbation method. The red solid lines are fitted
second-order polynomials.
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Appendix B Derivation and Proofs

B.1 Detailed Derivation in Section 2.2

Derivation of equations (12) and (13) We start from the price setting of a firm (m, v), given by

PJ
mv,t =

(
(1 + ζ J)−1σ

(σ − 1)α

)
Wt φ

− 1
α

mv,t J
1−α

α
mv,t =

(
(1 + ζ J)−1σ

(σ − 1)α

)
Wt φ

− 1
α

mv,t

[
(PJ

mv,t)
−σΓJ

t

] 1−α
α

,

in which we can solve for PJ
mv,t as

(PJ
mv,t)

α+σ(1−α)
α =

(
(1 + ζ J)−1σ

(σ − 1)α

)
Wt φ

− 1
α

mv,t(Γ
J
t )

1−α
α ,

from which we obtain

PJ
mv,t =

(
(1 + ζ J)−1σ

(σ − 1)α

) α
α+σ(1−α)

W
α

α+σ(1−α)

t φ
− 1

α+σ(1−α)

mv,t (ΓJ
t )

(1−α)
α+σ(1−α) . (B.1)

To get the revenue function rmv,t, we start from

PJ
mv,t Jmv,t =

(
(1 + ζ J)−1σ

(σ − 1)α

)
Wt φ

− 1
α

mv,t J
1
α
mv,t ,

which leads to

rmv,t = (1 + ζ J)PJ
mv,t Jmv,t =

(
σ

(σ − 1)α

)
WtNmv,t = (1 + ζ J)PJ

mv,t

(
PJ

mv,t

PJ
t

)−σ

Jt (B.2)

= (1 + ζ J)(PJ
mv,t)

1−σΓJ
t = (1 + ζ J)

(
(1 + ζ J)−1σ

(σ − 1)α

) α(1−σ)
α+σ(1−α)

W
α(1−σ)

α+σ(1−α)

t φ
− (1−σ)

α+σ(1−α)

mv,t (ΓJ
t )

1
α+σ(1−α) .

Finally, we obtain the formula for the profit ΠJ
mv,t, which is given by

ΠJ
mv,t = rmv,t − WtNmv,t − RJ

t−1Pt−1Fm,t−1 =
α + σ(1 − α)

σ
rmv,t − RJ

t−1Pt−1Fm,t−1 .

Calculating PJ
m,t in (6): the price aggregator for firms of fixed Fm,t−1 From our notation in (6),

we know that among firms with fixed cost Fm,t−1, a set of operating ones at t would be given by
Ωm,t =

{
φmv,t ∈

[
max

{
φ∗

m,t,
(

κ−1
κ

)
At
}

, ∞
]}

. The cumulative distribution function of productiv-

ities of upstream firms that decide to produce is Ψ(φm,t)
1−Ψ(φ∗

m,t)
, a truncated Pareto distribution which

is itself a Pareto distribution. With the individual firm (m, v)’s pricing equation (B.1), we now
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can compute the aggregate price of upstream firms with fixed cost Fm,t−1 as:

(
PJ

m,t
Pt

)1−σ

=�
��Mm,t ·

∫ ∞

max{φ∗
m,t ,(

κ−1
κ )At}

(
PJ
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Pt
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�����1 − Ψ(φ∗
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(B.3)

=
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κ−1
κ )At}

(
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) α(1−σ)
α+σ(1−α) ( κ − 1

κ

) (σ−1)
α+σ(1−α)

(
Wt

Pt At

) α(1−σ)
α+σ(1−α)

[(
κ − 1

κ

)
At

] (1−σ)
α+σ(1−α)

·
(

ΓJ
t

(PJ
t )

σ At

) (1−α)(1−σ)
α+σ(1−α)

(
PJ

t
Pt

) (1−α)(1−σ)σ
α+σ(1−α) ∫ ∞

max{φ∗
m,t ,(

κ−1
κ )At}

φ
σ−1

α+σ(1−α)

mv,t d Ψ(φmv,t)

= Θ1

(
Wt

Pt At

) α(1−σ)
α+σ(1−α)

