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1 Introduction

Replacing the agent’s original argmax incentive compatibility constraint with its first-order
condition with respect to his effort, which is called the first-order approach, has been typi-
cally adopted in solving the principal-agent problems. However, this approach is not always
valid even in the standard setting.1 Therefore, identifying sufficient conditions under which
relying on the first-order approach is valid has been one of the major issues in the litera-
ture on principal-agent problems, and several sets of sufficient conditions for justifying this
approach have been found.2

A common approach employed by the previous literature is to find sufficient conditions
under which the agent’s ‘expected’ monetary utility obtained from this approach becomes
concave in his effort, ensuring that the agent’s original incentive compatibility is satisfied at
the designated effort level. As the agent’s expected monetary utility obtained from the first-
order approach depends on both the characteristics of distributions of relevant signals (i.e.,
technology) and the agent’s utility function, the previous literature can be broadly classified
into two branches: while the literature’s first branch focuses on sufficient conditions on
distributions only (see e.g., Mirrlees (1975), Rogerson (1985), Sinclair-Desgagné (1994),
Conlon (2009), and Jung and Kim (2015)), the second sub-literature imposes conditions
both on signals’ distributions and the agent’s utility function (see e.g., Jewitt (1988) and
Jung and Kim (2015)). For example, the requirements only imposed on distributions can be
too strict to be satisfied by large classes of familiar distributions. Overcoming this issue, the
literature’s second branch imposes weaker conditions on distributions but puts additional
restrictions on the agent’s preference instead, so that broader classes of distributions can be
used in the principal-agent problems for the purpose of using the first-order approach. Yet
still in some cases, those conditions can be quite strict so that there are many meaningful
principal-agent settings in which using the first-order approach cannot be justified by the
literature’s existing sets of conditions: for example, when the optimal contract should be
bounded below due to the agent’s limited liability, so is his indirect utility given that optimal
contract, and therefore it cannot be concave in the likelihood ratio, satisfying neither Jewitt
(1988)’s conditions nor Jung and Kim (2015)’s conditions.

In this paper, we present a completely different approach to this long-standing problem.
Actually, our approach is not at all based on making the agent’s expected monetary utility

1For the standard principal-agent framework, see Ross (1973), Mirrlees (1975), Harris and Raviv (1979),
Holmstrom (1979), and Grossman and Hart (1983), among others.

2For a detailed review of the literature on the first-order approach, see e.g., Jung and Kim (2015).
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Figure 1: Possibly Non-Concave Expected Monetary Utility of the Agent

under the optimal contract derived from the first-order approach concave in his effort. For
example, as seen in Figure 1, the first-order approach can be justified as long as the agent’s
expected utility from this approach has a maximum value at a target effort level the principal
intends to induce from the agent (i.e., the original argmax incentive constraint is satisfied).
Our new approach significantly extends the applicability the first-order approach, justifying
its use even when the distribution yields unbounded likelihood ratios, or the agent’s indirect
utility function as a function of the likelihood ratio is even convex.

Given any target effort level, our approach can be broadly summarized as follows: (i)
we come up with a proxy contract under which the agent takes the same target effort (i.e.,
given this proxy contract, the agent’s expected monetary utility subtracted by his effort cost
is maximized at the given target effort level); (ii) We show that the agent’s expected mone-
tary utility under the optimal contract based on the first-order approach (as a function of the
agent’s effort choice) is always below that under the proxy contract, except when the agent
takes the target effort level. Only when the agent takes the target effort, the expected mon-
etary utility levels under the two contracts (i.e., the proxy contract and the optimal contract
based on the first-order approach) coincide; (iii) Therefore, the agent’s expected monetary
utility under the optimal contract based on the first-order approach gets maximized at the
target effort, satisfying the agent’s original incentive compatibility constraint. We provide
novel ways to contrive those proxy contracts, based on so-called ‘double-crossing’ proper-
ties between the agent’s indirect utility functions under those two contracts (i.e., the optimal
contract based on the first-order approach and the proxy one) in the likelihood ratio space.

Our approach is fundamentally flexible, as we can pick various types of ‘proxy’ con-
tracts with which we compare the optimal contract based on the first-order approach. This
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flexibility allows us to handle many meaningful cases that the previous literature does not
clearly fit in: first, our approach can justify the first-order approach with distributions whose
likelihood ratio is unbounded (e.g., the normal distributions) so that the agent’s limited lia-
bility constraint is usually imposed for the existence of the solution.3 Second, our approach
imposes far weaker conditions on the agent’s preference than e.g., Jewitt (1988) and Jung
and Kim (2015), thereby allowing that the agent’s indirect utility as a function of the likeli-
hood ratio to be even convex. Our new sets of conditions contain a common novel statistical
condition on the density function of signals. We illustrate that this statistical condition not
only has a very useful implication but also is satisfied by the wide range of familiar density
functions including the normal distributions and other exponential families, whereas the
literature’s existing conditions are too restrictive to be satisfied by those distributions.

We offer four alternative sets of conditions which are easy to verify: three that can be
used for cases in which the agent’s limited liability constraint is not binding at the optimum
(i.e., with bounded likelihood ratios), and one for cases in which the agent’s limited liability
constraint is binding for some signal values at the optimum (i.e., with unbounded likelihood
ratios), respectively. Under our proxy contract based approach, the first-order approach
can be validly adopted in many useful principal-agent settings (including the above normal
distribution cases) in which it has not been able to be justified by the literature’s existing
sets of conditions.

Related Literature Various attempts to justify the first-order approach in principal-agent
settings have been made. The first set of sufficient conditions was proposed by Mirrlees
(1975) and Rogerson (1985) in the one-signal case. Those conditions are the well-known
MLRP (i.e., monotone likelihood ratio property) and the CDFC (i.e., convexity of the distri-
bution function condition) for the distribution function of the signal. Later, other conditions
were proposed to generalize the one-signal CDFC to multi-signal cases. They include the
generalized CDFC (i.e., GCDFC) by Sinclair-Desgagné (1994), the CISP (i.e., concave in-
creasing set probability condition) by Conlon (2009), and the CDFCL (i.e., convexity of
the distribution function condition for the likelihood ratio) by Jung and Kim (2015) among
others.4 All these conditions contain the property of the CDFC.

However, the CDFC and its various extensions have a serious limitation in that they

3This is the well-known Mirrlees’ unpleasant theorem (see e.g., Mirrlees (1975)). Also, see Jewitt et al.
(2008) for the solution’s existence and uniqueness in the presence of the agent’s limited liability constraint.

4Jewitt (1988) also proposed two sets of conditions for the multi-signal case assuming that the multiple
signals are independently distributed.
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are hardly satisfied by most familiar density functions. For instance, consider a one-signal
principal-agent problem in which the signal for the agent’s hidden effort is generated by a
simple functional form such that x = a + θ, where a ∈ [0,∞) is the agent’s effort level,
and x ∈ R and θ ∈ R are the realized values of the signal variable, x̃, and the uncertainty
variable, θ̃ ∼ N(0, σ2), respectively.5 It is widely known that the density function of the
signal conditional on the agent’s effort in this case satisfies none of the above CDF-type
conditions.

To overcome this drawback, Jewitt (1988) proposed another set of conditions in the one-
signal case which does not contain any CDF-type condition, and is thus more applicable in
general.6 Recently, this set of conditions in Jewitt (1988) was extended to the multi-signal
case by Jung and Kim (2015).7 Their sets of conditions, however, have a different kind of
limitation, and cannot be used for many familiar cases including the above normal distribu-
tion example. Although they do not contain any of the troublesome CDF-type conditions,
they contain another restriction that the agent’s indirect utility given the optimal contract be
concave in the signals’ likelihood ratio, which cannot be satisfied in many cases, including
those with unbounded likelihood ratios that require the agent’s limited liability constraint.

In sum, CDF-type conditions are in general too restrictive to be satisfied by most fa-
miliar density functions, since they were derived by imposing all the requirements only on
the signals’ density function. On the other hand, Theorem 1 in Jewitt (1988) and Proposi-
tion 7 in Jung and Kim (2015), based on placing an additional requirement on the agent’s
utility function that the agent’s indirect utility be concave in the likelihood ratio, were able
to impose weaker conditions on the signals’ distribution function. However, there are still
many cases in which such an additional requirement cannot be met. Therefore, here we try
to extend the applicability of the first-order approach in broader situations including those
subtle cases, by relying on the totally different approach based on the comparison with a
proxy contract that double-crosses the optimal contract in the likelihood ratio space.

The remainder of the paper is organized as follows. In Section 2, we formulate the basic
principal-agent framework, and briefly explain the issue of using the first-order approach.
In Section 3, we present a general theory of our double-crossing proxy contract approach.
Section 4 proposes four alternative sets of conditions that are easy to verify, both for the
case where the agent’s limited liability constraint is not binding at the optimum (i.e., Sec-

5We use letters with a tilde (e.g., x̃) to denote random variables and letters without it (e.g., x) to denote
specific realized values of those random variables.

6See Theorem 1 in Jewitt (1988).
7See Proposition 7 in Jung and Kim (2015).
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tion 4.1) and the case where it is binding for some values of the signals at the optimum (i.e.,
Section 4.2). We provide five examples that illustrate the usefulness of our new approach.
Concluding remarks are given in Section 5, and all formal proofs are relegated to the Ap-
pendix A. Online Appendix B contains the statistical implications of our sets of conditions,
and compares them with the existing conditions, including those based on the concept of
TP3.

2 The Basic Model

We consider a one-period standard principal-agent model in which an agent works for a
principal by inputting his effort a ∈ [0, a]. The principal cannot observe the agent’s effort
choice directly but can observe some other variables x̃ = (x̃1, x̃2, · · · , x̃n) that are im-
perfectly correlated with the agent’s hidden effort, where x̃i is a one-dimensional random
variable. By taking the Mirrlees (1975) formulation, we denote f(x|a) as the joint density
function of x̃ conditional on the agent’s effort, a. It is defined from the cumulative distri-
bution function of x̃ given a, i.e., F (x|a) ≡ Pr[x̃ ≤ x|a], where x ∈ Rn is the realized
value of signal vector x̃. We assume that the support of f(x|a) is independent of a, and
both F (x|a) and f(x|a) are continuously differentiable at least twice with respect to a, i.e.,
F, f ∈ C2.

When signal x is realized, the principal obtains π(x) as the total value of the relation-
ship with the agent, and she pays to the agent his wage swhich depends on x, i.e., s = s(x).
The principal is risk-neutral, whereas the agent is risk-averse. It is assumed that the agent’s
utility function takes an additively separable form such as

u(s, a) = u(s)− a, u′ > 0, u′′ < 0,

where u(s) denotes the agent’s utility from monetary payoff s.8 Thus, the agent’s expected
utility when he takes an effort a under s(x) is given by

U(s(·), a) ≡
∫
u(s(x))f(x|a)dx− a. (1)

We also assume that the agent can get U at maximum by working for other principals,

8We use the prime and the double prime of a function to denote the first and the second derivatives of
that function, respectively.
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thereby U is his reservation utility level. Furthermore, there is a limited liability constraint
on the agent’s side which requires that the agent’s wage not be lower than s under any
circumstances, i.e., s(x) ≥ s, ∀x, where s indicates the agent’s subsistence wage level.9 In
the paper, we assume that U ≥ u(s).

So a specific principal-agent problem can be represented by its characteristic variables
{π(x),u(s),f(x|a),U ,s}, and the principal’s optimization program with those variables is
given by

max
a,s(x)≥s

∫
[π(x)− s(x)]f(x|a)dx

s.t. (i) U(s(·), a) ≥ U,

(ii) a ∈ argmax
a′

U(s(·), a′).

In the above, the constraints are the typical participation and incentive compatibility
constraints, respectively. This optimization program indicates that the principal has to de-
cide both the agent’s wage scheme, s(x) ≥ s, ∀x, and the target effort level, a, simultane-
ously to maximize her expected payoff under the constraints that the self-interested agent
actually chooses the target effort level when s(x) is offered and that his expected utility in
this case is not lower than U .

However, the above program is generally not tractable in itself because the incentive
constraint is composed of infinitely many inequality constraints. Thus, it has been typically
solved by replacing the original incentive constraint with the relaxed constraint that the
agent’s expected utility given s(x) is stationary at that effort level, a, i.e.,

∂U(s(·), a)
∂a

≡ Ua(s(·), a) = 0, (2)

which is known as the first-order approach. Therefore, the principal’s optimization program

9The agent’s limited liability constraint is especially needed to guarantee the existence of the optimal
contract in some cases. Note that the case in which there is no limited liability constraint on the agent’s side
is a special case where s = −∞. For the existence issue, see Mirrlees (1975). Also, see Jewitt et al. (2008)
for the solution’s existence and uniqueness in the presence of the agent’s limited liability constraint.
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based on the first-order approach can be written as

max
a,s(x)≥s

∫
[π(x)− s(x)]f(x|a)dx

s.t. (i) U(s(·), a) ≥ U,

(ii) Ua(s(·), a) =
∫
u(s(x))fa(x|a)dx− 1 = 0,

where fa(x|a) ≡ ∂f(x|a)
∂a

is a partial derivative of the density function f(x|a) with respect
to a.

Let (so(x), ao > 0) solve the above optimization program.10 By solving the Euler
equation of the above program, one can derive that the optimal incentive contract, so(x),
should satisfy

1

u′(so(x))
=

{
λ+ µfa(x|ao)

f(x|ao) , if so(x) > s,
1

u′(s)
, otherwise,

(3)

where λ and µ are the Lagrange multipliers of the participation and relaxed incentive com-
patibility constraints, respectively.

It is well known that the optimal contract, so(x) in (3), does not always solve the orig-
inal optimization program. This is because so(x) in (3) is actually the optimal solution
obtained by replacing the original “argmax” incentive constraint with the relaxed one, and
the principal’s opportunity set for s(x) satisfying the relaxed incentive constraint is larger
than her true opportunity set for s(x) satisfying the original argmax incentive constraint,
and thereby so(x) sometimes may not be in her true opportunity set for s(x). Thus, to guar-
antee that so(x) in (3) actually solves the original program, it must be ensured that so(x)
satisfies the original argmax incentive constraint, that is,

U(so(·), a) ≤ U(so(·), ao), for all a. (4)

To ensure (4), all the existing results in the literature for justifying the first-order ap-
proach were derived to make the agent’s expected utility as a function of a under so(x),
U(so(·), a), concave in a.11 Obviously, given the concavity ofU(so(·), a) in a, Ua(s

o(·), ao) =
0 guarantees (4), and thus using the first-order approach is valid. However, the concavity of

10The existence of an optimal solution (so(x), ao) is assumed. We also assume ao > 0 to rule out a trivial
case.

11For example, see Mirrlees (1975), Grossman and Hart (1983), Rogerson (1985), Jewitt (1988), Sinclair-
Desgagné (1994), Conlon (2009), and Jung and Kim (2015) among others.
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U(so(·), a) in a is sufficient but not necessary for ensuring (4). As already drawn in Figure
1, even if U(so(·), a) is not concave, the first-order approach can still be justified. The main
purpose of this paper is to find new sets of conditions which ensure (4) without relying on
the concavity of U(so(·), a), and thus are more general than the existing sets of conditions.

3 Analysis

We start with proving that µ in (3) is positive. The basic proof for µ > 0 was already
given by Mirrlees (1975) and Holmstrom (1979).12 But their proofs were given with the
assumption that using the first-order approach is valid. Thus, it is obvious that those proofs
cannot be used for finding conditions justifying the first-order approach itself. On the other
hand, Jewitt (1988) provided another proof for µ > 0 without such an assumption.13 But,
his approach also has a limitation in that it is valid only for the case in which the agent’s
limited liability constraint is not binding at the optimum. However, as will be shown later,
there are actually many cases in which the agent’s limited liability constraint is binding for
some x at the optimum, and one of our main goals is to provide the conditions under which
using the first-order approach can be justified even in those cases. Therefore, we provide a
different proof for µ > 0 based neither on the assumption that using the first-order approach
is valid nor on the assumption that the agent’s limited liability constraint is not binding at
the optimum.

Lemma 1 µ > 0.

Observe from (3) that, especially when the principal is risk-neutral, the agent’s optimal
contract, so(x), depends on signal x only through fa(x|ao)

f(x|ao) . That is, fa(x|ao)
f(x|ao) becomes a

sufficient statistic for x about ao for designing s(x), implying that what matters to the risk-
neutral principal when she designs a contract for her agent is fa(x|ao)

f(x|ao) rather than x itself. In
fact, fa(x|ao)

f(x|ao) is the information about a contained in signal x, indicating that how likely it is
that the agent has taken ao rather than some other nearby action when signal x is realized.
Based on this observation, Jung and Kim (2015) showed that analyzing principal-agent
problems directly based on fa(x|ao)

f(x|ao) generally has an advantage over analyzing them based

12Mirrlees (1975) showed, in one-signal cases, i.e., x ∈ R, µ > 0 when f(x|a) satisfies the monotone
likelihood ratio property (MLRP), whereas Holmstrom (1979) showed it when F (x|a) satisfies the first-order
stochastic dominance (FOSD) condition.

