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Abstract

This paper provides a model of the business cycle that incorporates financial mar-

kets and endogenous financial volatility at the Zero Lower Bound (ZLB). Within this

framework, forward guidance is identified as a crucial mechanism for coordinating the

actions of market participants, guiding the economy towards optimal equilibrium paths

with lower financial volatility and enhanced welfare. We reveal two novel insights: (i)

Central banks, by credibly pledging future economic stabilization, can mitigate excess

financial market volatility at the ZLB; (ii) Alternatively, a central bank’s commitment

not to stabilize the economy in the future can direct the economy towards more favor-

able equilibrium paths with reduced endogenous volatility at the ZLB, thus presenting

an interesting trade-off between future business cycle stabilization and reduced finan-

cial volatility at the ZLB. Finally, an examination of alternative fiscal policies reveals

that measures aimed at encouraging increased investment in risky assets can stimulate

economic activity at the ZLB by positively impacting aggregate household financial

wealth.
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1 Introduction

In the aftermath of the Great Recession and the recent Covid-19 pandemic, prolonged peri-
ods of constrained policy rates at the Zero Lower Bound (ZLB) have underscored the need
for alternative monetary interventions, notably forward guidance. ZLB episodes are often
characterized by heightened financial market volatility, exacerbated by the reduced efficacy
of conventional monetary policy tools. In this context, forward guidance goes beyond its
traditional roles of conveying economic forecasts (delphic guidance) and making policy
commitments (odyssean guidance), and evolves into a tool for coordinating market partici-
pant actions and reducing overall economic uncertainty. This paper provides an analytically
tractable framework for examining the effects of unconventional policies at the ZLB, and
especially investigates the impact of forward guidance on the volatility of financial markets
and the business cycle as well as welfare.

Our paper builds on the model which integrates endogenous financial volatility within a
Two-Agent New Keynesian (TANK) framework. The model features a representative stock
market index that encapsulates the ownership rights to the profits of firms in the economy.
A group of hand-to-mouth workers supplies labor to these firms, while a group of capitalists
holds the economy’s aggregate financial wealth, allocating it between consumption and
portfolio choices. In equilibrium, the wealth of capitalists is directly affected by the stock
market performance. In this environment, an increase in endogenous financial volatility
raises market risk-premium, leading to depressed asset prices and wealth of capitalists and
lowering in turn aggregate demand, whose fluctuation determines the endogenous financial
volatility itself.1 This dynamic creates a coordination challenge for economic agents and
might lead to self-fulfilling shocks in volatility, resulting in an endogenous state of elevated
financial volatility. While Lee and Dordal i Carreras (2023) investigates the determinacy
of the model’s solutions under conventional monetary policy regimes in an nonlinear New
Keynesian environment, this paper focuses on whether central bank forward guidance can
steer agents towards equilibrium paths with lower financial volatility and quicker economic
stabilization times at the ZLB.

Our analysis begins by exploring whether financial volatility intensifies when conven-
tional monetary policy is constrained by the ZLB. We discover that a credible commitment
from the central bank to stabilize the economy after the ZLB period can also ensure that

1Again, a decline in aggregate demand leads to reduced firm profitability, negatively impacting both the
stock market capitalization and the aggregate wealth of capitalists. So in our framework, economic volatility
and financial market volatility are tightly connected.
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the excess volatility does not appear during the ZLB. This conclusion is derived through
backward induction: if the monetary authority credibly commits to stabilize the economy
in a finite period of time, it rules out the possibility of catastrophic (or exuberant) scenarios
that contribute to the economic volatility faced by the agents. As a result, this precludes
the feasibility of the unfavorable coordination equilibrium paths that would initially lead to
these scenarios.