(
Yt∆t
At

) (1−α)(1−σ)
α+σ(1−α)

(
PJ

t
Pt

) (1−α)(1−σ)σ
α+σ(1−α)

max

 φ∗
m,t(

κ−1
κ

)
At

, 1


− κ[α+σ(1−α)]−(σ−1)

α+σ(1−α)

= Θ1

(
Wt

Pt At

) α(1−σ)
α+σ(1−α)

(
Yt∆t
At

) (1−α)(1−σ)
α+σ(1−α)

(
PJ

t
Pt

) (1−α)(1−σ)σ
α+σ(1−α)

min


 RJ

t−1Pt−1Fm,t−1

Et−1 [ξt · Ξt]
[(

κ−1
κ

)
At

] σ−1
α+σ(1−α)


− κ[α+σ(1−α)]−(σ−1)

σ−1

, 1

 ,

where we define

Θ1 =

(
(1 + ζ J)−1σ

(σ − 1)α

) α(1−σ)
α+σ(1−α)

(
κ − 1

κ

) σ−1
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.

Reexpressing Ξt in equation (13) Combining equation (13) with ΓJ
t = (PJ

t )
σYt∆t, we obtain

Ξt =
α + σ(1 − α)

α(σ − 1)
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(1 + ζ J)−1σ

(σ − 1)α

)− σ
α+σ(1−α)

(
κ − 1

κ

) α(σ−1)
α+σ(1−α)

.
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Derivation of PJ
t in (19) We start from the full satiation threshold of the fixed cost F∗

t−1 defined
in Proposition 2:

F∗
t−1 =

Et−1 [ξt · Ξt]
[(

κ−1
κ

)
At
] σ−1

α+σ(1−α)

RJ
t−1Pt−1

(B.5)
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) σ
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1
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) ,

where the second equality is from equation (B.4). From (14) and (B.5), we obtain

φ∗
m,t =

(
Fm,t−1

F∗
t−1

) α+σ(1−α)
σ−1

(
κ − 1

κ

)
At, RJ,∗

m,t−1 =

(
Fm,t−1

F∗
t−1

)−1

RJ
t−1 . (B.6)

From (15), we obtain

Mm,t = min


(

Fm,t−1

F∗
t−1

)−
(

κ[α+σ(1−α)]
σ−1

)
, 1

 . (B.7)

Using equation (B.3) and (B.5), we obtain

(
PJ

m,t

Pt

)1−σ

= Θ1 ·
(

Wt

Pt At

) α(1−σ)
α+σ(1−α)

(
PJ

t
Pt

) (1−α)(1−σ)σ
α+σ(1−α) (Yt∆t

At

) (1−α)(1−σ)
α+σ(1−α)

min


(

Fm,t−1

F∗
t−1

)−
(

κ[α+σ(1−α)]−(σ−1)
σ−1

)
, 1

 .

(B.8)
We rearrange equation (6) as:

(
PJ

t
Pt

)1−σ

=
∫ 1

0

(
PJ

m,t

Pt

)1−σ

dm

= Prob
(

Fm,t−1 ≤ F∗
t−1
)

Et

(PJ
m,t

PJ
t

)1−σ

|Fm,t−1 ≤ F∗
t−1


+ Prob

(
Fm,t−1 > F∗

t−1
)

Et

(PJ
m,t

PJ
t

)1−σ

|Fm,t−1 > F∗
t−1

 (B.9)

=����H(F∗
t−1)

∫ F∗
t−1

( ω−1
ω )Ft−1

(
PJ

m,t

PJ
t

)1−σ
dH(Fm,t−1)

����H(F∗
t−1)

+((((((([
1 − H(F∗

t−1)
] ∫ ∞

F∗
t−1

(
PJ

m,t

PJ
t

)1−σ
dH(Fm,t−1)

������1 − H(F∗
t−1)

=
∫ F∗

t−1

( ω−1
ω )Ft−1

(
PJ

m,t

PJ
t

)1−σ

dH(Fm,t−1) +
∫ ∞

F∗
t−1

(
PJ

m,t

PJ
t

)1−σ

dH(Fm,t−1) ,
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where
PJ

m,t

PJ
t

is given by (B.8). Plugging (B.8) into (B.9), we obtain

(
PJ

t
Pt

)1−σ

= Θ1 ·
(

Wt

Pt At

)( α(1−σ)
α+σ(1−α)