13See Lemma 1 in Jewitt (1988).
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on signal vector x. Thus, as in Jung and Kim (2015), we derive conditions under which the
first-order approach can be justified based on fa(x|ao)

f(x|ao) .
We denote q̃ ≡ Qao(x̃) ≡ fa(x̃|ao)

f(x̃|ao) as the information variable, which implies that ran-
dom variable q̃ and random vector x̃ have a functional relationship such that q = Qao(x) ≡
fa(x|ao)
f(x|ao) , where q is the realized value of q̃. Note that q is a function of x but it also depends

on ao. Thus, since q̃ is defined based on the given ao, the support of q̃, denoted by [q, q],
may depend on ao. We also denote G(q|a) as the cumulative distribution function of q̃
given a, i.e.,

G(q|a) ≡ Pr [Qao(x̃) ≤ q|a] ,

and g(q|a) as its probability density function. Following the literature, we assume that for
any given ao, G(q|a) exhibits the FOSD, i.e., Ga(q|a) ≤ 0 for all (q, a).14

Actually, q = fa(x|ao)
f(x|ao) is what the principal thinks the likelihood ratio is, assuming that

the agent chose ao, and given that the principal observes x. When the principal observes x,
she can calculate q, so we can imagine her as actually observing q instead. So the principal
expects q to be distributed asG(q|ao), but it is actually distributed asG(q|a) when the agent
takes a, which is possibly different from ao.

Based on q, define

w(q) ≡ u′−1

(
1

λ+ µq

)
and r(q) ≡ u(w(q)). (5)

We see from (3) that w(q) denotes the optimal contract defined on the q-space when it is
not constrained by the limited liability constraint, i.e., so(x) ≥ s, whereas r(q) denotes
the agent’s indirect utility also defined on the q-space in that case. Note from (5) that the
functional forms of w(·) and r(·) depend only on the functional form of u(·), and Lemma
1 guarantees that both w(q) and r(q) are increasing in q.

Thus, the agent’s indirect utility given so(x) in (3), i.e., u(so(x)), can be written as

u(so(x)) ≡ r(Qao(x)) = r(q) =

{
r(q), when q ≥ qc,

u(s), when q < qc,
(6)

where qc = Qao(xc) ≡ fa(xc|ao)
f(xc|ao) solves 1

u′(s)
= λ + µqc.15 Also, the agent’s expected

14Thus, for any increasing function h(q),
∫
h(q)dG(q|a) is increasing in a.

15Note that λ and µ are functions of s and ao.
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monetary utility when he takes an effort a under so(x) can be written as

U(so(·), a) =
∫
u(so(x))f(x|a)dx− a

=

∫
r(q)g(q|a)dq − a.

It is widely known that the agent’s limited liability constraint may or may not be bind-
ing at the optimum depending on the characteristic variables, {π(x),u(s),f(x|a),U ,s}, es-
pecially on whether the information variable, q̃ = fa(x̃|ao)

f(x̃|ao) , is bounded below or not.16 If it
is the case where the agent’s limited liability constraint is binding for some x with the op-
timal contract, the participation constraint may not be binding (i.e., λ = 0), and the agent
may enjoy some positive rent at the optimum. Thus, to be more general, we denote the
agent’s expected utility when he takes ao given so(x) as

U(so(·), ao) =
∫
u(so(x))f(x|ao)dx− ao

=

∫
r(q)g(q|ao)dq − ao ≡ U o ≥ U, (7)

where U o is determined by {π(x),u(s),f(x|a),U ,s}. Of course, U o = U if the limited
liability constraint is not binding at the optimum (i.e., λ > 0).

The following Lemma 2 plays a fundamental role in driving our main results.

Lemma 2 For any given ao, if

(L1) f(x|a) satisfies that g(q|a)
g(q|ao) is convex in q for all a, and ξ(q) is a function that satisfies

the following (L2), (L3), and (L4) where:

(L2)
∫
ξ(q)g(q|ao)dq = 0,

(L3)
∫
ξ(q) · q · g(q|ao)dq = 0, and

(L4) ξ(q) changes sign twice from negative to positive and then to negative as q increases,

then, we have ∫
ξ(q)g(q|a)dq ≤ 0, ∀a.

Let Sarg be a set of contracts that give the agent U o in (7) as his expected utility when
he chooses ao, and satisfy the original “argmax” incentive constraint at ao, and Sf be a set

16This is associated with what is called the Mirrlees’ unpleasant theorem. See Mirrlees (1975).
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of contracts that give the agent the same expected utility as U o in (7) when he takes ao, and
satisfy the relaxed incentive constraint at that effort level. That is,

Sarg ≡ {s(x)| s(x) satisfies U(s(·), ao) = U o and U(s(·), a) ≤ U(s(·), ao),∀a}, (8)

and
Sf ≡ {s(x)| s(x) satisfies U(s(·), ao) = U o and Ua(s(·), ao) = 0}, (9)

where Sarg ⊆ Sf .17 Then, using Lemma 2, we obtain the following lemma which is one of
our key results.

Lemma 3 For any given ao, if

(1a)[= (L1)] f(x|a) satisfies that g(q|a)
g(q|ao) is convex in q for all a, and

(2a) (i.e., double crossing property) there exists a contract ŝ(x) ∈ Sarg such that r̂(q) ≡
u(ŝ(x)) crosses r(q) ≡ u(so(x)) twice starting from above,

then using the first-order approach is justified.

What Lemma 3 indicates is the following: Note that, since so(x) is the optimal contract
obtained from the first-order approach, so(x) must be in Sf . Then, to guarantee the validity
of so(x), we need to show that so(x) ∈ Sarg. To do this, we consider another contract
ŝ(x) ∈ Sarg such that r̂(q) ≡ u(ŝ(x)) crosses r(q) ≡ u(so(x)) twice starting from above
as drawn in Figure 2a.18 Then, if one thinks of r(q) − r̂(q) as ξ(q) in Lemma 2, it can be
easily seen that ξ(q) = r(q) − r̂(q) satisfies the condition (L4) in Lemma 2. Furthermore,
as shown in the proof of Lemma 3, the fact that both so(x) and ŝ(x) are in Sf implies∫

[r(q)− r̂(q)]g(q|ao)dq = 0, (10)

indicating that condition (L2) in Lemma 2 is satisfied, and∫
[r(q)− r̂(q)] q · g(q|ao)︸ ︷︷ ︸

=ga(q|ao)

dq = 0, (11)

indicating that condition (L3) in Lemma 2 is satisfied. Thus, based on Lemma 2, we derive
that, if condition (1a)[=(L1)] is satisfied, the agent’s expected utility under so(x) is lower

17Not that, since both Sarg and Sf are defined based on given levels of ao, they vary as ao changes.
18The fact that r̂(q) crosses r(q) twice starting from above (double-crossing) is equivalent to that ŝ(x)

crosses so(x) twice starting from above if x ∈ R and f(x|a) satisfies the MLRP.
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than that under ŝ(x) for all a except for ao as drawn in Figure 2b, i.e.,

U(so(·), a)− U(ŝ(·), a) =
∫
[r(q)− r̂(q)]g(q|a)dq ≤ 0, ∀a. (12)

This result can be understood as follows: we know U(so(·), ao) − U(ŝ(·), ao) = 0. If
a ̸= ao, due to the double-crossing in Figure 2a, it is more likely that the distribution g(q|a)
puts more weighs on the negative values of r(q) − r̂(q) than g(q|ao), making its average
value negative. Our statistical condition (1a) guarantees that this claim holds.

r̂(q)
r(q)

(a)

U0

ao

U(so(·), a)
U(ŝ(·), a)

(b)

Figure 2: Double Crossing Property

Since ŝ(x) ∈ Sarg, we already have

U(ŝ(·), a) ≤ U(ŝ(·), ao) = U o. (13)

Thus, by combining (12) and (13), we have U(so(·), a) ≤ U(ŝ(·), ao) = U o, ∀a, which
justifies the first-order approach.

Condition (1a) in Lemma 3 is our main statistical condition which is different from
the typical statistical conditions in the existing literature such as the CDFC (convexity
of the distribution function condition) by Mirrlees (1975) and Rogerson (1985), the CISP
condition (concave increasing set probability condition) by Conlon (2009), and the CDFCL
(convexity of the distribution function condition for the likelihood ratio) by Jung and Kim
(2015). In Appendix B, we will explain the statistical implication of (1a) as well as the
difference between (1a) and the above existing conditions more precisely. However, it is
worth to note that (1a) is much easier to verify than the existing conditions in the previous
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literature and also quite general in that many familiar density functions satisfy it.
For example, in one-signal cases, consider a density function in the exponential family

such as
f(x|a) = A(a)B(x)eα(a)β(x), x ∈ R,

with α(a) and β(x) increasing. Then,

fa(x|a)
f(x|a)

= α′(a)β(x) +
A′(a)

A(a)
.

Thus, for any given ao,

Qao(x̃) ≡
fa(x̃|ao)
f(x̃|ao)

= α′(ao)β(x̃) +
A′(ao)

A(ao)
.

Since α(a) and β(x) are increasing, f(x|a) satisfies the MLRP. Therefore,

G(q|a) = Pr[Qao(x̃) ≤ q|a] = Pr[x̃ ≤ x|a] = F (x|a),

where x solves fa(x|ao)
f(x|ao) = q,19 and g(q|a)dq = f(x|a)dx. By using β(x) =

(
q − A′(ao)

A(ao)

)
1

α′(ao)

and dx
dq

= 1
α′(ao)β′(x)

, we have

g(q|a) = A(a)

α′(ao)
δ(q) exp

{
α(a)

α′(ao)

[
q − A′(ao)

A(ao)

]}
,

where δ(q) ≡ B(x)
β′(x)

.20 As a result,

g(q|a)
g(q|ao)

=
A(a)

A(ao)
exp

{
α(a)− α(ao)

α′(ao)

[
q − A′(ao)

A(ao)

]}
,

which is convex in q for any given ao and for all a, satisfying condition (1a).
More generally, even in the multi-signal case (i.e., x ∈ Rn), condition (1a) holds if

f(x|a) generates, for any given ao,

ga(q|a)
g(q|a)

= A(a)q +D(a),

19Thus, x which solves fa(x|ao)
f(x|ao) = q is a function of q given ao, i.e., x(q; ao).

20Since β(x) is increasing, we have x = β−1

(
q−A′(ao)

A(ao)

α′(ao)

)
≡ Ω(q). Then, δ(q) ≡ B(Ω(q))

β′(Ω(q)) .
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which is the case for most exponential families of density functions, including normal and
gamma distributions. Note that

g(q|a)
g(q|ao)

= exp

{∫ a

ao

ga(q|t)
g(q|t)

dt

}
= exp

{
Â(a)q + D̂(a)

}
,

where Â(a) ≡
∫ a

ao
A(t)dt and D̂(a) ≡

∫ a

ao
D(t)dt. Therefore, one can easily see that

condition (1a) is satisfied.
On the other hand, condition (2a) in Lemma 3 needs to be elaborated more. In general,

directly verifying whether condition (2a) is satisfied or not is not easy. In other words, for
a given principal-agent problem, finding a proxy contract ŝ(x) ∈ Sarg which satisfies the
double crossing property (i.e., condition (2a)), if any, is not straightforward. Therefore, in
what follows, we investigate the conditions which sufficiently guarantee condition (2a) and
are easier to verify.

4 Verifying the Double Crossing Property

In verifying the existence of ŝ(x) ∈ Sarg which satisfies the double crossing property
between r(q) and r̂(q) (i.e., condition (2a) in Lemma 3), the key point is to find an appro-
priate proxy contract, ŝ(x) ∈ Sarg, with which the double crossing property between r(q)
and r̂(q) ≡ u(ŝ(x)) can be verified as easily as possible. To do this, however, we have
to distinguish the case in which the agent’s limited liability constraint is binding for some
x at the optimum from the case in which that constraint is not binding for any x at the
optimum. This is because r(q) ≡ u(so(x)) in (6) has a different functional form depending
on whether the agent’s limited liability constraint is binding for some x at the optimum
or not. In other words, the agent’s indirect utility given so(x), u(so(x)) ≡ r(q), must be
bounded below by u(s) for some low values of q (i.e., q < qc) in the case where his limited
liability constraint is binding for some x at the optimum, whereas it is not bounded below
by u(s) (i.e., r(q) = r(q), ∀q) in the case where that constraint is not binding for any x at
the optimum. This requires a different ŝ(x) be introduced to guarantee the double crossing
property between r(q) and r̂(q) ≡ u(ŝ(x)).

Associated with the above distinction, it is worth noting that the existing results for the
validity of the first-order approach should also be divided into two groups: (i) the results
which can be applied only to the case in which the agent’s limited liability constraint is not
binding for any x at the optimum, and (ii) the results which can be applied even to the case
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in which the agent’s limited liability constraint is binding for some x at the optimum.
As mentioned earlier, all the existing results were basically derived to make the agent’s

expected monetary utility given so(x), i.e., R(a) ≡
∫
u(so(x))f(x|a)dx, concave in a.

More precisely, the Mirrlees-Rogerson conditions in the one-signal case (i.e., f(x|a), x ∈
R, should satisfy MLRP and CDFC) were derived based on the fact thatR(a) ≡

∫
u(so(x))f(x|a)dx

is concave in a for any “increasing” function u(so(x)) if f(x|a) satisfies CDFC. Later, other
conditions were found to generalize CDFC to the multi-signal case. They include Sinclair-
Desgagné’s GCDFC (i.e., generalized convexity of the distribution function condition),
Conlon’s CISP condition (i.e., the concave increasing set probability condition), and Jung
and Kim’s CDFCL (i.e., convexity of the distribution function condition for the likelihood
ratio). All these conditions in the literature contain the property of CDFC because they are
basically extended versions of one-signal CDFC to the multi-signal case. Since the results
that contain those CDF-type conditions can be used for any “increasing” u(so(x)) (or r(q)),
they can be well applied even to the case in which the agent’s limited liability constraint
is binding for some x at the optimum because u(so(x)) (or r(a)) is generally (weakly) in-
creasing in this case. However, they can be applied only to a limited set of cases since most
density functions of signals, f(x|a), hardly ever satisfy such CDF-type conditions.

To overcome this drawback, Jewitt (1988) proposed another set of conditions in the
one-signal case which is not related to the CDF-type conditions, and his conditions were
generalized to multi-signal cases by Jung and Kim (2015). Both the condition on f(x|a)
in Jewitt (1988) (i.e., Theorem 1 in Jewitt (1988)) and that in Jung and Kim (2015) (i.e.,
Proposition 7 in Jung and Kim (2015)) are weaker than the above CDF-type conditions,
and thus can be satisfied by some familiar density functions.21 This is because they were
derived to make R(a) ≡

∫
u(so(x))f(x|a)dx =

∫
r(q)g(q|a)dq concave in a not for any

“increasing” function but for any “increasing and concave” function of u(so(x)) (or r(q)).
However, these conditions, although useful, can be applied only to another limited set of
cases in which the agent’s limited liability constraint is not binding at the optimum. When
the agent’s limited liability constraint is binding for some x at the optimum, u(so(x)) (or
r(q)) cannot be globally concave because it is equal to the lower bound for a range of values
of those x, and then rises. We will elaborate on this issue in Section 4.2, later.

21For the examples of such density functions, see Jewitt (1988, p. 1183).
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4.1 When the Limited Liability Constraint Never Binds

We first start with the case in which the agent’s limited liability constraint is not binding
for any x at the optimum, and provide sets of conditions easier to verify than ((1a),(2a))
in Lemma 3. The agent’s limited liability constraint will not be binding for all x at the
optimum if the information variable, q̃ ≡ fa(x̃|ao)

f(x̃|ao) ∈ [q, q], has a lower bound, i.e., q > −∞,
and s is low enough such that r(q) in (5) is greater than u(s).22 Therefore, to guarantee that
the agent’s limited liability constraint is not binding for any x at the optimum as long as
the information variable, q̃ ≡ fa(x̃|ao)

f(x̃|ao) , is bounded below, we will assume that that s is low
enough.23

When the agent’s limited liability constraint is not binding for all x at the optimum, (3)
reduces to

1

u′(so(x))
= λ+ µ

fa(x|ao)
f(x|ao)

= λ+ µq, for all q, (14)

and (6) reduces to

u(so(x)) ≡ r(Qao(x)) = r(q) = r(q), for all q. (15)

Furthermore, since the agent’s participation constraint must be binding (i.e., λ > 0) in this
case, (7) also reduces to

U(so(·), ao) =
∫
u(so(x))f(x|ao)dx− ao =

∫
r(q)g(q|ao)dq − ao ≡ U o = U. (16)

Then, based on (14), (15), and (16), we have the following proposition.

Proposition 1 Given that the limited liability constraint does not bind, if, for any given ao,

(1a) g(q|a)
g(q|ao) is convex in q for all a.

(2b)m(a) ≡
∫
qg(q|a)dq is concave in a.

(3b) r(q) is concave in q.

then the first-order approach is justified.

The conditions in Proposition 1 are sufficient to guarantee ((1a),(2a)) in Lemma 3 in
cases where the likelihood ratio, q̃ ≡ fa(x̃|ao)

f(x̃|ao) , is bounded below, and the agent’s limited lia-
bility constraint is not binding at any point at the optimum. Especially, conditions (2b) and

22This is the case to which Theorem 1 in Jewitt (1988) and Proposition 7 in Jung and Kim (2015) can be
applied.

23Actually, w(q) = u′−1( 1
λ+µq ) ≥ s is sufficient.
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(3b) are provided as sufficient conditions for condition (2a) in Lemma 3 (i.e., the double-
crossing property between r(q) and r̂(q) for some appropriate proxy contract ŝ(x)) in this
case.