We then analyze the benefits of various forward guidance strategies. In our framework,
traditional forward guidance includes an Odyssean component, in which the central bank
credibly commits to keeping the policy rate at zero for a period longer than what economic
conditions minimally require. Following this extended ZLB period of Odyssean guidance,
the central bank implements a policy rule aimed at perfect stabilization outside the ZLB, as
assumed in the preceding paragraph. The outcomes align with those identified in the prior
research: by committing to a future period of accommodative policy rates, the central bank
implicitly agrees to a temporary phase of positive excess demand and profits. This effect,
owing to the forward-looking nature of stock markets, positively influences stock values at
present, thereby raising aggregate demand during the ZLB. Such an approach spreads the
costs of the ZLB over time, and is preferred when considering the quadratic welfare costs
of fluctuations in the output gap. In addition, the commitment to perfect stabilization in
the future precludes the appearance of excess financial volatility at the ZLB, as previously
discussed.

The next strategy we consider explicitly leverages the agents’ coordination problem to
direct them towards an equilibrium with reduced financial and economic volatility at the
ZLB. We term this approach higher-order forward guidance. For its execution, the central
bank must relinquish the promise of perfect stabilization in the future: by committing not to
enforce perfect stabilization at the conclusion of the Odyssean guidance period, the central
bank makes possible the existence of coordinated equilibriums that were previously ruled
out by backward induction. This strategy allows the central bank to guide agents towards
equilibrium paths with low levels of volatility and risk-premium at the ZLB, thereby maxi-
mizing expected welfare beyond the capabilities of traditional forward guidance (which we
identify as a limiting case of this strategy). However, this intervention has its trade-offs: by
committing not to stabilize the business cycle after the ZLB period, the central bank risks
significant future output gap deviations. Thus, our higher-order guidance weighs the lack of
stabilization in the future economy against reduced financial volatility in the present while
at the ZLB. Furthermore, we uncover that even the central bank’s slight hint that perfect
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stabilization is not guaranteed at the conclusion of the Odyssean guidance period allows
our higher-order forward guidance strategy to be viable.2

Finally, we analyze two macroprudential policies at the ZLB designed to incentivize
investors to assume more financial risk, thereby raising asset prices and aggregate demand:
(i) a subsidy on risky asset investments (or equivalently, a reduction in capital gains taxes),
and (ii) fiscal redistribution among agents. The first policy illustrates that a temporary sub-
sidy on holding risky assets at the ZLB enhances their Sharpe ratio, leading to higher asset
prices and increased aggregate financial wealth of the economy. This surge in financial
wealth boosts the aggregate demand of capitalists and alleviates the severity of recessions,
as well as the welfare costs associated with the ZLB. However, our study emphasizes the
need to consider the varying marginal propensities to consume (MPC) across households
when selecting the optimal funding sources for the subsidy. In a hypothetical scenario
where the subsidy is financed by non-distortionary taxation on hand-to-mouth workers, the
policy’s effectiveness is completely nullified: the increase in financial wealth and aggregate
demand induced by the subsidy is exactly offset by a reduction in workers’ consumption,
which negatively impacts firm profitability and stock market capitalization. In this context,
the second macroprudential policy examined focuses on the effects of fiscal transfers at the
ZLB from capitalists with a low marginal propensity to consume to hand-to-mouth workers
with a high marginal propensity to consume. As expected, this transfer leads to an increase
in the economy’s aggregate demand. We contribute to the literature by showing that such
redistribution fosters increased demand through another channel: the initial rise in demand
from workers’ consumption boosts firm profitability, which in turn increases the financial
wealth of capitalists and their willingness to invest in risky assets, as well as consumption
demand, again raising financial wealth and initiating a self-reinforcing cycle.

Featuring a demand-driven economy with perfectly rigid prices,3 our framework em-
phasizes the significant impact of stock market performance on aggregate demand. Unlike
prior studies, such as Akerlof and Yellen (1985), Blanchard and Kiyotaki (1987), Eggerts-

2To be specific, we prove that if the central bank promises there is a tiny probability that the business cycle
might not be stabilized at the end of Odyssean forward guidance, the higher-order forward guidance strategy
becomes viable. Our model features a novel discontinuity in that regard: if the monetary authority achieves
perfect stabilization with certainty after the ZLB period, we return to the traditional forward guidance case in
which no excess volatility or risk premium is manipulated by the central bank. Even with a slight chance that
the perfect stabilization is relinquished, the central bank can engineer a better equilibrium with lower levels
of financial volatility and risk-premium based on our higher-order forward guidance strategy.