)
·
(

PJ
t

Pt

)( (1−α)(1−σ)σ
α+σ(1−α)

)
·
(

Yt∆t

At

)( (1−α)(1−σ)
α+σ(1−α)

)

·

∫ F∗
t−1

( ω−1
ω )Ft−1

1 dH (Fm,t−1) +
∫ ∞

F∗
t−1

(
Fm,t−1

F∗
t−1

)−
(

κ[α+σ(1−α)]−(σ−1)
σ−1

)
dH (Fm,t−1)

 ,

(B.10)

which leads to

(
PJ

t
Pt

)( α(1−σ)
α+σ(1−α)

)
= Θ1 ·

(
Wt

Pt At

)( α(1−σ)
α+σ(1−α)

)
·
(

Yt∆t

At

)( (1−α)(1−σ)
α+σ(1−α)

)

·
[

H (F∗
t−1) +

(
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)

)
· [1 − H (F∗

t−1)]

]
.

(B.11)

Rearranging equation (B.11), we finally obtain:

PJ
t

Pt
=

(
Wt

Pt At

)
·
(

Yt∆t

At

) 1−α
α

·
[

Θ3

1 + Θ4 · H
(

F∗
t−1

)]
(

α+σ(1−α)
α(σ−1)

)
. (B.12)

where we define

Θ3 =

(
κ[α + σ(1 − α)] + (ω − 1)(σ − 1)

Θ1ω(σ − 1)

)
, Θ4 =

(
κ[α + σ(1 − α)]− (σ − 1)

ω(σ − 1)

)
.

Derivation of Mt and Lt−1 in (20) and (21)

Mt =
∫ 1

0

∫
v∈Ωm,t

1 dv dm =
∫ 1

0
Mm,t dm =

∫ 1

0
Mm,t · dH(Fm,t−1) (B.13)

= Prob (Ft−1 ≤ F∗
t−1)︸ ︷︷ ︸

=H(F∗
t−1)

·1 +
(((((((((
Prob (Ft−1 > F∗

t−1) ·
∫ ∞

F∗
t−1

(
Fm,t−1

F∗
t−1

)− κ[α+σ(1−α)]
σ−1 dH(Fm,t−1)

�������
1 − H

(
F∗

t−1
)

= 1 − ΘM · [1 − H (F∗
t−1)] ,

where
ΘM =

κ[α + σ(1 − α)]

κ[α + σ(1 − α)] + ω(σ − 1)
.
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To derive equation (17), we start from

Lt−1

Pt−1
=

∫ 1
0 Lm,t−1 dm

Pt−1

= Prob (Fm,t−1 ≤ F∗
t−1) ·

∫ F∗
t−1

( ω−1
ω )Ft−1

Fm,t−1
dH (Fm,t−1)

H
(

F∗
t−1

)
+ Prob (Fm,t−1 > F∗

t−1) ·
∫ ∞

F∗
t−1

(F∗
t−1)

(
κ[α+σ(1−α)]

σ−1

)
· F

−
(

κ[α+σ(1−α)]−(σ−1)
σ−1

)
m,t−1

dH (Fm,t−1)

1 − H
(

F∗
t−1

)
=
∫ F∗

t−1

( ω−1
ω )Ft−1

Fm,t−1 dH (Fm,t−1) +
∫ ∞

F∗
t−1

(F∗
t−1)

(
κ[α+σ(1−α)]

σ−1

)
· F

−
(

κ[α+σ(1−α)]−(σ−1)
σ−1

)
m,t−1 dH (Fm,t−1) ,

which leads to

Lt−1

Pt−1
= Ft−1 −

(
ω

ω − 1

)(
κ[α + σ(1 − α)]

κ[α + σ(1 − α)] + (σ − 1)(ω − 1)

)
· F∗

t−1 · [1 − H (F∗
t−1)]

= Ft−1 ·
[
1 − ΘL · [1 − H (F∗

t−1)]
( ω−1

ω )
]

,

where
ΘL =

κ[α + σ(1 − α)]

κ[α + σ(1 − α)] + (σ − 1)(ω − 1)
.