Figure 3: When the Agent’s Limited Liability Constraint Does Not Bind

To guarantee the existence of r̂(q) which double-crosses r(q) in this case, we pick a
proxy contract, ŝ(x), with which the agent’s indirect utility is linear in q, i.e., u(ŝ(x)) ≡
r̂(q) = Aq + B, as shown in Figure 3, where A and B are to be set to satisfy both the
participation and the relaxed incentive constraints at ao. In addition, condition (2b) is given
to ensure that the the agent will actually choose ao given ŝ(x), that is, ŝ(x) ∈ Sarg. Finally,
condition (3b) is given to guarantee the double crossing property between r(q) and r̂(q).
Thus, one can easily see that

U(so(·), a) ≤ U(ŝ(·), a) ≤ U(ŝ(·), ao) = U(so(·), ao) = U, ∀a,

which justifies the first-order approach.
The following Example 1 explains how the conditions in Proposition 1 can be applied

to principal-agent problems in which the agent’s limited liability constraint is not binding
for any x at the optimum.

Example 1 Consider a one-signal principal-agent problem, {π(x), u(s), f(x|a), U, s}, where
π(x) = x, u(s) = 1

r
sr, r ≤ 1

2
. We assume that the signal generating function has a simple

multiplicative form, x̃ = h(a)θ̃, where h(a) is increasing with h(0) = 0, and θ̃ is exponen-
tially distributed with mean 1, i.e., the density function of θ̃ is p(θ) = e−θ, θ ∈ [0,∞). We
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also assume that s is low enough. Then,

f(x|a) = 1

h(a)
e−

x
h(a) , (17)

where E[x|a] = h(a). Since, given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

=
h′(ao)

[h(ao)]2
[x̃− h(ao)],

f(x|a) satisfies MLRP. Since q is bounded below, i.e., q ≥ −h′(ao)
h(ao)

, and since s is assumed
to be low enough, the agent’s limited liability constraint is not binding at the optimum.
Using g(q|a)dq = f(x|a)dx, we derive

g(q|a) = [h(ao)]2

h′(ao)h(a)
exp

(
− 1

h(a)

(
[h(ao)]2

h′(ao)
q + h(ao)

))
. (18)

Therefore, it can be easily seen that condition (1a) in Proposition 1 holds. Furthermore,
from (14) and (15), r(q) = 1

r
(λ + µq)

r
1−r is concave in q since r ≤ 1

2
, which implies that

condition (3b) is satisfied. Now, since

m(a) ≡
∫
qg(q|a)dq = h′(ao)

[h(ao)]2
[h(a)− h(ao)],

condition (2b) will hold if h(a) is concave in a. As a result, if r ≤ 1
2

and h(a) = E[x|a] is
concave in a, then the first order approach is justified in this case.

Using the first-order approach for the principal-agent problem in the above example can
be justified if h(a) is concave in a, when u(s) = 1

r
sr, r ≤ 1

2
(i.e., concave r(q)). First, note

that neither f(x|a) in (17) nor g(q|a) in (18) satisfies any of the CDF-type conditions. This
indicates that the Mirrlees-Rogerson conditions or any extending conditions of those (i.e.,
GCDFC of Sinclair-Desgagné (1994), CISP of Conlon (2009), and CDFCL of Jung and
Kim (2015)) cannot be used for justifying the first-order approach in this case. However,
Theorem 1 in Jewitt (1988) and Proposition 7 in Jung and Kim (2015) are satisfied because
h(a) is concave in a and their integral-based conditions are satisfied. Actually, two condi-
tions, (1a) and (2b), in Proposition 1 are sufficient for them.24 Nevertheless, our conditions
in Proposition 1 have advantages that ours is easier to check than those conditions.25

24This issue will be dealt with in Appendix B.1.
25In Appendix B, we prove that the conditions in Proposition 1 are actually sufficient for Proposition 7 in
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Note that if any of the two conditions, (2b) and (3b), in Proposition 1 is violated, not
only any of the CDF-type conditions but also Theorem 1 in Jewitt (1988) and Proposition 7
in Jung and Kim (2015) cannot be used for justifying the first-order approach. In Example
1, if h(a) is not concave in a, the CDF-type conditions can never be satisfied because they
necessarily requires the concavity of h(a) or m(a). Also, if r(q) is not concave, Theorem
1 in Jewitt (1988) and Proposition 7 in Jung and Kim (2015) cannot be used because they
already require the concavity of r(q). However, we will show that our approach can justify
the first-order approach even if one of the two conditions is violated. For instance, when
condition (3b) is violated, it can be justified by imposing stronger restriction on the concav-
ity of m(a). Conversely, even if condition (2b) is violated, it is also possible by imposing
stronger restriction on the concavity of r(q). This is possible because our approach has a
flexibility in terms of choosing a proxy contract r̂(q). As a result, we will show that (2b)
and (3b) in Proposition 1 have a trade-off relationship, which will be verified through the
next two propositions.

Convex r(q) case: violating (3b) in Proposition 1 First, let us consider the case where
condition (3b) is violated. For instance, (3b) is not satisfied when r > 1

2
in Example 1.

However, even if the agent’s monetary utility in q-space, r(q), is not concave in q (i.e.,
violating condition (3b) in Proposition 1), the following Proposition 2 shows that the first-
order approach can be still justified if we impose stronger restriction on the concavity of
m(a). To that end, we define M(a; t) as the moment generating function of information
variable q̃, i.e.,

M(a; t) ≡
∫
etqg(q|a)dq,

which we assume exists with distribution g(q|a) for t ∈ T ≡ (t, t) ⊆ R. Note that set T
may depend on ao and a.

Let us assume that u(s) > 0 for all s, implying that r(q) ≡ u(so(x)) > 0 for all q. To
verify the existence of a proxy contract r̂t(q) ≡ u(ŝ(x)), where ŝ(x) ∈ Sarg, which double-
crosses r(q) in cases where r(q) is possibly convex, we consider a contract ŝ(x), with which
the agent’s indirect utility has an exponential form such as u(ŝ(x)) ≡ r̂t(q) = A ·etq, where
A > 0 and t > 0 are to be set to satisfy both the participation and the relaxed incentive
constraints as an equality.

Then, we have the following proposition.

Jung and Kim (2015).
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Proposition 2 Given that u(s) > 0 for all s and the limited liability constraint does not

bind, if, for any given ao,

(1a) g(q|a)
g(q|ao) is convex in q for all a,

(2b′) ϕ
(
a; t, U

)
≡ Ma(a;t)

M(a;t)
× [U + a] is decreasing in a for any given t > 0, and

(3b′) ln r(q) is concave in q,

then the first-order approach is justified.

(a) Double-Crossing between r̂(q) and r(q) (b) Double-Crossing between ln r̂(q) and ln r(q)

Figure 4: When r(q) is Convex while ln r(q) is Concave

As opposed to Proposition 1, where we relied on the double-crossing property between
r(q) and r̂(q) which is linear in q as shown in Figure 3, we now construct an exponential

r̂t(q) that double-crosses r(q) starting from above, which is possible even if r(q) is convex,
as in Figure 4a. This is possible when ln r(q), instead of r(q), is concave as we can con-
struct a linear ln r̂t(q) that double-crosses ln r(q) starting from above, as shown in Figure
4b. Thus, condition (3b’) guarantees the double-crossing between r̂t(q) and r(q).

Condition (2b’) is needed for ŝ(x) ∈ Sarg. Condition (2b’) implies that for a given ao,
lnM(a; t) is concave in ln[a + U ] for any t > 0. Since the proxy contract r̂t(q) = Aetq

satisfies both the participation and the relaxed incentive constraints, t should satisfy

Ma(a
o; t)

M(ao; t)
=

1

ao + U
, (19)

and
A =

1

Ma(ao; t)
.
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There exists t > 0 satisfying (19) for any given ao, if limt↑t
Ma(ao;t)
M(ao;t)

≥ 1
U

, since Ma(ao;t=0)
M(ao;t=0)

=∫
qg(q|ao)

1
= 0 and 0 < 1

ao+U
≤ 1

U
for any ao.26 Thus, since

ln[A ·M(a; t)]− ln[a+ U ]

is equal to 0 at a = ao and its derivative at a = ao is 0 as well, condition (2b’) guarantees
ln[A ·M(a; t)] − ln[a + U ] has a global maximum level 0 at a = ao, implying that ln[A ·
M(a; t)] ≤ ln[a + U ] for all a, leading to A ·M(a; t) ≤ a + U for all a and E[r̂t(q)|a] −
[a + U ] = A ·M(a; t) − [a + U ] has a global maximum of 0 at a = ao. Consequently,
condition (2b’) guarantees ŝ(x) ∈ Sarg.

It is trivial that the concavity of ln r(q) (i.e., condition (3b’) in Proposition 2) is implied
by the concavity of r(q) (i.e., condition (3b) in Proposition 1) because the set of increasing
concave functions is closed under composition. Thus, (3b’) is weaker than (3b). In turn,
condition (2b’) in Proposition 2 that for any given t > 0, ϕ

(
a; t, U

)
≡ Ma(a;t)

M(a;t)
× [U + a] is

decreasing in a is stronger than (2b) in Proposition 1. To see this, note that when u(s) > 0

for all s, we have a + U > 0 for all a for the existence of the optimal contract satisfying
the participation constraint as an equality for any given ao. Condition (2b’) requires that

ϕa(a; t, U)

ϕ(a; t, U)
=
Maa(a; t)

Ma(a; t)
− Ma(a; t)

M(a; t)
+

1

a+ U
≤ 0, for all a and t > 0,

which implies that limt↓0
ϕa(a;t,U)

ϕ(a;t,U)
≤ 0 for all a. Thus, we have

lim
t↓0

[
Maa(a; t)

Ma(a; t)
− Ma(a; t)

M(a; t)

]
=
Maat(a; t = 0)

Mat(a; t = 0)
− Ma(a; t = 0)

M(a; t = 0)
=
m′′(a)

m′(a)
≤ − 1

a+ U
,

where the first equality holds by L’Hospital’s rule and the second equality holds because
Mt(a; t = 0) = m(a) and Ma(a; t = 0) =

∫
ga(q|a)dq = 0. Since a + U > 0 for all a,

condition (2b’) implies m′′(a) ≤ 0. As (2b’) implies (2b), (2b’) is stronger than (2b). As a
result, Proposition 2 shows that even if r(q) is not concave, the first-order approach can be
justified if m(a) is concave enough to satisfy condition (2b’), as long as ln r(q) is concave.
Note that the first-order approach with convex r(q) has never been justified in the literature
(e.g., Jewitt (1988)) and Jung and Kim (2015)) unless we impose the CDF-type conditions
on the distribution of signals.

26Thus, we assume in Proposition 2 that for any given ao, limt↑t
Ma(a

o;t)
M(ao;t) = ∞.
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The following Example 2 clearly shows the case in which the first order approach can
be justified even if r(q) is convex in q.

Example 2 Consider a one-signal principal-agent problem, {π(x), u(s), f(x|a), U , s},
where π(x) = x and u(s) = 1

r
sr, 0 < r < 1. The signal x follows the Poisson distribution

with mean h(a) that is increasing in a as follows:

f(x|a) = [h(a)]x

Γ(x+ 1)
e−h(a),

where x is a non-negative integer. Since, given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

=
h′(ao)

h(ao)
x̃− h′(ao),

we have

g(q|a) = h(ao)

h′(ao)
· [h(a)]x(q)

Γ(x(q) + 1)
e−h(a),

where x(q) ≡ h(ao)
h′(ao)

q + h(ao). Since

g(q|a)
g(q|ao)

=

[
h(a)

h(ao)

]x(q)
eh(a

o)−h(a),

we see that condition (1a) is always satisfied. Since the moment generating function of q̃ is
given by

M(a; t) ≡ E
[
etq|a

]
= exp

{
t̂ · h(a)− t · h′(ao)

}
,

where t̂ ≡ exp
[
h′(ao)
h(ao)

t
]
− 1 > 0, we have

ϕ
(
a; t, U

)
≡ Ma(a; t)

M(a; t)
× [U + a] = t̂ · h′(a)× [U + a].

Thus, condition (2b’) is satisfied if and only if

h′′(a)

h′(a)
≤ − 1

U + a
< 0. (20)

With r(q) = 1
r
(λ+µq)

r
1−r , ln r(q) = r

1−r
ln(λ+µq)−ln r becomes concave in q, satisfying

condition (3b’). Thereby with (20) being satisfied, we can justify the first-order approach.
Note that (20) implies and therefore is stronger than (2b), i.e., h′′(a) ≤ 0.
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Convex m(a) case: violating (2b) in Proposition 1 Next, let us investigate the case
where even if condition (2b) (i.e., the concavity of m(a)) is violated, the first-order ap-
proach can be justified by requiring a stronger condition than condition (3b). Assume that
u(s) < 0 for all s, implying that r(q) < 0 for any q. To verify the existence of a proxy con-
tract r̂t(q) ≡ u(ŝ(x)), where ŝ(x) ∈ Sarg, which double-crosses r(q) which is concave, we
consider a contract ŝt(x), with which the agent’s indirect utility has a negative exponential
form such as u(ŝt(x)) ≡ r̂t(q) = A · etq, where A < 0 and t < 0 are to be set to satisfy
both the participation and the relaxed incentive constraints as an equality.

Then, we have the following proposition.

Proposition 3 Given that u(s) < 0, for all s and the limited liability constraint does not

bind, if for any given ao

(1a) g(q|a)
g(q|ao) is convex in q for all a,

(2b′′) ϕ
(
a; t, U

)
≡ Ma(a;t)

M(a;t)
× [U + a] is decreasing in a for any given t < 0, and

(3b′′) − ln[−r(q)] is concave in q,

then the first-order approach is justified.

In contrast to Proposition 2, we construct a negative exponential r̂t(q) = Aetq with
A < 0 and t < 0 that double-crosses r(q) which is concave, as in Figure 5a. This is possi-
ble when − ln[−r(q)] is concave due to (3b”), as we can construct a linear − ln[−r̂t(q)] that
double-crosses − ln[−r(q)] starting from above, as in Figure 5b. Condition (2b”) guaran-
tees that there exists such a negative exponential proxy contract r̂t(q) under which the agent
would voluntarily participate and choose a = ao, and condition (3b”) guarantees double-
crossing between r̂t(q) and r(q), which justifies the first-order approach in this case.

(a) Double-Crossing between r̂(q) and r(q) (b) Between − ln[−r̂(q)] and − ln[−r(q)]

Figure 5: When − ln[−r(q)] is Concave

23



Condition (2b”) is sufficient for ŝ(x) ∈ Sarg. It implies that for a given ao, ln[M(a; t)]−1

is concave in ln[−(a+U)]−1 for any t < 0. Since the proxy contract r̂t(q) = Aetq satisfies
both the participation and the relaxed incentive constraints as an equality, t should satisfy

Ma(a
o; t)

M(ao; t)
=

1

ao + U
< 0, (21)

and
A =

1

Ma(ao; t)
< 0.

Here, there exists t < 0 satisfying (21) for any given ao, if we assume limt↓t
Ma(ao;t)
M(ao;t)

≤ 1
a+U

,
since Ma(ao;t=0)

M(ao;t=0)
= 0 and 1

a+U
≤ 1

ao+U
< 0 for any ao ∈ (0, a]. Since

ln[−A ·M(a; t)]−1 − ln[−(a+ U)]−1

is equal to 0 at a = ao and its derivative at a = ao is 0, condition (2b”) guarantees that
ln[−A ·M(a; t)]−1− ln[−(a+U)]−1 has a global max at a = ao, implying thatE[r̂t(q)|a]−
[a+U ] = A ·M(a; t)− [a+U ] has a global max at a = ao. Consequently, condition (2b”)
guarantees ŝ(x) ∈ Sarg.

Note that if − ln[−r(q)] is concave (i.e., (3b”) in Proposition 3), r(q) must be concave
(i.e., (3b) in Proposition 1) because − ln(−y) is increasing and convex in y < 0. Therefore,
(3b”) is a stronger condition than (3b). In turn, (2b”) in Proposition 3 that for any given
t < 0, ϕ

(
a; t, U

)
≡ Ma(a;t)

M(a;t)
× [U + a] is decreasing in a turns out to be weaker than (2b) in

Proposition 1 under some conditions. To see condition (2b) implies condition (2b”), note
that when u(s) < 0 for all s, we have a + U < 0 for all a ∈ (0, a] for the existence of the
optimal contract for any given ao. Condition (2b”) requires that

ϕa(a; t, U)

ϕ(a; t, U)
=
Maa(a; t)

Ma(a; t)
− Ma(a; t)

M(a; t)
+

1

a+ U
≤ 0, for all a and t < 0,

which implies that limt↑0
ϕa(a;t,U)

ϕ(a;t,U)
≤ 0 for any a. Assume that ϕa(a;t,U)

ϕ(a;t,U)
is increasing in t < 0

for any given a. Then, condition (2b”) is equivalent to the condition that limt↑0
ϕa(a;t,U)

ϕ(a;t,U)
≤ 0

for any a. Thus, we have

lim
t↑0

ϕa(a; t, U)

ϕ(a; t, U)
=
m′′(a)

m′(a)
+

1

a+ U︸ ︷︷ ︸
<0

≤ 0,
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which is implied bym′′(a) ≤ 0 since a+U < 0 for all a. Therefore, condition (2b) implies
condition (2b”) under the condition that ϕa(a;t,U)

ϕ(a;t,U)
is increasing in t < 0 for any given a.