3This assumption simplifies the analysis. An extended model with sticky prices à la Calvo (1983) pro-
duces qualitatively similar results.

3



son and Krugman (2012), Farhi and Werning (2012, 2016, 2017), Korinek and Simsek
(2016), and Schmitt-Grohé and Uribe (2016), who focus on demand-driven recessions due
to deleveraging borrowers and aggregate demand externalities, our model triggers the ZLB
episodes with a decrease in aggregate demand for risky assets, identified as a key driver
of financial recessions by Caballero and Farhi (2017) and Caballero and Simsek (2020).
In a similar way to Werning (2012), we assume the economy’s exogenous and determinis-
tic shift to the ZLB, here resulting from a shock that raises the risk premium in financial
markets and reduces the demand for risky assets, resulting in a downward jump in the nat-
ural rate of interest to a negative territory. Our approach diverges from the literature by
including an endogenous component to financial volatility, influenced by both the ZLB and
forward guidance. Papers including Eggertsson et al. (2003), Campbell et al. (2012, 2019),
Del Negro et al. (2013), McKay et al. (2016), and Caballero and Farhi (2017) explore the
implications of forward guidance at the ZLB from both theoretical and empirical perspec-
tives. Our research distinguishes itself by focusing specifically on the impact of forward
guidance on higher-order moments including the endogenous volatility of financial markets
and the broader economy.4 In addition, our study of macroprudential policies at the ZLB,
while building on the existing literature, e.g., Lorenzoni (2008), Farhi and Werning (2012,
2016, 2017), and Korinek and Simsek (2016), places a stronger emphasis on the interplay
between asset prices and aggregate demand.

The structure of this paper is organized as follows: Section 2 presents the model. Sec-
tion 3 discusses the incorporation of the ZLB into our framework. Section 4 examines the
effectiveness of various forward guidance strategies. Section 5 studies other macropruden-
tial policies at the ZLB. Section 6 provides concluding remarks.5

2 The Model

We begin by introducing a theoretical framework that facilitates the analysis of higher-order
moments related to the aggregate financial and economic volatility of the economy.6

4Our approach, where central bank communications serve as an equilibrium coordination device, aligns
well with the concept of ‘open-mouth’ operations at the ZLB described by Campbell and Weber (2019).

5Appendix I contains the parameter calibration, and derivations and proofs are detailed in Appendix II.
Online Appendix contains additional derivations and proofs.

6Our results except those in Section 5 hold in a non-linear version of the standard New Keynesian model
as the model would feature the first-order impacts of the aggregate endogenous volatility as we do here. We
choose this model as it elucidates the interaction among financial volatility, aggregate wealth, and aggregate
demand, and allows us to study various macroprudential policies in a tractable way, as we do in Section 5.
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2.1 Setting

We consider a continuous-time framework within a filtered probability space (Ω,F , (Ft)t∈R,P).
The economy is composed of two equally sized agent groups: capitalists, characterized as
neoclassical agents, and hand-to-mouth workers, conceptualized as Keynesian agents. This
structure, closely aligned with the approach of Greenwald et al. (2014), assumes that all fi-
nancial wealth is held by capitalists, while workers rely on labor income for consumption.
The aggregate technology, denoted by At, introduces a single source of exogenous varia-
tion in the model and generates the filtration (Ft)t∈R. The process evolves according to a
geometric Brownian motion given by:

dAt

At

= g︸︷︷︸
Growth

dt+ σt︸︷︷︸
Fundamental risk

dZt ,

where g represents the expected growth rate, and σt signifies the economy’s fundamental

risk, which we take as exogenous. For simplicity, σt is initially assumed constant and equal
to σ in Section 2. Later, in Section 3, we introduce a deterministic shift in σt to explore
various scenarios involving the ZLB.

2.1.1 Firms

The economy features a unit measure of monopolistically competitive firms, each produc-
ing a unique intermediate good yt(i), for i ∈ [0, 1]. These intermediate firms contribute to
the final good yt through a Dixit-Stiglitz aggregation function with a substitution elasticity
ϵ > 0, as given by:

yt =

(∫ 1

0

yt(i)
ϵ−1
ϵ di

) ϵ
ϵ−1

.