Derivation of Nt in equation (25) Labor Nmv,t employed by a producing upstream firm (m, v)
is given by

Nmv,t = J
1
α
mv,t φ

− 1
α

mv,t = φ
− 1

α
mv,t ·

(PJ
mv,t

PJ
t

)−σ

· Jt

 1
α

(B.14)

=

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

)
·
(

κ − 1
κ

)( σ−1
α+σ(1−α)

)
·

 φmv,t(
κ−1

κ

)
At


(

σ−1
α+σ(1−α)

)

·
(

Wt

Pt At

)( −σ
α+σ(1−α)

)
·
(

PJ
t

Pt

)( σ
α+σ(1−α)

)
·
(

Yt∆t

At

)( 1
α+σ(1−α)

)

=

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) φmv,t(
κ−1

κ

)
At


(

σ−1
α+σ(1−α)

) [
Θ3

1 + Θ4Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α

,

where we use equation (5) in the second equality, equations (8) and (11) for the third equality,
and equation (19) to obtain the fourth one. For convenience we define Ht−1 ≡ H

(
F∗

t−1
)
. Now we
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integrate labor in (B.14) across all producing firms to obtain the aggregate labor Nt. First,

Nt =
∫ 1

0

∫
v∈Ωm,t

Nmv,t dv dm

=

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) [(
κ − 1

κ

)
At

]( 1−σ
α+σ(1−α)

)

·
[

Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α
∫ 1

0

∫
v∈Ωm,t

φ

(
σ−1

α+σ(1−α)

)
mv,t dv dm

= □
∫ 1

0

∫
v∈Ωm,t

φ

(
σ−1

α+σ(1−α)

)
mv,t dv dm ,

(B.15)

where

□ =

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) [(
κ − 1

κ

)
At

]( 1−σ
α+σ(1−α)

) [
Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α

.

(B.16)
Now, (37) leads to

Nt = □
∫ 1

0

∫
max(φ∗

m,t ,
κ−1

κ At)
φ

(
σ−1

α+σ(1−α)

)
mv,t κ

[(
κ − 1

κ

)
At

]κ

φ
−(κ+1)
mv,t dφmv,t dm

= □
[(

κ − 1
κ

)
At

]κ ( κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)

·
[(

κ − 1
κ

)
At

](− κ[α+σ(1−α)]−(σ−1)
α+σ(1−α)

) ∫ 1

0
max

(
φ∗

m,t
κ−1

κ At
, 1

)(− κ[α+σ(1−α)]−(σ−1)
α+σ(1−α)

)
dm

= □
[(

κ − 1
κ

)
At

]( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

) ∫ 1

0
min

( Fm,t−1

F∗
t−1

)− κ[α+σ(1−α)]−(σ−1)
σ−1

, 1

 dm

= □
[(

κ − 1
κ

)
At

]( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)
(B.17)

·
[

Ht−1 +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(1 − Ht−1)

]

= □
[(

κ − 1
κ

)
At

]( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)(
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)

)
[1 + Θ4Ht−1]

=

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)

·
(

ω(σ − 1)
κ[α + σ(1 − α)] + (ω − 1)(σ − 1)

)
[1 + Θ4Ht−1]

[
Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α

= ΘN ·
(

Yt∆t

At

) 1
α

· (1 + Θ4Ht−1)
α+σ(1−α)
(1−σ)α ,

where ΘN is defined in (26).
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Equilibrium conditions for downstream firms Plugging equation (28) and the expression for
Qt,t+l into (4), we can express the resetting price in (4) in a recursive fashion as

Ot =

(
(1 + ζT)−1γ

γ − 1

)
Θ

1
η

NΘ
α+σ(1−α)
(σ−1)α

3

(
Yt

At

)( η+1
ηα

)
∆

(
(1−α)η+1

ηα

)
t (1 + Θ4Ht−1)