The following example clearly shows the case in which the first order approach can be
justified even if m(a) is convex in a.

Example 3 Consider the same one-signal principal-agent problem, {π(x), u(s), f(x|a), U ,
s}, where π(x) = x and u(s) = 1

r
sr, r < 0. Note that since r < 0, r(q) has negative values

and is concave. And, note that in this case, U < 0 and a ∈ (0, a] where a < −U for the
existence of the optimal contract for any ao. We assume that the signal generating function
has a simple multiplicative form, x̃ = h(a)θ̃, where h(a) is increasing with h(0) = 0 and
θ̃ is exponentially distributed with mean 1, i.e., the density function of θ̃ is ϕ(θ) = e−θ,
θ ∈ [0,∞). We also assume that s is low enough. Then,

f(x|a) = 1

h(a)
e−

x
h(a) ,

where E[x|a] = h(a). Since given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

=
h′(ao)

h2(ao)
[x̃− h(ao)],

f(x|a) satisfies MLRP. Since q is bounded below, i.e., q ≥ −h′(ao)
h(ao)

, and since s is as-
sumed to be low enough, the limited liability is assumed not to bind at the optimum. Using
g(q|a)dq = f(x|a)dx, we derive

g(q|a) = h2(ao)

h′(ao)h(a)
exp

{
−h(a

o)

h(a)

[
h(ao)

h′(ao)
q + 1

]}
.

Thus, it can be easily seen that condition (1a) in Proposition 3 holds. Its moment generating
function is given by27

M(a; t) =
h(ao)2

h(ao)2 − t · h′(ao)h(a)
exp

[
−th

′(ao)

h(ao)

]
, (22)

which is well defined when t < 0. Since from (22)

ϕ(a; t, U) ≡ Ma(a; t)

M(a; t)
[U + a] = − h′(a)

h(a)− t̂
[U + a],

27Equation (22) is derived in Appendix B.4.
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where t̂ = h2(ao)
t·h′(ao)

< 0, we have

ϕa(a; t, U)

ϕ(a; t, U)
=
h′′(a)

h′(a)
+

1

U + a
− h′(a)

h(a)− t̂
.

Thus, if
h′′(a)

h′(a)
≤ − 1

U + a︸ ︷︷ ︸
>0

, ∀a ∈ (0, a], (23)

which might hold even with convex h(a), condition (2b”) is satisfied. With r(q) = 1
r
(λ +

µq)
r

1−r , − ln[−r(q)] = ln(−r)− r
1−r

ln(λ+µq) becomes (weakly) concave in q, satisfying
condition (3b”). Thereby with (23) being satisfied, we can justify the first-order approach.

Finally, the value of t̂ = h2(ao)
t·h′(ao)

satisfying (21) or ϕ(ao; t, U) = Ma(ao;t)
M(ao;t)

[U + ao] = 1 is

t̂ = h(ao) + h′(ao)[U + ao].

Thus, for t̂ < 0, we must have h(a) + h′(a)[U + a] < 0 for ∀a ∈ (0, a].

Taking stock Our Proposition 2 (with Example 2) and Proposition 3 (with Example 3)
illustrate how our proxy-contract based approach justifies the use of the first-order approach
in cases where the previous literature cannot justify its use, i.e., cases wherem(a) is convex
in a or r(q) is convex in q. Next, we show how our approach can be applied in a similar way
to cases where the agent’s limited liability binds at the optimum, the case that the previous
literature has overlooked as well.

4.2 When the Information Variable, q̃ ≡ fa(x̃|ao)
f(x̃|ao) , Is Unbounded Below

Our approach in Propositions 1 to 3 can be similarly applied even to the cases where the
agent’s limited liability constraint binds. Whether the agent’s limited liability constraint is
binding for some x at the optimum or not mainly depends on the density function, f(x|a),
and the subsistence wage level s. Especially, when the density function of the signals has
its information variable, q̃ ≡ fa(x̃|ao)

f(x̃|ao) , not bounded below, i.e., q̃ ∈ (−∞, q),28 we need
to have finite s, i.e., s > −∞, to guarantee the existence of the optimal contract. Then,
as shown in (3), the agent’s limited liability constraint must be binding for some x at the

28This is the case for many familiar distribution functions of the signals (e.g., normal distribution, gamma
distribution, Chi-square distribution, etc.).
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optimum.
In this case, in order to verify the existence of a proxy function r̂(q) double-crossing

r(q), we introduce a proxy contract ŝt(x) with which the agent’s indirect utility becomes an
exponential form, i.e., u(ŝt(x)) ≡ r̂t(q) = A · etq + u(s), where A > 0 and t > 0 are to be
set to satisfy both the participation and the relaxed incentive constraints, i.e., ŝt(x) ∈ Sf .
Note that ŝt(x) always satisfies the agent’s limited liability constraint (i.e., ŝt(x) ≥ s, ∀x)
because for any A > 0 and t > 0, u(ŝt(x)) = Aetq + u(s) > u(s) for all q.

We then have the following Proposition 4.

Proposition 4 Given that the information variable, q̃ ≡ fa(x̃|ao)
f(x̃|ao) , is unbounded below, if,

for any given ao,

(1a) g(q|a)
g(q|ao) is convex in q for all a.

(2c) ϕ
(
a; t, U − u(s)

)
≡ Ma(a;t)

M(a;t)
× [U − u(s) + a] is decreasing in a for any given t > 0.

(3c) ln [r(q)− u(s)] is concave in q for all q > qc, where qc solves r(qc) = u(s).

then the first-order approach is justified.

The conditions in Proposition 4 are sufficient to satisfy conditions ((1a),(2a)) in Lemma
3 in the case where the information variable, q̃ ≡ fa(x̃|ao)

f(x̃|ao) , is unbounded below, and thus
the agent’s limited liability constraint is binding for some x at the optimum. Especially,
conditions (2c) and (3c) are given as sufficient conditions for condition (2a) in Lemma 3
(i.e., the double crossing property between r(q) and r̂t(q)) in this case.

In Section 4.1, to guarantee the double crossing property between r(q) and r̂(q) in cases
where the agent’s limited liability constraint is not binding at the optimum, Proposition 1
requires r(q) in (6) be concave in q (i.e., (3b)), and Proposition 2 or 3 requires ln r(q) or
ln[−r(q)]−1 be concave in q instead (i.e., (3b’) in Proposition 2 or (3b”) in Proposition 3).
In Propositions 1, 2, and 3, conditions on r(q) are equivalent to those on r(q) as r(q) = r(q)

for all q. However, in cases where the limited liability constraint binds for q < qc as in (6),
r(q) cannot be concave around qc, as seen in Figure 6. Figure 6a illustrates that regardless
of whether r(q) is convex or concave for q > qc, r(q) cannot be concave around qc, where
the limited liability starts to bind.

Instead, we require that the agent’s indirect utility given so(x) before constrained by the
limited liability constraint, i.e., r(q) in (5), should satisfy the condition that ln [r(q)− u(s)]

is concave in q > qc (i.e., condition (3c)), and introduce a proxy contract ŝt(x) such that
u(ŝt(x)) ≡ r̂t(q) = Aetq + u(s), which is convex. Given our exponential-affine proxy
contract r̂t(q), ln [r̂t(q)− u(s)] = t · q + lnA becomes linear in q > qc, allowing itself
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(a) Double-Crossing between r̂(q) and r(q) (b) ln [r̂t(q)− u(s)] and ln [r(q)− u(s)]

Figure 6: When the limited liability binds at q ≤ qc

to double-cross the concave ln [r(q)− u(s)] from above. In turn, our proxy contract r̂t(q)
must double-cross r(q) from above, as in Figure 6b, satisfying (2a) of Lemma 3. Note that
since ln [r(q)− u(s)] becomes concave if r(q) is concave, (3c) of Proposition 4 is weaker
than (3b) of Proposition 1.29

Condition (2c) guarantees that ŝ(x) ∈ Sarg. Note that condition (2c) implies that for
a given ao and for any t > 0, lnM(a; t) is concave in ln[a + U − u(s)] which is itself
concave in ln[a + U o − u(s)] since U o ≥ U . Thus, condition (2c) guarantees that for any
given ao, lnM(a; t) is concave in ln[a + U o − u(s)] for any t > 0. Since a proxy contract
r̂t(q) = Aetq + u(s) satisfies both the participation and the relaxed incentive constraints, t
should satisfy

Ma(a
o; t)

M(ao; t)
=

1

ao + U o − u(s)
, (24)

and
A =

1

Ma(ao; t)
.

Here, there exists t > 0 satisfying (24) for any given ao, if limt↑t
Ma(ao;t)
M(ao;t)

≥ 1
U−u(s)

, since
Ma(ao;t=0)
M(ao;t=0)

= 0 and 1
U−u(s)

≥ 1
ao+Uo−u(s)

> 0 for any ao.30 Since

ln[A ·M(a; t)]− ln[a+ U o − u(s)]

29Jewitt (1988) (i.e., Theorem 1) and Jung and Kim (2015) (i.e., Proposition 7) also assume that r(q) is
concave in their justification of the first-order approach. Our (3c) in Proposition 4 is a weaker condition.

30As in Proposition 2, we also assume for Proposition 4 that for any given ao, limt↑t
Ma(a

o;t)
M(ao;t) = ∞, which

holds generically.
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is equal to 0 at a = ao and its derivative at a = ao is 0 as well, condition (2c) guarantees that
ln[A ·M(a; t)]− ln[a+U o − u(s)] has a global max at a = ao, implying that E[r̂t(q)|a]−
a−U o = A ·M(a; t)− [a+U o−u(s)] has a global max at a = ao. Consequently, condition
(2c) is sufficient for

U(ŝt(·), a) ≡
∫
u(ŝt(x))f(x|a)dx− a ≤ U o ≡

∫
u(so(x))f(x|ao)dx− ao, ∀a. (25)

Both r(q) and r̂t(q) satisfy the participation and the relaxed incentive constraints, and
r̂t(q) crosses r(q) twice starting from above. Thus, Lemma 3 implies:

U(so(·), a) ≡
∫
r(q)g(q|a)dq − a ≤

∫
r̂t(q)g(q|a)dq − a ≡ U(ŝt(·), a), ∀a. (26)

By combining (25) and (26), we finally have

U(so(·), a) ≤ U(ŝt(·), a) ≤ U o, ∀a,

which justifies the first-order approach.
The following two examples illustrate how the conditions in Proposition 4 can be ap-

plied to some canonical problems in which the agent’s limited liability constraint is binding
for some x at the optimum (i.e., q̃ ≡ fa(x̃|ao)

f(x̃|ao) is unbounded below).

Example 4 Consider a one-signal principal-agent problem, {π(x), u(s), f(x|a), U , s},
where π(x) = x, u(s) = 1

r
sr with r < 1, and s > 0. Assume that the signal generating

function has an additive form such as x̃ = h(a)+θ̃, θ̃ ∼ N(0, σ2), where h(a) is increasing.
Then,

f(x|a) = 1

σ
√
2π
e−

[x−h(a)]2

2σ2 . (27)

Since, given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

=
x̃− h(ao)

σ2
h′(ao),

we obtain
q̃|a ∼ N

(
h(a)− h(ao)

σ2
h′(ao),

[h′(ao)]2

σ2

)
.

Therefore,

g(q|a) = σ

h′(ao)
√
2π

exp

{
− σ2

2[h′(ao)]2

(
q − h(a)− h(ao)

σ2
h′(ao)

)2
}
. (28)
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Since x̃ ∈ (−∞,∞), q̃ would be unbounded below, and the agent’s limited liability con-
straint must be binding for some low values of q̃ (i.e., for some low values of x̃). From
(28),

g(q|a)
g(q|ao)

= exp

{
h(a)− h(ao)

h′(ao)
q − [h(a)− h(ao)]2

2σ2

}
,

which is convex in q. Therefore, one easily sees condition (1a) is satisfied. Next, note that

d2

dq2
ln [r(q)− u(s)] =

r′(q)

r(q)− u(s)

(
r′′(q)

r′(q)
− r′(q)

r(q)− u(s)

)
. (29)

When r ≤ 1
2
, we know from (5) that r(q) = 1

r
(λ + µq)

r
1−r is increasing and concave in q,

and as r(q) > r(qc) ≡ u(s) for all q > qc, condition (3c) in Proposition 4 is satisfied. Even
when 1

2
< r < 1, one can see that ln [r(q)− u(s)] becomes concave in q > qc because

r′′(q)

r′(q)
− r′(q)

r(q)− u(s)
≤ r′′(q)

r′(q)
− r′(q)

r(q)
= − µ

λ+ µq
= −µu′(r(q)) < 0,

where the first inequality is from 0 ≤ u(s)
r(q)

< 1 for all q > qc by the fact that r(q) > r(qc) ≡
u(s) ≥ 0 for all q > qc. Therefore, regardless of the value of r < 1, (3c) in Proposition 4
always holds.

Furthermore, since the moment generating function of q̃ is

M(a; t) =

∫
etqg(q|a)dq = exp

{
t · h′(ao) · h(a)− h(ao)

σ2
+

[h′(ao)]2

2σ2
t2
}

= K·exp
{
h′(ao)

σ2
t · h(a)

}
,

where K ≡ exp
{

[h′(ao)]2

2σ2 t2 − h(ao)h′(ao)
σ2 t

}
, we obtain

ϕ
(
a; t, U − u(s)

)
≡ Ma(a; t)

M(a; t)
× [U − u(s) + a] =

h′(ao)

σ2
t · h′(a)× [U − u(s) + a].

Therefore, if
h′′(a)

h′(a)
≤ − 1

U − u(s) + a
, ∀a, (30)

condition (2c) is satisfied.

This example clearly shows the advantage of the set of conditions in Proposition 4 over the
existing sets of conditions. Using the first-order approach in the above example cannot be
justified by any of the existing sets of conditions. First, it is easy to see that neither f(x|a)
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in (27) nor g(q|a) in (28) satisfies any of the the CDF-type conditions. Thus, the Mirrless-
Rogerson conditions or any extension of those conditions (e.g., the GCDFC by Sinclair-
Desgagné (1994), the CISP condition by Conlon (2009), and the CDFCL by Jung and Kim
(2015)) cannot be used for justifying the first-order approach in this case. Furthermore, the
Jewitt (1988) conditions and the extension by Jung and Kim (2015) cannot be also used
for justifying the first-order approach in this case: both Theorem 1 in Jewitt (1988) and
Proposition 7 in Jung and Kim (2015) (i) focus on cases where the agent’s limited liability
is not binding at the optimum; (ii) require that r(q) be concave in q.31 In contrast, using the
first-order approach in this case can be actually justified by the conditions in Proposition 4
as long as (30) holds, (i) even if the agent’s limited liability constraint is binding for q ≤ qc;
(ii) regardless of whether r(q) is concave or convex for q ≥ qc.

Actually, the simple signal generating function with a linear form such as x̃ = h(a)+ θ̃,
where θ̃ is normally distributed, has not been able to be used in a wide range of principal-
agent problems, because the first-order approach could not be justified under this simple
signal generating function by the previous literature, which has been a big obstacle in ap-
plying the agency theory to various economic problems. What Example 4 illustrates is that
the first-order approach can be validly adopted in the principal-agent problem in which the
signals for the agent’s effort are normally distributed if one selects h(a) satisfying (30).

Example 5 Consider a one-signal principal-agent problem, {π(x), u(s), f(x|a), U , s},
where π(x) = x, u(s) = 1

r
sr, r < 1, and x̃ ∈ (0,∞) follows the gamma distribution with

shape parameter h(a) ≥ 0, i.e.,

f(x|a) = xh(a)−1β−h(a)

Γ(h(a))
e−

x
β . (31)

Since, given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

= h′(ao) ln x̃−K,

where K ≡ h′(ao) ln β + Γ′(h(ao))
Γ(h(ao))

h′(ao), q̃ is unbounded below. Thus, the agent’s limited
liability constraint must be binding for some low values of q̃ (i.e., for some low value of x̃).
Since the density function of q̃ is given by

g(q|a) = β−h(a)

h′(ao)Γ(h(a))
exp

{
h(a)

h′(ao)
(q +K)− 1

β
exp

[
q +K

h′(ao)

]}
, (32)

31In those cases where the agent’s limited liability constraint is not binding at the optimum, r(q) = r(q)
for all q as in Section 4.1.
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we have
g(q|a)
g(q|ao)

=
Γ(h(ao))

Γ(h(a))
βh(ao)−h(a) exp

{
h(a)− h(ao)

h′(ao)
(q +K)

}
, (33)

from which one can easily see that condition (1a) in Proposition 4 is satisfied. Also, from
Example 4, ln [r(q)− u(s)] becomes concave with r(q) = 1

r
(λ + µq)

r
1−r for any r < 1,

satisfying condition (3c) in Proposition 4.
Since the moment generating function of q̃ is given by

M(a; t) =

∫
et·qg(q|a)dq = e−tK

∫
xt·h

′(ao)f(x|a)dx = e−tKβt·h′(ao)×Γ(h(a) + t · h′(ao))
Γ(h(a))

,

we obtain

ϕ
(
a; t, U − u(s)

)
≡ Ma(a; t)

M(a; t)
× [U − u(s) + a]

= [ψ(h(a) + t · h′(ao))− ψ(h(a))]× h′(a)×
[
U − u(s) + a

]
,

where ψ(z) ≡ d
dz
ln Γ(z) = Γ′(z)

Γ(z)
. As the digamma function ψ(z) is increasing and concave

in z > 032, condition (2c) is satisfied if

h′′(a)

h′(a)
≤ − 1

U − u(s) + a
, ∀a. (34)

Like Example 4, the first-order approach for the principal-agent problem in the above ex-
ample cannot be justified by any of the existing sets of conditions. One can see that nei-
ther f(x|a) in (31) nor g(q|a) in (32) satisfies any of the CDF-type conditions. Thus, the
Mirrlees-Rogerson conditions and any extensions of those conditions (e.g., GCDFC by
Sinclair-Desgagné (1994), CISP by Conlon (2009), and CDFCL by Jung and Kim (2015))
cannot be used for justifying the first-order approach in this case. Furthermore, since, for
any given ao, q̃ ≡ fa(x̃|ao)

f(x̃|ao) = h′(ao) ln x̃ − K ∈ (−∞,∞), which is unbounded below,
the agent’s limited liability constraint must be binding for low values of x̃ at the optimum.
Thus, by the same reason as in Example 4, Theorem 1 in Jewitt (1988) and Proposition 7
in Jung and Kim (2015) cannot be also used for justifying the first-order approach in this
case. However, as shown in Example 5, using the first-order approach in this case can be
actually justified by our new conditions in proposition 4 as long as (34) is satisfied.