Each intermediate firm i employs a production function yt(i) = At(NW,t)
αnt(i)

1−α, where
NW,t is the total labor in the economy, and nt(i) is the labor demand of firm i at time t. The
inclusion of a production externality à la Baxter and King (1991) helps to align our model
with observed asset price and wage co-movements, and does not alter other qualitative
outcomes of our model.7

7In a model without Baxter and King (1991) externalities, increasing asset prices often correlate with
lower wages, which is contrary to the empirical evidence (Chodorow-Reich et al., 2021) regarding the effects
of stock price hikes on aggregate demand, employment, and wages. The Baxter and King (1991) externality
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Intermediate firms face a downward-sloping demand curve yi(pt(i)|pt, yt), with pt(i)

representing the price of their own good, and pt and yt the aggregate price index and output,
respectively:

yi(pt(i)|pt, yt) = yt

(
pt(i)

pt

)−ϵ

,

where price index pt =
(∫ 1

0
pt(i)

1−ϵdi
) 1

1−ϵ
aggregates prices {pt(i)} from all intermediate

goods. For tractability, we assume perfect price rigidity, pt(i) = pt = p̄ for all t, i.8 Thus,
each firm produces an equal level of output yt(i) = yt for all i, determined by demand.

2.1.2 Workers

A representative hand-to-mouth worker supplies labor to the intermediate firm producers,
earning wage income wtNW,t and spending it entirely on final good consumption. The
representative worker maximizes:

max
CW,t,NW,t

(
CW,t

At

)1−φ

1− φ
− (NW,t)

1+χ0

1 + χ0

, s.t. p̄CW,t = wtNW,t , (1)

where CW,t, NW,t, and wt stand for consumption, labor supply, and wage, respectively, with
χ0 being the inverse Frisch elasticity of labor supply.9 Under our rigid price assumption,
equilibrium labor demand by each firm i, {nt(i)}, aggregates linearly into total labor NW,t,
resulting in nt(i) = NW,t for all i. Plugging this finding back into the production function,
equilibrium output yt simplifies to a linear function of total labor, yt = AtNW,t.

2.1.3 Financial Market and Capitalists

Unlike conventional New-Keynesian models where a representative household owns the
economy’s firms and receives lump-sum rebated profits, we assume firm profits are capi-
talized in the stock market through a representative index fund. Capitalists are faced with

enables our calibration to reflect these empirical trends by linking higher asset prices and aggregate demand
with increased labor demand and wages.

8The alternative assumption of sticky price-resetting à la Calvo (1983) does not significantly alter model
dynamics.

9Consumption CW,t is normalized by the aggregate TFP At due to trending economic growth, a stan-
dardization that does not affect our model’s qualitative results.
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an optimal portfolio allocation problem, deciding between investing in a risk-free bond and
the stock index at each moment t.

The aggregate nominal value of the stock index fund is represented by p̄AtQt, where
Qt is the normalized real index price. This price is endogenously determined and adapts to
filtration (Ft)t∈R, following the equation:

dQt

Qt

= µq
tdt+ σq

t︸︷︷︸
Financial
volatility

dZt ,

with µq
t and σq

t representing the endogenous drift and volatility of the process, respectively.
We interpret σq

t as a measure of financial uncertainty or disruption. Therefore, aggregate
financial wealth p̄AtQt evolves according to a geometric Brownian motion, characterized
by a combined volatility of σ + σq

t . Notably, σq
t , determined in equilibrium, can be either

positive or negative, indicating that aggregate real stock market value AtQt might be more
(or less) volatile than the technology process, {At}. When σq

t is negative, the total volatility
σ + σq

t becomes smaller than the fundamental volatility σ.10

Alongside the stock market, we introduce a risk-free bond with a nominal interest rate
it, set by the central bank. Bonds are assumed to be in zero net supply in equilibrium. A
unit measure of identical capitalists decides how to allocate their wealth between risk-free
bonds and the risky stock index. By holding the later, capitalists earn the profits from the
intermediate goods sector, which are distributed as stock dividends, and benefit from stock
price revaluations due to changes in At and Qt. Given the competitive nature of financial
markets, each capitalist takes the nominal risk-free rate it, the expected stochastic stock
market return imt , and the total risk level σ+σq

t as given when making portfolio decisions.11

If a capitalist invests a fraction θt of their nominal wealth at in the stock market, the total
risk borne becomes θtat(σ + σq

t ) over the interval [t, t+ dt]. Thus, the portfolio’s riskiness
is directly proportional to the investment share θt in the stock index. Capitalists, being risk-
averse, demand a risk-premium compensation imt −it for investing in the risky index, which