(1+η)[α+σ(1−α)]
η(1−σ)α exp {−uc,t}

+ βθEt
[
exp {uc,t+1 − uc,t} · Πγ

t+1 · Ot+1
]

,
(B.18)

and

Vt =

(
Ct

Yt

)−1

+ βθ · Et

[
exp {uc,t+1 − uc,t} · Πγ−1

t+1 · Vt+1

]
. (B.19)

We obtain
P∗

t
Pt

=
Ot

Vt
. (B.20)

Due to price stickiness à la Calvo (1983), the aggregate price level can be recursively expressed
as:

P1−γ
t = (1 − θ) (P∗

t )
1−γ + θ (Pt−1)

1−γ ,

or alternatively as:

P∗
t

Pt
=

(
1 − θ

1 − θ · Πγ−1
t

) 1
γ−1

. (B.21)

Plugging equation (B.20) into equation (9) and equation (B.21), we obtain

Ot

Vt
=

(
1 − θ

1 − θ · Πγ−1
t

) 1
γ−1

, ∆t = (1 − θ)

(
Ot

Vt

)−γ

+ θΠγ
t ∆t−1 .

Equilibrium conditions for households We can write F∗
t as a function of Ht by using the

cumulative distribution function of fixed costs in (18) and (23):

F∗
t = [1 − Ht]

− 1
ω

(
ω − 1

ω

)
ϕ f · ỸAt · exp

{
u f ,t
}

. (B.22)

Using the above (B.22), we can rearrange equation (B.5) (i.e., equation about F∗
t as:

RJ
t = Et

ξt+1 ·
(

PJ
t+1

Pt+1

)( σ
α+σ(1−α)

) (
wt+1

Pt+1At+1

)( (1−σ)α
α+σ(1−α)

)
1
Ỹ

Πt+1GAt+1

(
Yt+1∆t+1

At+1

)( 1
α+σ(1−α)

)
·
(

Θ2(
ω−1

ω

)
ϕ f

)(
κ − 1

κ

)( (σ−1)(1−α)
α+σ(1−α)

)
[1 − Ht]

1
ω · exp

{
−u f ,t

}
. (B.23)
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Plugging (27) and (28) into the above (B.23), we obtain:

RJ
t =

Θ2Θ
1
η

NΘ
σ

(σ−1)α
3(

ω−1
ω

)
ϕ f

 ·
(

κ − 1
κ

)( (σ−1)(1−α)
α+σ(1−α)

)
(1 + Θ4Ht)

(
α+σ(1−α)+ση

η(1−σ)α

)
· (1 − Ht)

1
ω (B.24)

· Et

ξt+1Πt+1

 Ct+1
At+1

Yt+1
At+1

 Yt+1
At+1

Ỹ

(Yt+1∆t+1

At+1

)( η+1
ηα

)
· GAt+1 · exp

{
−(u f ,t + uc,t+1)

} .

Finally, we can rearrange the Euler equation in (1), using (30) as follows:

1

RJ
t

= βEt


(

Ct
Yt

)
(

Ct+1
Yt+1

)
G̃Yt+1GAt+1Πt+1

· exp {uc,t+1 − uc,t}

 , (B.25)

where G̃Yt+1 = Yt+1
Yt+1

At
At+1

and GAt+1 = At+1
At

. Combining equation (B.24) and equation (B.25), we
obtain

exp
{

u f ,t + uc,t
}
= β

Θ2 · Θ
1
η

N · Θ
σ

(σ−1)α
3(

ω−1
ω

)
ϕ f

(κ − 1
κ

)( (σ−1)(1−α)
α+σ(1−α)

)
· (1 + Θ4Ht)

(
[α+σ(1−α)]+ση

η(1−σ)α

)

· (1 − Ht)
1
ω ·
( Ct

At

Ỹ

)
· Et

(Yt+1∆t+1

At+1

)( η+1
ηα

) . (B.26)

Flexible price equilibrium Plugging (34) into (19), we obtain

Wt

Pt At
=

(
(1 + ζT)−1γ

γ − 1

)−1

·
(

Yt∆t

At

) α−1
α

·
[

Θ3

1 + Θ4 · Ht−1

]( α+σ(1−α)
1−σ

)
. (B.27)