32For this issue, see e.g., Dragomir, Agarwal and Barnett (2000).
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5 Conclusion

The literature on the first-order approach in the principal-agent problems has been focused
on making the agent’s expected monetary utility obtained from that approach ‘concave’ in
the agent’s effort. As relying on such concavity is sometimes overly sufficient, this paper
proposes new sets of conditions based on the double-crossing property between a ‘proxy’
contract and the optimal contract derived from the first-order approach, and shows that our
approach can be applied to a wider range of principal-agent problems than the previous
literature. Some examples we suggested (i.e., Examples 2, 3, 4, and 5) illustrate interesting
cases where the previous literature cannot justify their use of the first-order approach while
our new sets of conditions, in contrast, can: including those with the agent’s limited liability
constraint and convex indirect utility as a function of the likelihood ratio of the signals. We
believe that the future research in this area will benefit from this broader applicability of
the first-order approach.
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Appendix A Proofs for Lemmas and Propositions

Proof of Lemma 1. Using (2), the relaxed incentive constraint at ao is

1 =

∫
u(so(x))fa(x|ao)dx

=

∫
u(so(x))

fa(x|ao)
f(x|ao)

f(x|ao)dx

=

∫
(u(so(x))− E[u(so(x))])

fa(x|ao)
f(x|ao)

f(x|ao)dx

= Cova=ao

(
u(so(x)),

fa(x|ao)
f(x|ao)

)
.

In the above equation, the third equality comes from the fact that
∫
E[u(so(x))]fa(x|ao)dx =

0 sinceE[u(so(x))] is constant, and the last equality comes from the fact thatE
[
fa(x|ao)
f(x|ao) |a

o
]
=∫

fa(x|ao)dx = 0. Suppose to the contrary that µ ≤ 0. Then, Cov
(
u(so(x)), fa(x|a

o)
f(x|ao)

)
≤ 0

from (3), which contradicts 1 > 0. Therefore, µ must be positive at the optimum.

Proof of Lemma 2. Let ψ(c) ≡ ξ(c)g(c|ao), and define ψ(1)(q) ≡
∫ q
ψ(c)dc =∫ q

ξ(c)g(c|ao)dc and ψ(2)(q) ≡
∫ q
ψ(1)(c)dc =

∫ q ∫ c
ξ(t)g(t|ao)dtdc. Then, we have

ψ(1)(q) = 0 from (L2). Furthermore, since∫
ξ(q)q · g(q|ao)dq = q

∫ q

ξ(c)g(c|ao)dc
∣∣∣∣q
q

−
∫ ∫ q

ξ(c)g(c|ao)dcdq

= −
∫ ∫ q

ξ(c)g(c|ao)dcdq = 0,

where the second equality comes from (L2), and the last equality is from (L3), we have
ψ(2)(q) = 0. Note from (L4) that ψ(c) changes sign twice from negative to positive and
to negative as c increases. Thus, ψ(1)(q) changes sign once from negative to positive as q
increases since ψ(1)(q) = 0. Since ψ(1)(q) changes sign once from negative to positive as q
increases and since ψ(2)(q) =

∫
ψ(1)(q)dq = 0, we have

ψ(2)(q) =

∫ q ∫ c

ξ(t)g(t|ao)dtdc ≤ 0, ∀q. (A.1)
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Denote∫
ξ(q)g(q|a)dq =

∫
ξ(q)

g(q|a)
g(q|ao)

g(q|ao)dq =
∫
ξ(q)Γ(q, a)g(q|ao)dq, (A.2)

where Γ(q, a) ≡ g(q|a)
g(q|ao) . Then, by taking integration by parts twice, we have

∫
ξ(q)Γ(q, a)g(q|ao)dq = Γ(q, a)

∫ q

ξ(c)g(c|ao)dc
∣∣∣∣q
q

−
∫ (∫ q

ξ(c)g(c|ao)dc
)
Γq(q, a)dq

= −Γq(q, a)

∫ q ∫ c

ξ(t)g(t|ao)dtdc
∣∣∣∣q
q

+

∫ (∫ q ∫ c

ξ(t)g(t|ao)dtdc
)
Γqq(q, a)dq

=

∫ (∫ q ∫ c

ξ(t)g(t|ao)dtdc
)
Γqq(q, a)dq,

(A.3)
where Γq(q, a) ≡ ∂

∂q
Γ(q, a) and Γqq(q, a) ≡ ∂2

∂q2
Γ(q, a). In (A.3), the second equality

comes from the fact that ψ(1)(q) = 0, and the last equality is from the fact that ψ(2)(q) = 0.
Thus, by using (A.1), (A.2), (A.3), and the fact that Γqq(q, a) ≥ 0 (i.e., g(a|a)

g(q|ao) is convex in
q), we finally have∫

ξ(q)g(q|a)dq =
∫ (∫ q ∫ c

ξ(t)g(t|ao)dtdc
)
Γqq(q, a)dq ≤ 0, ∀a.

Proof of Lemma 3. Since so(x) is the optimal contract obtained from the first-order
approach, we know so(x) ∈ Sf . Thus, from (9),

U(so(·), ao) =
∫
u(so(x))f(x|ao)dx− ao =

∫
r(q)g(q|ao)dq − ao = U o, (A.4)

and

Ua(s
o(·), ao) =

∫
u(so(x))fa(x|ao)dx− 1

=

∫
u(so(x))

fa(x|ao)
f(x|ao)

f(x|ao)dx− 1

=

∫
r(q) · q · g(q|ao)dq − 1 = 0. (A.5)
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Also, since ŝ(x) ∈ Sarg,

U(ŝ(·), ao) =
∫
u(ŝ(x))f(x|ao)dx− ao =

∫
r̂(q)g(q|ao)dq − ao = U o, (A.6)

and

Ua(ŝ(·), ao) =
∫
u(ŝ(x))fa(x|ao)dx− 1 =

∫
r̂(q) · q · g(q|ao)dq − 1 = 0. (A.7)

Thus, from (A.4) and (A.6), ∫
(r(q)− r̂(q))g(q|ao)dq = 0, (A.8)

and, from (A.5) and (A.7), ∫
(r(q)− r̂(q))q · g(q|ao)dq = 0. (A.9)

By substituting r(q)− r̂(q) for ξ(q) in Lemma 2, one can easily see that ξ(q) = r(q)− r̂(q)
satisfies conditions (L2) and (L3) in Lemma 2. Furthermore, as r̂(q) crosses r(q) twice
starting from above, ξ(q) = r(q) − r̂(q) satisfies (L4) in Lemma 2. Therefore, given that
(L1) is satisfied, we derive from Lemma 2 that∫

(r(q)− r̂(q))g(q|a)dq ≤ 0, ∀a, (A.10)

implying that
U(so(·), a) ≤ U(ŝ(·), a), ∀a. (A.11)

Since ŝ(x) ∈ Sarg,
U(ŝ(·), a) ≤ U(ŝ(·), ao) = U o, ∀a. (A.12)

As a result, by combining (A.11) and (A.12), we have

U(so(·), a) ≤ U(so(·), ao) = U o, ∀a,

which justifies the first-order approach.

Proof of Proposition 1. Given ao, consider an arbitrary contract ŝ(x) such that u(ŝ(x)) ≡
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r̂(q) = Aq+B which satisfies both the participation and the “relaxed” incentive constraints
at ao. Thus, since

R̂(a) ≡
∫
r̂(q)g(q|a)dq = A ·m(a) +B,

from the participation constraint in (16), r̂(q) should satisfy

R̂(ao)− ao = A ·m(ao) +B − ao = U. (A.13)

Also, from the relaxed incentive constraint, r̂(q) should satisfy

R̂′(ao)− 1 = A ·m′(ao)− 1 = 0. (A.14)

Note that

m(ao) =

∫
qg(q|ao)dq =

∫
fa(x|ao)
����f(x|ao)�

���f(x|ao)dx =

∫
fa(x|ao)dx = 0,

which indicates that the expected value of information is always zero (i.e., no information
ex-ante).1 Thus, by solving (A.13) and (A.14), we obtain

A =
1

m′(ao)
, and B = U + ao. (A.15)

Then, using (A.15), we have

R̂(a)− a =
1

m′(ao)
m(a) + U + ao − a. (A.16)

Thus, R̂(a)− a has a maximum value at ao if condition (2b) is satisfied (i.e., m′′
(a) ≤ 0).

Therefore,

R̂(a)− a ≤ R̂(ao)− ao = U, for any given ao and for all a, (A.17)

implying that the proxy contract, ŝ(x), also satisfies the original “argmax” incentive con-
straint, i.e., ŝ(x) ∈ Sarg.

1Also, note that

m′(ao) =

∫
q · ga(q|ao)dq =

∫
fa(x|ao)
f(x|ao)

fa(x|ao)dx =

∫ (
fa(x|ao)
f(x|ao)

)2

f(x|ao)dx = V ar(q|ao).
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Since r(q) ≡ u(so(x)) is concave in q by (3b), and since it also satisfies both the
participation and the relaxed incentive constraints at ao, r(q) must cross r̂(q) twice starting
from below as drawn in Figure 3. Actually, r(q) and r̂(q) must cross because they both
satisfy the same participation constraint at ao, and they must cross “twice” because r(q) is
(increasing and) concave in q whereas r̂(q) is (increasing and) linear in q.2

The fact that both r(q) and r̂(q) satisfy the participation constraint at ao gives∫
[r(q)− r̂(q)]g(q|ao)dq = 0, (A.18)

and the fact that they also satisfy the relaxed incentive constraint at ao gives∫
[r(q)− r̂(q)]q · g(q|ao)dq = 0. (A.19)

Thus, by combining (1a) with (A.18), (A.19), and the double crossing property between
r(q) and r̂(q), we have from Lemma 2 that∫

[r(q)− r̂(q)]g(q|a)dq ≤ 0, ∀a. (A.20)

Therefore, from (A.17) and (A.20), we finally derive

U(so(·), a) ≡ R(a)− a ≤ R̂(a)− a

≤ R̂(ao)− ao = U, for any given ao and for all a,

which justifies the first-order approach.

Proof of Proposition 2. For any given ao, consider a proxy contract ŝ(x) such that
u(ŝ(x))) ≡ r̂t(q) = Aetq, where A > 0 and t > 0 are to be set to satisfy the participation
constraint and the relaxed incentive constraint at ao. Since

R̂(a) ≡
∫
r̂t(q)g(q|a)dq = AM(a; t),

2Additionally, if r̂(q) crosses r(q) only once, then it is not possible for both r̂(q) and r(q) to induce the
same ao. For the detailed explanation, see Innes (1990). We will use this logic in proving Propositions 2, 3,
and 4.
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from the participation constraint, we have

R̂(ao)− ao = A ·M(ao; t)− ao = U, (A.21)

and from the relaxed incentive constraint, we have

R̂′(ao)− 1 = A ·Ma(a
o; t)− 1 = 0, (A.22)

Let (Ao, to) be the solution for (A.21) and (A.22). Then,

Ao =
1

Ma(ao; to)
, (A.23)

and
Ma(a

o; to)

M(ao; to)
=

1

U + ao
.3 (A.24)

Now, to make ŝ(x) ∈ Sarg, that is, the agent will actually choose ao under ŝ(x), we need
to show that

R̂(a)− a ≤ R̂(ao)− ao = U, ∀a ∈ [0,∞),

which reduces to

lnM(a; to) + lnAo ≤ ln[U + a], ∀a ∈ [0,∞).

Define Φ(a; ao) ≡ lnM(a; to) + lnAo − ln[U + a]. Then, from (A.21) and (A.22), we
already know that Φ(ao; ao) = 0 and Φa(a

o; ao) = 0. Thus, if Φa(a; a
o) ≥ 0, ∀a < ao, and

Φa(a; a
o) ≤ 0, ∀a > ao, the agent will take ao under ŝ(x), i.e., ŝt(x) ∈ Sarg. Note that

Φa(a; a
o) =

Ma(a; t
o)

M(a; to)
− 1

U + a

=
1

U + a
×
{
Ma(a; t

o)

M(a; to)
· [U + a]− 1

}
=

1

U + a
×
{
ϕ(a; to, U)− ϕ(ao; to, U)

}
,

3Throughout the paper, we assume, to gurantee the existence of to > 0 satisfying (A.24), that for any
given ao, limt→t

Ma(a
o;t)

M(ao;t) = ∞. To observe it, note that for any given ao, we have Ma(a
o;t=0)

M(ao;t=0) = E[q|ao]
1 = 0.

And, note that since Ma(a
o; t) = E[qetq|ao] = Mt(a

o; t) and Mtt(a
o; t)M(ao; t)−M2

t (a
o; t) = E[q2etq] ·

E[etq] − (E[qetq])2 ≥ 0 by Cauchy-Schwarz inequality, Ma(a
o;t)

M(ao;t) = Mt(a
o;t)

M(ao;t) is increasing in t. Therefore,
that assumption guarantees the unique existence of to > 0 satisfying (A.24).
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where ϕ(a; t, U) ≡ Ma(a;t)
M(a;t)

·[U+a] and the last equality comes from the fact that ϕ(ao; to, U) =
1 by (A.23). Since U + a > 0 for any a, if ϕ(a; to, U) is decreasing in a, then ŝt(x) ∈ Sarg.
Thus, condition (2b’) sufficiently guarantees that ŝt(x) ∈ Sarg.

Since both r̂t(q) and r(q) satisfy the same participation and incentive constraints at
ao, r̂t(q) and r(q) should cross at least once. In addition, r̂t(q) actually should cross r(q)
“twice” starting from above because ln r̂t(q) is linear in q due to condition (3b’).

Consequently, from Lemma 3, we have

R(a)− a ≤ R̂(a)− a ≤ R̂(ao)− ao = R(ao)− ao = U, ∀a ∈ [0,∞),

which justifies the first order approach.

Proof of Proposition 3. Note that as u(s) < 0 for all s, we have r(q) < 0 for all q. In this
case, for the existence of the optimal contract so(x) satisfying the participation constraint,
it is needed that ao + U < 0 for any ao. Thus, we assume that U < 0 and a ∈ [0, a] where
a < −U .

For any given ao, consider a proxy contract ŝ(x) such that u(ŝ(x))) ≡ r̂t(q) = Aetq,
where A < 0 and t < 0 are to be set to satisfy both the participation constraint and the
relaxed incentive constraint at ao. Since

R̂(a) ≡
∫
r̂t(q)g(q|a)dq = AM(a; t),

from the participation constraint, we have

R̂(ao)− ao = A ·M(ao; t)− ao = U, (A.25)

and from the relaxed incentive constraint, we have

R̂′(ao)− 1 = A ·Ma(a
o; t)− 1 = 0, (A.26)

Let (Ao, to) be the solution for (A.25) and (A.26). Then,

Ao =
1

Ma(ao; to)
, (A.27)
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and
Ma(a

o; to)

M(ao; to)
=

1

U + ao
.4 (A.28)

Now, to make ŝ(x) ∈ Sarg, we need to show that

R̂(a)− a ≤ R̂(ao)− ao = U, ∀a ∈ [0, a],

which reduces to

ln[−Ao ·M(a; to)]−1 ≤ ln[−(U + a)]−1, ∀a ∈ [0, a].

Define Φ̂(a; ao) ≡ ln[−Ao ·M(a; to)]−1 − ln[−(U + a)]−1. Then, from (A.27) and (A.28),
we already know that Φ̂(ao; ao) = 0 and Φ̂a(a

o; ao) = 0. Thus, if Φ̂a(a; a
o) ≥ 0, for all

a < ao, and Φ̂a(a; a
o) ≤ 0, for all a > ao, we have Φ̂(a; ao) ≤ 0 for all a, i.e., ŝt(x) ∈ Sarg.

Note that

Φ̂a(a; a
o) = −Ma(a; t

o)

M(a; to)
+

1

U + a

= − 1

U + a
×
{
Ma(a; t

o)

M(a; to)
· [U + a]− 1

}
= − 1

U + a︸ ︷︷ ︸
>0

×
{
ϕ(a; to, U)− ϕ(ao; to, U)

}
,

where the last equality comes from the fact that ϕ(ao; to, U) = 1 by (A.28). Since U + a <

0 for any a, if ϕ(a; to, U) is decreasing in a, then ŝt(x) ∈ Sarg. Thus, condition (2b’)
guarantees that ŝt(x) ∈ Sarg.