10With σq
t < 0, we observe that Covt (dAt, dQt) = σσq

tAtQtdt < 0.
11The competitive market assumption is crucial in our model for explaining inefficiencies stemming from

the aggregate demand externality that each capitalist’s financial investment decision imposes on the economy.
For more details, see Farhi and Werning (2016).
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is determined in equilibrium. A representative capitalist solves the following problem:

max
Ct,θt

E0

∫ ∞

0

e−ρt logCtdt ,

s.t. dat = (at (it + θt(i
m
t − it))− p̄Ct) dt+ θtat (σ + σq

t ) dZt ,

(2)

where ρ and Ct denote the subjective discount rate and final good consumption of capital-
ists, respectively. At each instant, the capitalist earns returns from both risk-free bond and
risky stock investments, allocating their income towards consumption of the final good.

2.2 Equilibrium and Asset Pricing

The nominal state price density of capitalists, denoted as ξNt , can be expressed as follows:

ξNt = e−ρt 1

Ct

1

p̄
, where Et

(
dξNt
ξNt

)
= −itdt , (3)

and the stochastic discount factor of capitalists between the present time t and a future time
s is defined as ξNs

ξNt
. The aggregate stock market wealth, p̄AtQt, is defined as the sum of

discounted profit streams from the intermediate goods sector, priced using ξNt , under the
assumption that capitalists are the marginal investors in the stock market in equilibrium.

At time t, the total profit of the intermediate goods sector, denoted as Dt, is given by

Dt ≡ p̄yt − wtNW,t︸ ︷︷ ︸
=p̄CW,t

= p̄(yt − CW,t) = p̄Ct , (4)

where wtNW,t, the wage income, is equivalent to the consumption expenditure of hand-to-
mouth workers, given by p̄CW,t. Consequently, the total dividend is equal to the capitalists’
aggregate consumption expenditure. Incorporating equation (4) into the asset pricing equa-
tion, we obtain

p̄AtQt = Et
1

ξNt

∫ ∞

t

ξNs Ds︸︷︷︸
=p̄Cs

ds =
p̄Ct

ρ
, (5)

which implies Ct = ρAtQt. It indicates that, in equilibrium, the rate of consumption by
capitalists corresponds to a fixed proportion ρ of their aggregate financial wealth. From
equations (4) and (5), the dividend yield of the stock market index fund is also constant and
equal to ρ, which results in the equilibrium consumption of stock dividends by capitalists.

Agents of the same type (workers or capitalists) are identical and make symmetric de-
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cisions in equilibrium. Since bonds have a zero net supply, the capitalists’ wealth share in
the stock market, denoted as θt, must be equal to one for all t. This condition determines
the equilibrium risk-premium demanded by capitalists. Drawing on equations (2), (3), and
(5), the risk-premium is given by

rpt ≡ imt − it = (σ + σq
t )

2 , (6)

where rpt increases with the total volatility σ+σq
t of the aggregate financial wealth p̄AtQt.

It is important to note that the wealth gain (or loss) of a capitalist equates to the nominal
revaluation of the stock market index. Our equilibrium conditions in equations (5) and (6)
are consistent with Merton (1971).