Plugging (19) and (B.27) into (B.5) (i.e., equation about the cutoff fixed cost F∗
t ), and based on the

fact that there is no price dispersion under flexible prices, i.e., ∆t = 1, we obtain:

F∗
t = Θ2 ·

(
(1 + ζT)−1γ

γ − 1

)−1

·
(

κ − 1
κ

)( (σ−1)(1−α)
α+σ(1−α)

)
·
[

Θ3

1 + Θ4 · Ht

]
Et

[
ξt+1

(
Πt+1Yt+1

RJ
t

)]
. (B.28)

By the definition of the distribution function of the fixed costs (see eq. equation (18)), we can
express:

[1 − Ht]
− 1

ω =
F∗

t(
ω−1

ω

)
Ft

=
F∗

t(
ω−1

ω

)
· ϕ f · ỸAt · exp

{
u f ,t
} . (B.29)
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Plugging equation (B.29) into equation (B.28), we obtain:

1 =

(
βΘ2(

ω−1
ω

)
· ϕ f

)
·
(
(1 + ζT)−1γ

γ − 1

)−1

·
(

κ − 1
κ

)( (σ−1)(1−α)
α+σ(1−α)

)
·
[

Θ3

1 + Θ4 · Ht

]

· [1 − Ht]
1
ω · Et

( Ỹt

Ỹ

) Ct
Yt

Ct+1
Yt+1

 · exp
{

uc,t+1 −
(
u f ,t + uc,t

)} . (B.30)

Finally, plugging (34) into (28) and based on no price dispersion under flexible prices, i.e., ∆t = 1,
we obtain

Yt

At
=

(
(1 + ζT)−1γ

γ − 1

)−
(

ηα
(1−α)η+1

)
Θ

−
(

α
(1−α)η+1

)
N Θ

− η[α+σ(1−α)]
[(1−α)η+1](σ−1)

3 ·
(

Ct

At

)−
(

ηα
(1−α)η+1

)

· (1 + Θ4Ht−1)
− (1+η)[α+σ(1−α)])

(1−σ)[(1−α)η+1] · exp
{(

ηα

(1 − α)η + 1

)
· uc,t

}
. (B.31)

From (B.30) and (B.31), we can see that the flexible price equilibrium is money-neutral.

B.2 Detailed Derivations in Section 3.1

Derivations on the cross-sectional standard deviations of sales and productivities in (35) and
(36) We start from the formula for the revenue rmv,t generated by a firm (m, v) in (B.2):

rmv,t = (1 + ζ J)

(
(1 + ζ J)−1σ

(σ − 1)α

) α(1−σ)
α+σ(1−α)

W
α(1−σ)

α+σ(1−α)

t (ΓJ
t )

1
α+σ(1−α) φ

σ−1
α+σ(1−α)

mv,t , (B.32)

where

φ∗
m,t =

(
RJ

t−1Pt−1Fm,t−1

Et−1 [ξt · Ξt]

) α+σ(1−α)
σ−1

. (B.33)

We can calculate the cross-sectional standard deviation of an individual firm’s revenue and pro-
ductivity by calculating the variance:

σ2 (log rmv,t) =

(
σ − 1

α + σ(1 − α)

)2

σ2 (log φmv,t) =

(
σ − 1

α + σ(1 − α)

)2

σ2

(
log

φmv,t

φ∗
m,t

+ log φ∗
m,t

)

=

(
σ − 1

α + σ(1 − α)

)2
[

σ2

(
log

φmv,t

φ∗
m,t

)
+ σ2 (log φ∗

m,t
)]

,

(B.34)
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where for the second line we use the property that (i) ϕmv,t|ϕmv,t ≥ ϕ∗
m,t follows a Pareto distribu-

tion; (ii) distributions of productivities and fixed costs are independent of each other. Therefore,

σ2 (log rmv,t) =

(
σ − 1

α + σ(1 − α)

)2
[

σ2

(
log

φmv,t

φ∗
m,t

)
+

(
α + σ(1 − α)

σ − 1

)2

σ2 (log Fm,t−1)

]

=

(
σ − 1

α + σ(1 − α)

)2
[

1
κ2 +

(
α + σ(1 − α)

σ − 1

)2 1
ω2

]
,

which implies

σ (log rmv,t) =
σ − 1

α + σ(1 − α)

√
1
κ2 +

(
α + σ(1 − α)

σ − 1

)2 1
ω2 ,

and

σ (log φmv,t) =

√
1
κ2 +

(
α + σ(1 − α)

σ − 1

)2 1
ω2 .