Since both r̂t(q) and r(q) satisfy the same participation and incentive constraints at ao

more than once, r̂t(q) and r(q) should cross. Actually, ln[−r̂t(q)]−1 crosses ln[−r(q)]−1

“twice” starting from above since ln[−r̂t(q)]−1 is linear in q and ln[−r(q)]−1 is concave in
q, and so does r̂t(q) against r(q).

4Throughout this paper, we assume for the existence of to < 0 satisfying (A.28) that for any given ao,
limt→t

Ma(a
o;t)

M(ao;t) < 1
a+U

. To see it, note that Ma(a
o;t)

M(ao;t) = Mt(a
o;t)

M(ao;t) is increasing in t from the footnote 3 in the
proof of Proposition 2. Therefore, since 0 > 1

ao+U
≥ 1

a+U
for any ao ∈ [0, a], that assumption guarantees

the unique existence of to < 0 satisfying (A.28).
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Therefore, from Lemma 3, we have

R(a)− a ≤ R̂(a)− a ≤ R̂(ao)− ao = U, ∀a ∈ [0, a],

which justifies the first order approach.

Proof of Proposition 4. For any given ao, consider a proxy contract ŝt(x) such that
u(ŝt(x)) ≡ r̂t(q) = Aetq + u(s), which satisfies both the participation constraint and the
“relaxed” incentive constraint at ao. Therefore, since

R̂(a) ≡
∫
r̂t(q)g(q|a)dq = A ·M(a; t) + u(s),

from the participation constraint in (7) and the relaxed incentive constraint, r̂t(q) should
satisfy

R̂(ao)− ao = A ·M(ao; t) + u(s)− ao = U o ≥ U. (A.29)

and
R̂′(ao)− 1 = A ·Ma(a

o; t)− 1 = 0. (A.30)

Then, solving (A.29) and (A.30) gives (Ao, to) such that

Ao =
1

Ma(ao; to)
< 0, (A.31)

and
Ma(a

o; to)

M(ao; to)
=

1

U o − u(s) + ao
. (A.32)

Note that since r̂t(q) = Aoet
oq + u(s) > u(s) = r(q) for all q ≤ qc, r̂t(q) and r(q)

cannot cross when q ≤ qc. Since r̂t(q) and r(q) satisfy the same participation constraint
and the relaxed incentive constraint, respectively, they must cross at least twice on interval
Ic ≡ (qc,∞), and so do ln[rt(q)−u(s)] and ln[r(q)−u(s)] on Ic. Because ln[rt(q)−u(s)] =
toq + lnAo is linear in q whereas ln[r(q) − u(s)] is concave in q > qc by condition (3c),
ln[rt(q) − u(s)] double crosses ln[r(q) − u(s)] starting from above on interval Ic, and so
does rt(q) against r(q) on Ic.

Now, showing that (2c) implies that under the proxy contract r̂t(q), the agent will
choose a = ao voluntarily will be enough to prove Proposition 4 with the help of Lemma
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3. We need to show:
R̂(a)− a ≤ R̂(ao)− ao = U o,

i.e.,AoM(a; to) ≤ U o−u(s)+a, and equivalently, lnM(a; to)+lnAo ≤ ln[U o−u(s)+a].
To see this, define a new function Φ̂(a; ao) ≡ lnM(a; to) + lnAo − ln[U o − u(s) + a].
Note that Φ̂(ao; ao) = 0 and Φ̂a(a

o; ao) = 0 hold due to (A.31) and (A.32), respectively.
Therefore, if Φ̂a(a; a

o) ≥ 0 for all a < ao and Φ̂a(a; a
o) ≤ 0 for all a > ao, Φ̂(a; ao) would

have a global maximum at a = ao, implying that ŝ(x) ∈ Sarg. Note that

Φ̂a(a; a
o) =

Ma(a; t
o)

M(a; to)
− 1

U o − u(s) + a

=
1

∆U o + a

{
Ma(a; t

o)

M(a; to)
· [∆U o + a]− 1

}
=

1

∆U o + a︸ ︷︷ ︸
>0

{ϕ(a; to,∆U o)− ϕ(ao; to,∆U o)} ,

where ∆U o ≡ U o − u(s) and the last equality holds because ϕ(ao; to,∆U o) = 1 from
(A.32). If ϕ(a; to,∆U o) is decreasing in a, then Φ̂(a; ao) achieves its global maximum at
a = ao, which guarantees that ŝt(x) ∈ Sarg.

Finally, it remains to show that condition (3c) implies ϕ(a; to,∆U o) decreasing in a.
Since ϕ(a; t,∆U) decreasing in a for any t > 0 by condition (2c) where ∆U ≡ U − u(s),
then we have ϕ(a; to,∆U) decreasing in a, or

ϕa(a; t
o,∆U)

ϕ(a; to,∆U)
=
Maa(a; t

o)

Ma(a; to)
− Ma(a; t

o)

M(a; to)
+

1

∆U + ao
< 0. (A.33)

Since U o ≥ U , we have from (A.33)

ϕa(a; t
o,∆U o)

ϕ(a; to,∆U o)
=
Maa(a; t

o)

Ma(a; to)
− Ma(a; t

o)

M(a; to)
+

1

∆U o + ao
< 0,

which is equivalent to ϕ(a; to,∆U o) decreasing in a.
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Online Appendix for
A Proxy-Contract Based Approach to the First-Order

Approach in Agency Models

JIN YONG JUNG SON KU KIM SEUNG JOO LEE

Appendix B The Comparison with the Existing Conditions

As explained, our proxy-contract based conditions in Propositions 1, 2, 3 and 4 are dif-
ferent from the existing conditions in the literature in that they are directly derived to satisfy
(4), whereas the existing conditions were derived to make the agent’s expected monetary
utility given so(x), i.e., R(a) ≡

∫
u(so(x))f(x|a)dx, concave in a.

As previously explained, the existing results can be categorized into two groups, the
results that contain the CDF-type conditions (i.e., Mirrlees-Rogerson’s CDFC, Sinclair-
Desgagné’s GCDFC, Conlon’s CISP condition, and Jung and Kim’s CDFCL), and the re-
sults that do not contain any CDF-type condition but instead contain a restriction on the
agent’s utility function (i.e., Theorem 1 in Jewitt (1988) and Proposition 7 in Jung and Kim
(2015)). The CDF-type conditions on f(x|a) in the first group, which were given to make
R(a) ≡

∫
u(so(x))f(x|a)dx concave in a for any “increasing” u(so(x)), can be applied

even to the case in which the agent’s limited liability constraint is binding for some x at
the optimum because u(so(x)) is increasing even in such csae. However, these conditions
have limitations in that they are hardly satisfied by most familiar density functions.

On the other hand, the conditions on f(x|a) that appear in the results of the second
group were given to make R(a) ≡

∫
u(so(x))f(x|a)dx concave in a for any “increasing

concave” u(so(x)). These conditions must be weaker than the above CDF-type conditions
because they require that the concavity of R(a) be satisfied for a smaller set of u(s).5

However, the results in the second group have another limitation in that they cannot be used
for the cases in which the signals’ density function has its information variable, q̃ ≡ fa(x̃|ao)

f(x̃|ao) ,
unbounded below, and thus the agent’s limited liability constraint is binding for some x

at the optimum. Unfortunately, many useful probability density functions (e.g., normal,
gamma, etc.) belong to this case. In fact, to generate “increasing concave” u(so(x)), the
results in the second group contain another restriction on the agent’s utility function u(s)

5These conditions are satisfied by some familiar density functions (e.g., Chi-square, Poisson etc.).
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such that u(so(x)) ≡ r(q) is concave in q. However, this restriction cannot be satisfied in
this case due to the agent’s binding limited liability constraint.

As a result, it is clear that our conditions in Proposition 4, which can be used for the
case in which the agent’s limited liability constraint is binding for some x at the optimum,6

have the advantage over the existing results. When the agent’s limited liability constraint is
binding for some x at the optimum, among the existing results, only the results that contain
the CDF-type conditions can be used. However, the CDF-type conditions are too restrictive
to be satisfied by most familiar density functions of the signals. In contrast, our conditions
in Proposition 4 (especially condition (1a)) can be satisfied by the wide range of density
functions including the normal and the gamma density functions, as shown in Examples 4
and 5.

On the other hand, the advantage of our conditions in Propositions 1, 2, and 3, which
can be applied only to the case in which the agent’s limited liability is not binding at all,
over the existing results needs to be explained more carefully. This is because the results
which do not contain the CDF-type conditions (i.e., Theorem 1 in Jewitt (1988) and Propo-
sition 7 in Jung and Kim (2015)) can still be used for this case.7 Thus, it will be interesting
to compare our conditions in Propositions 1, 2, and 3 with Proposition 7 in Jung and Kim
(2015) which are the most recent conditions in the second group.8 We first investigate the
statistical implications of condition (1a) and then, based on these statistical implications,
compare our new conditions in Propositions 1, 2, and 3 with Proposition 7 in Jung and Kim
(2015). In addition, we illustrate the fundamental differences between our proxy-contract
based conditions directly derived to satisfy (4) and the existing conditions derived to make
R(a) ≡

∫
u(so(x))f(x|a)dx concave in a.

Proposition 7 in Jung and Kim (2015) states that, if, for any given ao,

(1J-1)
∫ z
G(q|a)dq is convex in a for all z,

(1J-2) m(a) ≡
∫
qg(q|a)dq is concave in a,9 and

(2J) r(q)(= r(q)) is concave in q,

6Note that another advantage of Proposition 4 over the previous literature is that we can have a possibly
convex r(q) for q ≥ qc.

7We already discussed that (3b’) in Proposition 2 is weaker than (3b) in Proposition 1 (which is equivalent
to Theorem 1 in Jewitt (1988) and Proposition 7 in Jung and Kim (2015)’s condition on the agent’s indirect
monetary utility r(q)). Instead, (2b’) in Proposition 2 is a stronger restriction than (2b) in Proposition 1.

8Jung and Kim (2015) show that their conditions in Proposition 7 are are more general than the conditions
in Theorem 1 in Jewitt (1988).

9Condition (1J-2) is generally implied by (1J-1) when z goes to infinity. But the reason we list (1J-2) as
a separate condition is because

∫
G(q|a)dq sometimes may not exist.
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then the first-order approach is justified.
Notice that the above (2J) is identical to (3b) in Proposition 1, and (1J-2) is identical to

(2b) in Proposition 1. Thus, to compare the conditions in Proposition 1 with the conditions
in Proposition 7 in Jung and Kim (2015), comparing ((1a),(2b)) with ((1J-1),(1J-2)), given
that (2J) (or equivalently (3b)) is satisfied, will be enough. To put forth the conclusion first,
((1a),(2b)) in Proposition 1 are sufficient for ((1J-1),(1J-2)) of Jung and Kim (2015) when
x ∈ R and f(x|a) satisfies MLRP. Still even in those cases, Propositions 2 and 3 deal with
cases where the previous literature including Jung and Kim (2015) cannot justify the use
of the first-order approach. We introduce the concept of TP3 as conditions ((1J-1),(1J-2))
are, in general, hard to verify. So our strategy here is as follows:

1. First, we introduce another set of conditions called TP3-based conditions.

2. We show that conditions (TP3,(1J-2)) are equivalent to ((1a),(2b)) in Proposition 1.

3. We show that conditions (TP3,(1J-2)) are sufficient for ((1J-1),(1J-2)) and easier to
verify. Therefore, ((1a),(2b)) in Proposition 1 are sufficient as well for ((1J-1),(1J-2)).

We call conditions (TP3,(1J-2)) the TP3-based conditions: they are, for any given ao,10 as
follows:

(TP3) g(q|a) is totally positive of degree 3 (i.e., TP3), and
(1J-2) m(a) ≡

∫
qg(q|a)dq is concave in a.11

Definition 1 (Total Positivity): A function f(x, a), f : R2 → R, is totally positive of degree
n (i.e., TPn) if, for every x1 < x2 < · · · < xn and a1 < a2 < · · · < an,

T (f, k) ≡

∣∣∣∣∣∣∣∣
f(x1, a1) · · · f(x1, ak)

...
...

...
f(xk, a1) · · · f(xk, ak)

∣∣∣∣∣∣∣∣ ≥ 0, for all k = 1, 2, · · · , n.12

To show that conditions ((1a),(2b)) are equivalent to the above TP3-based conditions,
we first consider the case in which there is a single signal, i.e., x ∈ R, and f(x|a) satisfies
the MLRP, and thus there is a 1:1 relation between q̃ and x̃. Then, we consider the case in

10The information variable q is defined for a given ao, thus we assume that ao is given.
11Since TP3-based conditions are given to sufficiently guarantee ((1J-1),(1J-2)), the first-order approach

can be justified if conditions (TP3), (1J-2), and (2J) are satisfied.
12For a detailed explanation of “total positivity”, see Karlin (1968)
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which either there are multiple signals, i.e., x ∈ Rn, n ≥ 2, or f(x|a), x ∈ R, does not
satisfy the MLRP, and thus there is no 1:1 relation between q̃ and x̃.

All proofs of Appendix B are provided in Appendix B.3.

B.1 When x ∈ R and f(x|a) satisfies MLRP

When there is a single signal, i.e., x ∈ R, and its density function, f(x|a), satisfies the
MLRP, there is a 1:1 relation between q̃ and x̃ for any given ao. Then, as previously shown,
G(q|a) = F (x|a) for all a, where x solves fa(x|ao)

f(x|ao) = q. We thus have g(q|a)Q′
ao(x) =

f(x|a), where Q′
ao(x) ≡

dQao (x)
dx

is independent of a. Thus, we have

g(q|a)
g(q|ao)

=
f(x|a)
f(x|ao)

and
ga(q|a)
g(q|a)

=
fa(x|a)
f(x|a)

for all a. (B.1)

From (B.1), we obtain an interesting result that, when x ∈ R and f(x|a) satisfies the MLRP,
(1a) reduces to

(1d) f(x|a)
f(x|ao) is convex in q = fa(x|ao)

f(x|ao) for any given ao and for all a.

In other words, if f(x|a) satisfies the MLRP for x ∈ R, condition (1a) can be replaced by
condition (1d), which is much easier to verify because it does not require calculating g(q|a)
from f(x|a) explicitly. For instance in Example 5, note that, as x̃ = a + θ̃, θ̃ ∼ N(0, σ2),
x ∈ R and f(x|a) satisfies the MLRP. Thus, condition (1a) can be easily verified by using
condition (1d) without even calculating g(q|a) from f(x|a). From (27), one can derive that

q =
fa(x|ao)
f(x|ao)

=
x− ao

σ2
,

and
f(x|a)
f(x|ao)

= exp

(
− 1

2σ2

(
2(ao − a)x+ a2 − (ao)2

))
.

Since q is linear in x, and f(x|a)
f(x|ao) is convex in x for any given ao, it is easy to confirm that

condition (1a) is satisfied.

Lemma 4 Given two functions, ϕ(x) and ψ(x), ϕ : R → R and ψ : R → R, where ϕ(x) is
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increasing in x, ∣∣∣∣∣∣∣
1 ϕ(x1) ψ(x1)

1 ϕ(x2) ψ(x2)

1 ϕ(x3) ψ(x3)

∣∣∣∣∣∣∣ ≥
(≤)0, for every x1 < x2 < x3,

if and only if ψ(x) is convex (concave) in ϕ(x).

Using Lemma 4, we derive the following Lemma 5 and Corollary 6.

Lemma 5 Given x ∈ R, f(x|a) is TP3 if and only if

(i) f(x|a) satisfies MLRP.

(ii) f(x|a)
f(x|ao) is convex in q = fa(x|ao)

f(x|ao) for any given ao and for all a (i.e., condition (1d)).

Corollary 6 Given that x ∈ R and f(x|a) satisfies MLRP, f(x|a) becomes TP3 if and only

if g(q|a) is TP3 for any given ao.

Note that Corollary 6 should not be read as “Given that x ∈ R, f(x|a) is TP3 if and only
if g(q|a) is TP3 for any given ao”. The statement, “Given that x ∈ R, f(x|a) is TP3 if and
only if g(q|a) is TP3 for any given ao”, is true only when f(x|a) satisfies the MLRP. This is
because, although, as can be seen from equation (B.1), MLRP for f(x|a) (i.e., T (f, 2) ≥ 0

for every x1 < x2 and a1 < a2) implies MLRP for g(q|a) (i.e., T (g, 2) ≥ 0 for q1 < q2 and
a1 < a2 for any given ao), the converse is not always true.

For instance, consider a class of probability density functions which is a convex mixture
of two probability density functions pH(x) and pL(x) such that

f(x|a) = α(a)pH(x) + (1− α(a))pL(x),

where pH(x) = −6x2 + 6x and pL(x) = 1 with x ∈ [0, 1], and α(a) ∈ [0, 1] is increasing
in a.13 Then,

f(x|a) = α(a)(−6x2 + 6x− 1) + 1,

and
fa(x|a)
f(x|a)

=
(−6x2 + 6x− 1)α′(a)

1 + (−6x2 + 6x− 1)α(a)
.

Thus, it is easy to see that f(x|a) does not satisfy the MLRP.

13This example is from Jung and Kim (2015).
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Define, for any given ao,

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

=
(−6x̃2 + 6x̃− 1)α′(ao)

1 + (−6x̃2 + 6x̃− 1)α(ao)
.