The equilibrium in the goods market and the expected stock return imt are characterized
as follows: Given that capitalists’ consumption Ct = ρAtQt holds in equilibrium, the final
goods market equilibrium condition can be written as

ρAtQt +
wt

p̄
NW,t = yt = AtNW,t . (7)

The nominal expected return on stocks, imt , comprises the dividend yield from firm
profits and the nominal stock price revaluation resulting from fluctuations in {At, Qt}. In
equilibrium, changes in imt only affect nominal stock prices, as the dividend yield remains
constant and equal to ρ. Defining {Imt } as the cumulative stock market return process,
where Et (dI

m
t ) = imt dt, equation (8) decomposes imt into its dividend yield and expected

stock revaluation components as follows:

dImt =

Nominal dividend︷ ︸︸ ︷
��̄p

yt −
wt

p̄
NW,t︸ ︷︷ ︸

=Ct


��̄pAtQt︸ ︷︷ ︸

Total stock market wealth

dt+
d (��̄pAtQt)

��̄pAtQt︸ ︷︷ ︸
Stock revaluation

= (ρ+ g + µq
t + σσq

t )︸ ︷︷ ︸
=imt

dt+ (σ + σq
t )︸ ︷︷ ︸

Risk term

dZt .

(8)

The real stock price Qt is a pivotal factor in driving the business cycle in the model’s
equilibrium. An increase in Qt leads to the higher consumption of capitalists, leading to
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higher wages, greater labor demand by firms, and consequently, increased consumption by
all households.

Flexible Price Equilibrium In line with most of the literature, we adopt the equilibrium
of the flexible price economy as the benchmark that guides the policy goals of the monetary
authority. Details of this equilibrium are presented in Online Appendix A. Additionally,
Online Appendix B outlines the necessary conditions for positive co-movement among the
gaps in asset price, wage, labor supply, and consumption for both capitalists and workers.
Here, ‘gaps’ refer to the log-deviations from the flexible price equilibrium. As illustrated
in Online Appendix B, all the gaps are proportional to each other, and hereafter we write
equilibrium conditions in asset price gap Q̂t.

In the flexible price equilibrium, denoted by the superscript n (indicating ‘natural’), we
obtain µq,n

t = σq,n
t = 0, implying a constant natural stock price, Qn

t . The natural interest
rate, denoted by rnt , represents the real risk-free rate in the flexible price economy. In
equilibrium, this rate remains constant, and is given by rn = ρ+ g − σ2.

2.3 Gap Economy

In particular, we define the risk-premium gap as r̂pt ≡ rpt − rpn
t , where rpn

t stands for the
natural counterpart of the risk-premium. We also introduce the concept of the risk-adjusted
natural rate, rTt , defined as:

rTt ≡ rnt − 1

2
r̂pt . (9)

This rate adjusts the natural rate of return to account for the risk differential between rigid
and flexible price economies, serving as an anchor for monetary policy in our model. For
example, a positive risk-premium gap, r̂pt > 0, reduces the stock market portfolio demand
of capitalists compared to the benchmark economy, potentially leading to a recession.

This effect is formally illustrated in equation (10) of Proposition 1, where a decline in rTt

relative to the risk-free policy rate it fosters expectations of future asset price revaluations,
which manifest through decreases in current asset prices and output gaps. Note that in a
conventional New Keynesian model, the natural rate rnt appears in the position of rTt in
(10).

Proposition 1 (Dynamic IS Equation) The dynamic IS equation of the model, expressed
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in terms of the asset price gap, is given by:12

dQ̂t = (it − rTt )dt+ σq
t dZt , (10)

where rTt ≡ rnt − 1
2
r̂pt is defined as the risk-adjusted natural rate of the economy.

Proof. See Online Appendix C.

2.4 Monetary Policy and Equilibrium Uniqueness

We complete the model by incorporating a monetary policy rule. This rule, in conjunction
with the dynamic IS equation defined in equation (10) and the implementation of forward
guidance or other macroprudential measures, is necessary to determine the model’s solu-
tion. The baseline policy rule is expressed as follows:

it = max
{
rTt + ϕqQ̂t, 0

}
= max

{
rnt − 1

2
r̂pt + ϕqQ̂t, 0

}
,

(11)

where ϕq > 0 satisfies the Taylor principle when not constrained by the ZLB.13 Combining
equations (10) and (11) when the ZLB is not binding, we obtain

Et dQ̂t = ϕqQ̂t ,

which leads to perfect stabilization of the asset price gap, Q̂t = 0 for all t, as the unique
rational expectations equilibrium of the economy outside the ZLB.14 Section 3 discusses
the stabilization and uniqueness properties of the model with a binding ZLB. Section 4
considers different forward guidance strategies that deviate from equation (11) by tem-
porarily committing to a distinct set of passive policy rules (Odyssean guidance), whose
stabilization and uniqueness properties are further discussed later.