B.3 Detailed Derivation in Section 4.2

Intensive vs. extensive margin labor adjustments: derivation of (39) From (37), (B.16), and
(B.17), we know that the aggregate labor Nt can be written as

Nt =

(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)
(B.35)

·
[

Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α
[

Ht−1 +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(1 − Ht−1)

]

= ΘDN

[
Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α
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]
︸ ︷︷ ︸

≡SN I
t

= ΘDN

[
Θ3

1 + Θ4 · Ht−1

]( σ
(σ−1)α

) (
Yt∆t

At

) 1
α

· SN I
t , (B.36)

where

ΘDN ≡
(
(1 + ζ J)−1σ

(σ − 1)α

)( −σ
α+σ(1−α)

) (
κ − 1

κ

)( σ−1
α+σ(1−α)

) (
κ[α + σ(1 − α)]

κ[α + σ(1 − α)]− (σ − 1)

)
. (B.37)
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From (B.35), we obtain for ∀ι

Nt+ι − Nt

Nt
=

[
1 + Θ4 · Ht−1

1 + Θ4 · Ht+ι−1

]( σ
(σ−1)α

) (
Yt+ι∆t+ι/At+ι

Yt∆t/At

) 1
α

− 1︸ ︷︷ ︸
=gDensity

t,t+ι

(B.38)

+


1 +

[ 1 + Θ4 · Ht−1

1 + Θ4 · Ht+ι−1

]( σ
(σ−1)α

) (
Yt+ι∆t+ι/At+ι

Yt∆t/At

) 1
α

− 1


︸ ︷︷ ︸

=gDensity
t,t+ι


·

SNE
t,t+ι

SN I
t︸ ︷︷ ︸

≡gEntry
t,t+ι

. (B.39)

Therefore, by (38) and the definition of the decomposition in (39), we obtain

gEntry
t,t+ι ≡

SNE
t,t+ι

SN I
t

=

(Ht+ι−1 − Ht−1) +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(Ht−1 − Ht+ι−1)

Ht−1 +
ω(σ − 1)

κ[α + σ(1 − α)] + (ω − 1)(σ − 1)
(1 − Ht−1)

, (B.40)

which proves (40).
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Appendix C Summary of Equilibrium Conditions

C.1 Sticky Price Equilibrium (i.e., Original Model)
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C.2 Flexible Price Equilibrium
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C.3 Steady State Conditions
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Appendix D Limiting Case with ω → ∞

When ω → +∞,the Pareto distribution H(Fm,t) of the fixed costs collapse to its mean, Ft. In this
scenario, it is trivial to see that PJ

m,t = PJ
t . For PJ

t , we plug equation (B.4) into equation (B.3), and
obtain
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(D.1)

Plugging (D.1) into (B.4), we can obtain
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(D.2)

where we define

Θ5 = Θ
−
(

σ
(σ−1)α

)
1 Θ2

(
κ − 1

κ

) α(1−σ)−1
α+σ(1−α)

.

Now that Mt = Mm,t, Lt = Lm,t, RJ,∗
t = RJ,∗

m,t and φ∗
t = φ∗

m,t, we can substitute (D.2) into (14),
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(15), (16), and (17) to obtain following analytical expressions:
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Lt =


(

RJ
t

RJ,∗
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(

κ[α+σ(1−α)]
σ−1

)
· Ft if RJ

t > RJ,∗
t ,

Ft if RJ
t ≤ RJ,∗

t .

(D.6)

We observe: if RJ
t ≤ RJ,∗

t , where RJ,∗
t is defined in (22), all firms are satiated and the loan amount

made to firms is equal to Ft, the fixed cost that operating firms need to pay one period in advance.
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