Then, q̃ is distributed with support [ α′(ao)
α(ao)−1

, α′(ao)
α(ao)+2

]. Thus,

G(q|a) = Pr[q̃ ≤ q|a] = Pr

[
−6x̃2 + 6x̃− 1 ≤ q

α′(ao)− α(ao)q

∣∣∣a] .
If x1(q) and x2(q) be two roots of −6x2 + 6x − 1 = q

α′(ao)−α(ao)q
, where x1(q) ≤ x2(q),

then x2(q) = 1 − x1(q), where x1(q) ∈ [0, 1
2
] is increasing in q, whereas x2(q) ∈ [1

2
, 1] is

decreasing in q. Therefore, G(q|a) = Pr[x̃ ≤ x1(q)|a] +Pr[x̃ ≥ x2(q)|a]. Since f(x|a) is
symmetric around x = 1

2
, Pr[x̃ ≤ x1(q)|a] = Pr[x̃ ≥ x2(q)|a], Thus,

G(q|a) = 2Pr[x̃ ≤ x1(q)|a] = 2F (x1(q)|a),

and g(q|a) = 2f(x1(q)|a)x′1(q). Consequently, we have

ga(q|a)
g(q|a)

=
fa(x1(q)|a)
f(x1(q)|a)

.

Since fa(x|a)
f(x|a) is increasing in x ∈ [0, 1

2
], we finally have ga(q|a)

g(q|a) is increasing in q, indicating
that g(q|a) satisfies MLRP.

Based on Lemma 5 and Corollary 6, we observe that, when x ∈ R and f(x|a) satisfies
MLRP, the following three statements are equivalent.

(1a) For any given ao, g(q|a)
g(q|ao) is convex in q = fa(x|ao)

f(x|ao) = ga(q|ao)
g(q|ao) for all a.

(1d) For any given ao, f(x|a)
f(x|ao) is convex in q = fa(x|ao)

f(x|ao) for all a, i.e., f(x|a) is TP3 given
the MLRP for f(x|a).

(1e) For any given ao, g(q|a)
g(q|at) is convex in ga(q|at)

g(q|at) for all a and at, i.e., g(q|a) is TP3 given
the MLRP for g(q|a).14

Thus, given that x ∈ R and f(x|a) satisfies the MLRP, condition (1a) indicates that g(q|a)
is TP3 for any given ao.

14Note that (1a) is weaker than (1e) in general. This is because (1a) requires that (1e) hold only for at = ao

but not for all at. However, (1a) and (1e) become equivalent when x ∈ R and f(x|a) satisfies the MLRP.
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Therefore, we have the following proposition.

Proposition 5 Given that x ∈ R and f(x|a) satisfies MLRP, conditions ((TP3),(1J-2)) and

conditions ((1a),(2b)) of Proposition 1 are equivalent.

As explained above, (1a) is equivalent to (TP3) provided that x ∈ R and f(x|a) satis-
fies MLRP. As condition (2b) and Jung and Kim (2015)’s (1J-2) are the same, conditions
((TP3),(1J-2)) and conditions ((1a),(2b)) of Proposition 1 are equivalent.

To better understand properties of the conditions ((TP3),(1J-2)) intuitively, the follow-
ing characteristics of a density function with TP3 will be useful.

Lemma 7 If a density function f(x|a) is TP3, then, for any increasing and concave func-

tion u(x),

u∗(a) ≡
∫
u(x)f(x|a)dx is increasing and concave in µ(a) ≡

∫
xf(x|a)dx.

Lemma 7 shows one of the most interesting characteristics of a density function, f(x|a),
with TP3. When the distribution function satisfying TP3 is combined with any increasing
and concave function, the function’s expected value becomes increasing and concave in the
distribution’s mean value. As explained in Lemma 5 and Corollary 6, given that x ∈ R and
f(x|a) satisfies MLRP, condition (1a) is equivalent to that g(q|a) is TP3 for any given ao.
Thus, when x ∈ R and f(x|a) satisfies MLRP, another interpretation for the conditions in
Proposition 1 is possible based on Lemma 7 as follows. Denote

U(so(·), a) ≡
∫
r(q)g(q|a)dq − a = R(a)− a ≡ ξ(m(a))− ϕ(m(a)),

where m(a) ≡
∫
qg(q|a)dq, i.e., the mean value of the distribution g(q|a). Then, since (1a)

in Proposition 1 and (TP3) are equivalent, R(a) becomes concave in m(a) (i.e., ξ′′ ≤ 0) by
Lemma 7.15 Furthermore, since a is convex in m(a) with concave m(a) (i.e., ϕ′′ ≥ 0) by
the condition (2b), conditions ((1a),(2b),(3b)) in Proposition 1 ensure that, when x ∈ R and
f(x|a) satisfies the MLRP, U(so(·), a) is concave in m(a), which sufficiently guarantees
(4) since m(a) is increasing in a. To justify the first-order approach, all the existing results
were derived to make U(so(·), a) concave in a (to be more precise, R(a) concave in a).
However, the first-order approach can be more generally justified by showing that there

15Due to (3b) in Proposition 1, we assume that r(q) = r̄(q) is increasing and concave for all q.
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exists an increasing function of a, such as m(a), in which U(so(·), a) is concave. This is
actually what the conditions in Proposition 1 entails. Finally, our conditions ((1a),(2b))
in Proposition 1 imply ((1J-1),(1J-2)) of Jung and Kim (2015). It is because conditions
((TP3),(1J-2)), which are equivalent to ((1a),(2b)) in Proposition 1, are sufficient but not
necessary for conditions ((1J-1),(1J-2)). As shown in Jewitt (1988), conditions ((1J-1),(1J-
2)) are necessary and sufficient for R(a) ≡

∫
r(q)g(q|a)dq to be increasing and concave in

a for any increasing concave function r(q). On the other hand, conditions ((TP3),(1J-2))
are sufficient but not necessary for R(a) ≡

∫
r(q)g(q|a)dq to be increasing and concave

in a for any increasing concave function r(q). The sufficient part comes from that R(a) ≡∫
r(q)g(q|a)dq ≡ ξ(m(a)) is increasing concave in m(a) by (TP3), and m(a) is concave

in a by (1J-2). However, even if R(a) ≡
∫
r(q)g(q|a)dq ≡ ξ(m(a)) is increasing concave

in a for any increasing concave function r(q) given that m(a) ≡
∫
qg(q|a)dq is concave in

a (i.e., (1J-1) and (1J-2)), it does not necessarily mean that R(a) is increasing concave in
m(a), i.e., ξ′′ ≤ 0. Furthermore, even if R(a) is increasing and concave in m(a) for any
increasing and concave function r(q), g(q|a) may not be always TP3.

In sum, our conditions ((1a),(2b)) in Proposition 1 are sufficient (and therefore stronger
than) for Jung and Kim (2015)’s ((1J-1), (1J-2)), when x ∈ R and f(x|a) satisfies MLRP.
Still Our Propositions 2 and 3 deal with cases where the previous literature does not justify
the use of the first-order approach, as discussed.

B.2 When x ∈ Rn, n ≥ 2, or f(x|a), x ∈ R, does not satisfy MLRP

When there are multiple signals, i.e., x ∈ Rn, n ≥ 2, or density function f(x|a) does
not satisfy the MLRP even if x ∈ R, there is no 1:1 relation between q̃ and x̃. Thus, some
of the results that are derived when there is a 1:1 relation between q̃ and x̃ in the previous
subsection may not hold. However, the main result in the previous subsection still holds
even in this case. That is, although there is no relation of inclusion between our condi-
tions ((1a),(2b)) in Proposition 1 and conditions ((1J-1),(1J-2)) of Jung and Kim (2015),
the conditions ((1a),(2b)) are more general than the TP3-based conditions, ((TP3),(1J-2)).
Nevertheless, it is worth noting that there are two non-trivial differences in this case com-
pared with the previous case.

Consider a multi-signal case where there is a random vector x̃ = (x̃1, · · · , x̃n), n ≥ 2,
with density f(x|a). Although there might be multiple x satisfying fa(x|ao)

f(x|ao) = q, for any
given q, we calculate g(q|a) from f(x|a) by using the transformation method of random
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variables.16 In order to use the transformation method, we introduce another random vector
ỹ = (ỹ1, · · · , ỹn) with a density function f̂(y|a) such that ỹj = q̃ ≡ fa(x̃|ao)

f(x̃|ao) and ỹi = x̃i

for all i = 1, · · · , n, i ̸= j. If there exists a coordinate xj in which fa(x|ao)
f(x|ao) is increasing for

any x−j , the density function of ỹ can be expressed as

f̂(y|a) = f(x|a) · |J | = f(xj(q,x−j),x−j|a)×
∣∣∣∣∂xj(q,x−j)

∂q

∣∣∣∣ ,
where J is the transformation’s Jacobian and xj(q,x−j) solves fa(xj ,x−j |ao)

f(xj ,x−j |ao) = q for given

x−j .17 Note that, in this case, |J | =
∣∣∣∂xj(q,x−j)

∂q

∣∣∣. Then, we have:

g(q|a) =
∫
f̂(q,y−j|a)dy−j =

∫
f(xj(q,x−j),x−j|a)·|J |dx−j =

∫
x∈X(q)

f(x|a)·|J |dx−j,

where X(q) ≡
{
x|fa(x|a

o)
f(x|ao) = q

}
. Thus, although

ga(q|ao)
g(q|ao)

=

∫
x∈X(q)

fa(x|ao) · |J |dx−j∫
x∈X(q)

f(x|ao) · |J |dx−j

=

∫
x∈X(q)

qf(x|ao) · |J |dx−j∫
x∈X(q)

f(x|ao) · |J |dx−j

= q =
fa(x|ao)
f(x|ao)

(B.2)
for any given ao even in this case, it is generally true that

g(q|a)
g(q|ao)

=

∫
x∈X(q)

f(x|a) · |J |dx−j∫
x∈X(q)

f(x|ao) · |J |dx−j

̸= f(x|a)
f(x|ao)

, and
ga(q|a)
g(q|a)

=

∫
x∈X(q)

fa(x|a) · |J |dx−j∫
x∈X(q)

f(x|a) · |J |dx−j

̸= fa(x|a)
f(x|a)

,

(B.3)
where q = fa(x|ao)

f(x|ao) .
For instance, consider multi-signal cases where x̃ ∼ N(µ(a),Σ) where µ(a) = [µ1(a), · · · , µn(a)]

′

16In the one-signal case in which f(x|a), x ∈ R, does not satisfy the MLRP, one easily obtains g(q|a) =∑
k f(xk(q)|a)

∣∣∣dxk(q)
dq

∣∣∣ where xk(q) ∈ X(q) ≡
{
x| fa(x|a

o)
f(x|ao) = q

}
.

17Even in the multi-signal cases where there is no xj in which fa(x|ao)
f(x|ao) is increasing, we observe equation

(B.2) still holds. For example, if the support {x|f(x|a) > 0} can be decomposed into subsets X1, · · · , Xm

such that ỹ is a 1:1 transformation of Xk onto one subset of the support
{
y|f̂(y|a) > 0

}
, the density function

of ỹ can be expressed by f̂(y|a) =
∑

k f(x
k
j (q,x−j),x−j |a) · |Jk|, where xk

j (q,x−j) solves fa(xj ,x−j |ao)
f(xj ,x−j |ao) =

q on Xk for given x−j and Jk is the Jacobian of the transformation on Xk, from which one can easily obtain
g(q|a) =

∫ ∑
k f(x

k
j (q,x−j),x−j |a) · |Jk|dx−j .
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and Σ is a covariance matrix. Then,

f(x|a) = (2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
[x− µ(a)]′Σ−1[x− µ(a)]

)
,

and
fa(x|a)
f(x|a)

= [µ′(a)]′Σ−1[x− µ(a)].

Thus, we have

q̃ ≡ fa(x̃|ao)
f(x̃|ao)

∼ N
(
m(a), σ2

q

)
,

wherem(a) ≡ [µ′(ao)]′Σ−1[µ(a)−µ(ao)] (therebym(ao) = 0) and σ2
q ≡ [µ′(ao)]′Σ−1µ′(ao),

and
ga(q|a)
g(q|a)

=
q − [µ′(ao)]′Σ−1[µ(a)− µ(ao)]

[µ′(ao)]′Σ−1µ′(ao)
[µ′(ao)]′Σ−1µ′(a).

Therefore, we see: g(q|a)
g(q|ao) ̸=

f(x|a)
f(x|ao) and ga(q|a)

g(q|a) ̸= fa(x|a)
f(x|a) for ∀a ̸= ao where q = [µ′(ao)]′Σ−1[x−

µ(ao)]. This shows that, when there is no 1:1 relation between x̃ and q̃, (B.3) is generally
true.

From (B.3), one observes two non-trivial differences between this case and the previous
Appendix B.1 where x ∈ R and f(x|a) satisfies MLRP. First, (1a) cannot be reduced to (1d)
as in Appendix B.1. Therefore, to verify condition (1a) in this case, one should explicitly
calculate g(q|a) from f(x|a). Second, condition (1a) is not equivalent to that g(q|a) is TP3

for any given ao. In fact, the condition that g(q|a) is TP3 for any given ao is stronger than
condition (1a) in this case. In order for g(q|a) to be TP3 for any given ao, it is needed that,
for any given ao,

(1) g(q|a) satisfies MLRP, and
(2)(=(1e)) g(q|a)

g(q|at) is convex in ga(q|at)
g(q|at) for all a, at.

However, condition (1a) requires neither that g(q|a) satisfy MLRP nor that condition (1e)
hold for all at.18 Thus, in contrast with the previous case, when there is no 1:1 relation be-
tween q̃ and x̃, condition (1a) becomes more general than (TP3). As a result, our conditions
((1a),(2b)) are even more general than conditions ((TP3),(1J-2)) in this case.

However, there is a meaningful exception even in this case. Consider a density function

18Note: (1a) condition mandates that g(q|a)
g(q|a0)

is convex in q = ga(q|a0)
g(q|a0)

for all a, given ao.
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f(x|a), x ∈ Rn, n ≥ 2, which generates, for any given ao,

fa(x|a)
f(x|a)

= α(a) · q + β(a), (B.4)

where q = fa(x|ao)
f(x|ao) , α(ao) = 1, β(ao) = 0, and α(a) ≥ 0. Note that most exponential-

family density functions with an appropriate parameterization satisfy (B.4).
Since

f(x|a)
f(x|ao)

= exp

{∫ a

ao

fa(x|t)
f(x|t)

dt

}
= exp {(A(a)− A(ao)) q +B(a)−B(ao)} ,

where A(a) ≡
∫ a

0
α(t)dt and B(a) ≡

∫ a

0
β(t)dt, we observe that, for any given q, f(x|a)

f(x|ao)

has the same value for all x ∈ X(q) ≡
{
x|fa(x|a

o)
f(x|ao) = q

}
. Thus,

g(q|a)
g(q|ao)

=

∫
x∈X(q)

f(x|a) · |J |dx−j∫
x∈X(q)

f(x|ao) · |J |dx−j

=

∫
x∈X(q)

f(x|a)
f(x|ao)

f(x|ao) · |J |dx−j∫
x∈X(q)

f(x|ao) · |J |dx−j

=

exp ((A(a)− A(ao)) q +B(a)−B(ao))
�������������∫
x∈X(q)

f(x|ao) · |J |dx−j

�������������∫
x∈X(q)

f(x|ao) · |J |dx−j

=
f(x|a)
f(x|ao)

.

Furthermore, from (B.4), we also have

ga(q|a)
g(q|a)

=

∫
x∈X(q)

fa(x|a) · |J |dx−j∫
x∈X(q)

f(x|a) · |J |dx−j

=

∫
x∈X(q)

fa(x|a)
f(x|a)

f(x|a) · |J |dx−j∫
x∈X(q)

f(x|a) · |J |dx−j

=

(α(a)q + β(a))
�������������∫
x∈X(q)

f(x|a) · |J |dx−j

�������������∫
x∈X(q)

f(x|a) · |J |dx−j

=
fa(x|a)
f(x|a)

. (B.5)

Therefore, even if there is no 1:1 relation between q̃ and x̃, all the results in Appendix B.1
equally hold in this special case. That is, condition (1a) reduces to the condition (1d), and
verifying (1a) can be replaced by verifying (1d) which does not require to calculate g(q|a)
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from f(x|a) directly. Furthermore, because α(a) ≥ 0, g(q|a) satisfies MLRP from (B.5).
Therefore, based on (B.4) and (B.5), one can also see that condition (1a) is equivalent to
that g(q|a) is TP3 for any given ao.

MLRP for f(x|a) and g(q|a) When there is no 1:1 relation between q̃ and x̃, MLRP for
f(x|a) does not always imply the MLRP for g(q|a) for a given ao. For example, consider
a case of discrete signals with f(x1, x2|a) = e2

√
ax1+ax2−K(a), xi ∈ {0, 1}, i = 1, 2, a >

0, where K(a) = log[(1 + e2
√
a)(1 + ea)]. fa(x1,x2|a)

f(x1,x2|a) = x1√
a
+ x2 − K ′(a) implies that

f(x1, x2|a) satisfies MLRP. Define q̃ = x̃1√
ao
+ x̃2−K ′(ao) and let ao < 1. Then, g(q1|a) =

f(0, 0|a) = e−K(a), g(q2|a) = f(0, 1|a) = ea−K(a), g(q3|a) = f(1, 0|a) = e2
√
a−K(a)

and g(q4|a) = f(1, 1|a) = e2
√
a+a−K(a), where q1 = −K ′(ao), q2 = 1 − K ′(ao), q3 =

1√
ao

−K ′(ao), and q4 = 1+ 1√
ao

−K ′(ao) so q1 < q2 < q3 < q4. Thus, ga(q1|a)
g(q1|a) = −K ′(a),

ga(q2|a)
g(q2|a) = 1 −K ′(a), ga(q3|a)

g(q3|a) = 1√
a
−K ′(a), and ga(q4|a)

g(q4|a) = 1√
a
+ 1 −K ′(a). Since, when

a > 1, ga(q2|a)
g(q2|a) = 1 −K ′(a) > 1√

a
−K ′(a) = ga(q3|a)

g(q3|a) , we observe g(q|a) does not satisfy
MLRP in general.