12A conventional definition using the output gap leads to a comparable expression in our model, since
both variables are proportional in equilibrium.

13In addition to the Taylor principle ϕq > 0, Lee and Dordal i Carreras (2023) establish that targeting the
risk-adjusted natural rate or its risk-premium component is an additional necessary condition for ensuring
equilibrium uniqueness in models incorporating higher-order terms in the dynamic IS equation.

14See Blanchard and Kahn (1980) and Buiter (1984) for a detailed presentation of the necessary conditions
required for this uniqueness result.
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3 The Zero Lower Bound

ZLB Recession Following the approach of Werning (2012), we consider a scenario where
the interest rate is brought to the ZLB by a deterministic shift in the natural rate of interest,
rnt . To that purpose, we consider the case where σt = σ̄ for 0 ≤ t ≤ T and σt = σ < σ̄ for
t ≥ T . More specifically, we assume that TFP volatilites during these periods are such that
the natural rate rnt satisfies: r ≡ rn(σ̄) = ρ+ g− σ̄2 < 0 and r̄ ≡ rn(σ) = ρ+ g−σ2 > 0,
resulting in the ZLB binding in the first period. The case where the ZLB duration T is
stochastic can be similarly analyzed, and illustrated in Online Appendix E.

Recovery Without Guidance We begin our study of ZLB recessions by examining the
benchmark scenario: economic recovery in the absence of forward guidance or other
macroprudential policies. After period T , we assume that the monetary authority follows
the Taylor rule presented in equation (11), achieving perfect economic stabilization defined
by Q̂t = 0 for t ≥ T . We infer by backward induction from equation (10) that perfect
stabilization with certainty at T necessarily implies the absence of volatility in the asset
price gap Q̂t process in the preceding periods, t < T .15 Therefore, it follows that σq

t = 0

and rTt = r < 0 for t < T whenever the monetary authority can credibly commit to follow
the Taylor rule in equation (11) for t ≥ T . In this scenario, the dynamics of Q̂t according
to (10) simplify to:

dQ̂t = −r dt , for t < T , (12)

with associated boundary condition Q̂T = 0 and initial asset price gap given by Q0 = r T .
The trajectory of {Q̂t} following equation (12) is illustrated in Figure 1.

The initial increase in σt from σ to σ̄ raises the risk premium from rpn
2 = (σ)2 to

rpn
1 = σ̄2. This leads to a decline in asset prices Q̂t because the ZLB prevents the risk-free

rate from falling into negative territory, as would be necessary for complete stabilization.
As a result, there is a diminished appetite among capitalists for stock market investments,
leading to a reduction in both aggregate financial wealth and consumption demand.16 This

15For instance, at T −∆, where ∆ is an infinitesimally small time interval, σq
T−∆ = 0 is the only rational

solution to equation (10) consistent with Q̂T = 0 for any possible realization of the stochastic component of
the TFP process, dZT−∆. This result deterministically pins down the asset price gap of the preceding period,
Q̂T−∆, leading by backward induction to σq

t = 0 for t ≤ T .
16While Caballero and Farhi (2017) demonstrate that an increased demand for safe assets can drive the

economy into recession under ZLB constraints, our analysis suggests that it encourages investors to withdraw
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t

Q̂t, rpt

rpn1 = (σ̄)2

T
Q̂t

r︸︷︷︸
<0

T

rpn2 = (σ)2

No guidance

Figure 1: ZLB dynamics, economic recovery without guidance (Benchmark).

path is consistent with the dynamics described in Werning (2012) and Cochrane (2017),
despite our model featuring a distinct IS equation (10) with endogenous volatility σq

t in-
fluencing the drift in the Q̂t process, a departure from traditional New-Keynesian models.
This result arises because ensuring future stabilization for t ≥ T effectively eliminates any
excess endogenous volatility σq

t during a ZLB episode.