B.3 Proof of Appendix B

Proof of Lemma 4. Note that∣∣∣∣∣∣∣
1 ϕ(x1) ψ(x1)

1 ϕ(x2) ψ(x2)

1 ϕ(x3) ψ(x3)

∣∣∣∣∣∣∣ = (ϕ(x3)− ϕ(x2)) (ϕ(x2)− ϕ(x1))

(
ψ(x3)− ψ(x2)

ϕ(x3)− ϕ(x2)
− ψ(x2)− ψ(x1)

ϕ(x2)− ϕ(x1)

)
.

Since ϕ(x) is increasing in x, ϕ(x1) ≤ ϕ(x2) ≤ ϕ(x3) for every x1 < x2 < x3. Therefore,
we have, for every x1 < x2 < x3,∣∣∣∣∣∣∣

1 ϕ(x1) ψ(x1)

1 ϕ(x2) ψ(x2)

1 ϕ(x3) ψ(x3)

∣∣∣∣∣∣∣ ≥
(≤)0 ⇐⇒ ψ(x3)− ψ(x2)

ϕ(x3)− ϕ(x2)
− ψ(x2)− ψ(x1)

ϕ(x2)− ϕ(x1)
≥
(≤)0,

which indicates that ψ(x) is convex (concave) in ϕ(x).

Proof of Lemma 5. Assume that x1 < x2 < x3 and a1 < a2 < a3, and, without lost of
generality, let ao = a2.
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(i) the “if” part: Since

T (f, 2) ≡

∣∣∣∣∣f(x1|a1) f(x1|a2)
f(x2|a1) f(x2|a2)

∣∣∣∣∣ = f(x1|a1)f(x2|a1)×

∣∣∣∣∣∣∣∣
1

f(x1|a2)
f(x1|a1)

1
f(x2|a2)
f(x2|a1)

∣∣∣∣∣∣∣∣
= f(x1|a1)f(x2|a1)

(
f(x2|a2)
f(x2|a1)

− f(x1|a2)
f(x1|a1)

)
, (A.34)

the MLRP for f(x|a) implies T (f, 2) ≥ 0. Also, given the MLRP for f(x|a), condition (ii)
in Lemma 5 implies that f(x|a1)

f(x|ao) is convex in q = fa(x|ao)
f(x|ao) , ∀a1 < ao as well as that f(x|a3)

f(x|ao) is
convex in q = fa(x|ao)

f(x|ao) , ∀a3 > ao. Therefore, we have19

f(x2|a1)
f(x2|ao) −

f(x1|a1)
f(x1|ao)

q2 − q1
≤

f(x3|a1)
f(x3|ao) −

f(x2|a1)
f(x2|ao)

q3 − q2
≤ 0 (A.35)

and

0 ≤
f(x2|a3)
f(x2|ao) −

f(x1|a3)
f(x1|ao)

q2 − q1
≤

f(x3|a3)
f(x3|ao) −

f(x2|a3)
f(x2|ao)

q3 − q2
, (A.36)

where qi =
fa(xi|ao)
f(xi|ao) . By combining (A.35) and (A.36), we derive

f(x2|a1)
f(x2|ao) −

f(x1|a1)
f(x1|ao)

f(x2|a3)
f(x2|ao) −

f(x1|a3)
f(x1|ao)

≤
f(x3|a1)
f(x3|ao) −

f(x2|a1)
f(x2|ao)

f(x3|a3)
f(x3|ao) −

f(x2|a3)
f(x2|ao)

≤ 0. (A.37)

By definition we can rewrite T (f, 3) as

T (f, 3) ≡

∣∣∣∣∣∣∣
f(x1|a1) f(x1|ao) f(x1|a3)
f(x2|a1) f(x2|ao) f(x2|a3)
f(x3|a1) f(x3|ao) f(x3|a3)

∣∣∣∣∣∣∣ =
(

3∏
i=1

f(xi|ao)

)
×

∣∣∣∣∣∣∣∣
f(x1|a1)
f(x1|ao) 1 f(x1|a3)

f(x1|ao)
f(x2|a1)
f(x2|ao) 1 f(x2|a3)

f(x2|ao)
f(x3|a1)
f(x3|ao) 1 f(x3|a3)

f(x3|ao)

∣∣∣∣∣∣∣∣
=

(
3∏

i=1

f(xi|ao)

)
×

∣∣∣∣∣∣∣∣
1 f(x1|a3)

f(x1|ao)
f(x1|a1)
f(x1|ao)

1 f(x2|a3)
f(x2|ao)

f(x2|a1)
f(x2|ao)

1 f(x3|a3)
f(x3|ao)

f(x3|a1)
f(x3|ao)

∣∣∣∣∣∣∣∣ ,
one can easily check that (A.37) implies T (f, 3) ≥ 0.

19Due to the MLRP, for a1 < ao, f(x|a1)
f(x|ao) becomes decreasing in ∀x.
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(ii) the “only if” part: If f(x|a) is TP3, then, by definition, T (f, 2) ≥ 0 and T (f, 3) ≥ 0.
First, from (A.34), it is obvious that T (f, 2) ≥ 0 implies the MLRP for f(x|a). Second,
notice that

T (f, 3) ≡

∣∣∣∣∣∣∣
f(x1|a1) f(x1|ao) f(x1|a3)
f(x2|a1) f(x2|ao) f(x2|a3)
f(x3|a1) f(x3|ao) f(x3|a3)

∣∣∣∣∣∣∣
= (ao − a1)×

∣∣∣∣∣∣∣
f(x1|a1) f(x1|ao)−f(x1|a1)

ao−a1
f(x1|a3)

f(x2|a1) f(x2|ao)−f(x2|a1)
ao−a1

f(x2|a3)
f(x3|a1) f(x3|ao)−f(x3|a1)

ao−a1
f(x3|a3)

∣∣∣∣∣∣∣
= (ao − a1)×

{
3∏

i=1

f(xi|a1)

}
×

∣∣∣∣∣∣∣∣
1 f(x1|ao)−f(x1|a1)

(ao−a1)f(x1|a1)
f(x1|a3)
f(x1|a1)

1 f(x2|ao)−f(x2|a1)
(ao−a1)f(x2|a1)

f(x2|a3)
f(x2|a1)

1 f(x3|ao)−f(x3|a1)
(ao−a1)f(x3|a1)

f(x3|a3)
f(x3|a1)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≡A

.

Since ao > a1 and since

lim
a1→ao

A =

∣∣∣∣∣∣∣∣
1 fa(x1|ao)

f(x1|ao)
f(x1|a3)
f(x1|ao)

1 fa(x2|ao)
f(x2|ao)

f(x2|a3)
f(x2|ao)

1 fa(x3|ao)
f(x3|ao)

f(x3|a3)
f(x3|ao)

∣∣∣∣∣∣∣∣,
T (f, 3) ≥ 0 implies that f(x|a3)

f(x|ao) is convex in q = fa(x|ao)
f(x|ao) , ∀a3 > ao by Lemma 4.

Similarly, notice that

T (f, 3) = (a3 − ao)×

∣∣∣∣∣∣∣
f(x1|a1) f(x1|ao) f(x1|a3)−f(x1|ao)

a3−ao

f(x2|a1) f(x2|ao) f(x2|a3)−f(x2|ao)
a3−ao

f(x3|a1) f(x3|ao) f(x3|a3)−f(x3|ao)
a3−ao

∣∣∣∣∣∣∣
= (a3 − ao)×

(
3∏

i=1

f(xi|ao)

)
×

∣∣∣∣∣∣∣∣
f(x1|a1)
f(x1|ao) 1 f(x1|a3)−f(x1|ao)

(a3−ao)f(x1|ao)
f(x2|a1)
f(x2|ao) 1 f(x2|a3)−f(x2|ao)

(a3−ao)f(x2|ao)
f(x3|a1)
f(x3|ao) 1 f(x3|a3)−f(x3|ao)

(a3−ao)f(x3|ao)

∣∣∣∣∣∣∣∣
= (a3 − ao)×

(
3∏

i=1

f(xi|ao)

)
×

∣∣∣∣∣∣∣∣
1 f(x1|a3)−f(x1|ao)

(a3−ao)f(x1|ao)
f(x1|a1)
f(x1|ao)

1 f(x2|a3)−f(x2|ao)
(a3−ao)f(x2|ao)

f(x2|a1)
f(x2|ao)

1 f(x3|a3)−f(x3|ao)
(a3−ao)f(x3|ao)

f(x3|a1)
f(x3|ao)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≡B

.
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Since a3 > ao and since

lim
a3→ao

B =

∣∣∣∣∣∣∣∣
1 fa(x1|ao)

f(x1|ao)
f(x1|a1)
f(x1|ao)

1 fa(x2|ao)
f(x2|ao)

f(x2|a1)
f(x2|ao)

1 fa(x3|ao)
f(x3|ao)

f(x3|a1)
f(x3|ao)

∣∣∣∣∣∣∣∣,
T (f, 3) ≥ 0 also implies that f(x|a1)

f(x|ao) is convex in q = fa(x|ao)
f(x|ao) , ∀a1 < ao by Lemma 4.

Consequently, T (f, 3) ≥ 0 implies that, for any given ao, f(x|a)
f(x|ao) is convex in q = fa(x|ao)

f(x|ao)

for all a.

Proof of Corollary 6:. We have, for any given ao,

T (f, 2) ≡

∣∣∣∣∣f(x1|a1) f(x1|a2)
f(x2|a1) f(x2|a2)

∣∣∣∣∣ = Q′
ao(x1)Q

′
ao(x2)

∣∣∣∣∣g(q1|a1) g(q1|a2)
g(q2|a1) g(q2|a2)

∣∣∣∣∣
= Q′

ao(x1)Q
′
ao(x2)T (g, 2),

where qi = Qao(xi) ≡ fa(xi|ao)
f(xi|ao) , i = 1, 2. Since f(x|a) satisfies MLRP, we have Q′

ao(x) ≥
0, ∀x. Thus, given MLRP for f(x|a),

T (f, 2) ≥ 0, for every x1 < x2 and a1 < a2

⇐⇒ T (g, 2) ≥ 0, for every q1 < q2 and a1 < a2.
(A.38)

Likewise, we have, for any given ao,

T (f, 3) ≡

∣∣∣∣∣∣∣
f(x1|a1) f(x1|a2) f(x1|a3)
f(x2|a1) f(x2|a2) f(x2|a3)
f(x3|a1) f(x3|a2) f(x3|a3)

∣∣∣∣∣∣∣
= Q′

ao(x1)Q
′
ao(x2)Q

′
ao(x3)

∣∣∣∣∣∣∣
g(q1|a1) g(q1|a2) g(q1|a3)
g(q2|a1) g(q2|a2) g(q2|a3)
g(q3|a1) g(q3|a2) g(q3|a3)

∣∣∣∣∣∣∣
= Q′

ao(x1)Q
′
ao(x2)Q

′
ao(x3)T (g, 3),

where qi = Qao(xi) ≡ fa(xi|ao)
f(xi|ao) , i = 1, 2, 3. Therefore, by the same way, we derive that,
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given MLRP for f(x|a),

T (f, 3) ≥ 0, for every x1 < x2 < x3 and a1 < a2 < a3

⇐⇒ T (g, 3) ≥ 0, for every q1 < q2 < q3 and a1 < a2 < a3
(A.39)

Thus, by combining (A.38) and (A.39), we have that f(x|a) is TP3 if and only if g(q|a) is
TP3 for any given ao given that x ∈ R and f(x|a) satisfies MLRP.

Proof of Proposition 5. From Lemma 5 and Corollary 1, it is shown that, given that x ∈ R
and f(x|a) satisfies MLRP, condition (TP3) is equivalent to condition (1a). Furthermore,
condition (1J-2) and condition (2b) are equivalent.

Proof of Lemma 7. Define, for a given density function f(x|a),

ψ(a, k) ≡
∫
ϕ(x, k)f(x|a)dx,

where x ∈ R, a ∈ R, and k is the parameter that determines the functional form of ϕ(x, k).
Then, by the “basic composition formula” by Karlin (1968),20 we have

∣∣∣∣∣∣∣
ψ(a1, k1) ψ(a1, k2) ψ(a1, k3)

ψ(a2, k1) ψ(a2, k2) ψ(a2, k3)

ψ(a3, k1) ψ(a3, k2) ψ(a3, k3)

∣∣∣∣∣∣∣ =
∫∫∫

x1<x2<x3

∣∣∣∣∣∣∣
ϕ(x1, k1) ϕ(x1, k2) ϕ(x1, k3)

ϕ(x2, k1) ϕ(x2, k2) ϕ(x2, k3)

ϕ(x3, k1) ϕ(x3, k2) ϕ(x3, k3)

∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
f(x1|a1) f(x1|a2) f(x1|a3)
f(x2|a1) f(x2|a2) f(x2|a3)
f(x3|a1) f(x3|a2) f(x3|a3)

∣∣∣∣∣∣∣ dx1dx2dx3. (A.40)

Let ϕ(x, k1) ≡ 1, ϕ(x, k2) ≡ x, and ϕ(x, k3) ≡ u(x). We have ψ(a, k1) = 1, ψ(a, k2) =
µ(a) ≡

∫
xf(x|a)dx, and ψ(a, k3) = u∗(a) ≡

∫
u(x)f(x|a)dx. Thus, by using (A.40),

∣∣∣∣∣∣∣
1 µ(a1) u∗(a1)

1 µ(a2) u∗(a2)

1 µ(a3) u∗(a3)

∣∣∣∣∣∣∣ =
∫∫∫

x1<x2<x3

∣∣∣∣∣∣∣
1 x1 u(x1)

1 x2 u(x2)

1 x3 u(x3)

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣
f(x1|a1) f(x1|a2) f(x1|a3)
f(x2|a1) f(x2|a2) f(x2|a3)
f(x3|a1) f(x3|a2) f(x3|a3)

∣∣∣∣∣∣∣ dx1dx2dx3.
(A.41)

20For the detailed proof of the basic composition formula, see Karlin (1968) p. 17. The (A.40) is a direct
extension of the famous Cauchy-Binet theorem.
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The fact that f(x|a) is TP3 implies

T (f, 2) =

∣∣∣∣∣f(x1|a1) f(x1|a2)
f(x2|a1) f(x2|a2)

∣∣∣∣∣ ≥ 0, for every x1 < x2 and a1 < a2,

which is equivalent to the MLRP for f(x|a). Thus, both µ(a) and u∗(a) are increasing in
a. Since u(x) is concave in x, we have from Lemma 4 that∣∣∣∣∣∣∣

1 x1 u(x1)

1 x2 u(x2)

1 x3 u(x3)

∣∣∣∣∣∣∣ ≤ 0, for every x1 < x2 < x3.

Also, the fact that f(x|a) is TP3 implies

T (f, 3) =

∣∣∣∣∣∣∣
f(x1|a1) f(x1|a2) f(x1|a3)
f(x2|a1) f(x2|a2) f(x2|a3)
f(x3|a1) f(x3|a2) f(x3|a3)

∣∣∣∣∣∣∣ ≥ 0, for every x1 < x2 < x3 and a1 < a2 < a3.

Thus, from (A.41), we have∣∣∣∣∣∣∣
1 µ(a1) u∗(a1)

1 µ(a2) u∗(a2)

1 µ(a3) u∗(a3)

∣∣∣∣∣∣∣ ≤ 0, for every a1 < a2 < a3,

which indicates that u∗(a) is increasing concave in µ(a) ≡
∫
xf(x|a)dx, given that µ(a) is

increasing in a.

B.4 Additional Results

Derivation of (22) in Example 3. Given

g(q|a) = [h(ao)]2

h′(ao)h(a)
exp

(
− 1

h(a)

(
[h(ao)]2

h′(ao)
q + h(ao)

))
,
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the moment generating function for arbitrary a will be given as

M(a; t) =

∫
etqg(q|a)dq = [h(ao)]2

h′(ao)h(a)

∫ ∞

−h′(ao)
h(ao)

exp

[
− 1

h(a)

(
h(ao)2

h′(ao)
q + h(ao)

)
+ tq

]
dq

=
[h(ao)]2

h′(ao)h(a)
exp

(
−h(a

o)

h(a)

)∫ ∞

−h′(ao)
h(ao)

exp

[
−
(

h(ao)2

h(a)h′(ao)
− t

)
q

]
dq

=
[h(ao)]2

h′(ao)h(a)

1

h(ao)2

h(a)h′(ao)
− t

exp

(
−th

′(ao)

h(ao)

)
=

h(ao)2

h(ao)2 − h′(ao)h(a)t
exp

(
−th

′(ao)

h(ao)

)
,

which is equation (22).
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