Remarks Central banks can prevent the emergence of endogenous volatility σq
t at the

ZLB through a ‘credible’ commitment to stabilize the business cycle by a predetermined
future date T < +∞. Even if the monetary authority is constrained by the ZLB and thus
unable to adhere to the policy rule outlined in (10), which directly targets the risk-premium,
the additional financial stability costs resulting from policy inaction can be effectively man-
aged, or even completely eliminated, by pledging to stabilize upon exiting the ZLB. One
implication of this result is that the impact of the ZLB could vary significantly between
countries: those with monetary authorities committed to stabilization after the ZLB period
may only face the demand-driven recession described in this Section. In contrast, countries
lacking the capacity or willingness to stabilize in the future might incur additional costs

their wealth from the stock market, thus reducing stock market value and aggregate demand, akin to the
findings of Caballero and Simsek (2020).
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due to potential increases in σq
t during a ZLB episode. Exploration of these scenarios is left

for future research.
Additionally, we can relax the assumption that T is deterministic. Even if T is stochastic

following a distribution, our result that σq
t = σq,n

t = 0 before T if the monetary authority
perfectly closes the gap after T still carries on. It is because the consumption process during
the ZLB would be dependent only on T -realizations. We illustrate this extension in Online
Appendix E, and therefore, keep focusing on the simplest case where T is deterministic.

4 Forward Guidance

This section analyzes two different forward guidance strategies and explores the potential
stabilization trade-offs involved in the use of these policy tools.

4.1 Traditional Forward Guidance

We define traditional forward guidance as the communication strategy where the central
bank credibly commits to maintaining a zero policy rate for a duration of time T̂ TFG > T

exceeding the initial period of high fundamental volatility. We further assume that the cen-
tral bank reverts to the policy rule defined in equation (11) after the forward guidance period
ends, resulting in a perfect stabilization of both the business cycle and financial markets for
t ≥ T̂ TFG. Following from the backward induction rationale presented in Section 3, stabi-
lization with certainty after T̂ TFG results in the absence of endogenous financial volatility,
σq
t = 0, for t < T̂ TFG. The dynamics of Q̂t are described by

dQ̂t =

−r dt , for t < T ,

−r̄ dt , for T ≤ t < T̂ TFG ,
(13)

with associated boundary condition Q̂T̂ TFG = 0, resulting in an initial asset price gap of
Q̂0 = r T + r (T̂ TFG − T ).

The dynamics of {Q̂t} governed by equation (13) are depicted in Figure 2. Traditional
forward guidance induces an artificial economic boom between T and T̂ TFG, thereby al-
leviating recessionary pressures within the interval 0 ≤ t < T . Specifically, traditional
forward guidance increases asset prices between T and T̂ TFG, which results in a narrower
initial asset price gap Q̂0 due to the forward-looking nature of stock markets.
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t

Q̂t, rpt

rpn1 = (σ̄)2

T

r︸︷︷︸
<0

T

T̂ TFG
Q̂t

rT+r̄(T̂ TFG − T )

rpn2 = (σ)2

No guidance
Traditional forward guidance

Figure 2: ZLB dynamics under traditional forward guidance.

Optimal Traditional Forward Guidance To determine the optimal forward guidance
duration T̂ TFG, we minimize the quadratic loss function represented by:

LQ
(
{Q̂t}t≥0

)
= E0

∫ ∞

0

e−ρtQ̂2
t dt , (14)

subject to the dynamics outlined in equation (13). The first-order condition with respect to
T̂ TFG results in: ∫ ∞

0

e−ρtQ̂tdt = 0 . (15)

Section 4.4 presents a summary of the principal statistics and welfare gains resulting from
the adoption of the optimal traditional forward guidance policy outlined in this discussion.

In the next section, we argue that central banks might voluntarily forgo perfect stabi-
lization in the future to reduce financial volatility at the ZLB and potentially achieve higher
welfare than with the traditional forward guidance policy described here. We term this
approach a ’higher-order’ forward guidance policy.
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4.2 Higher-Order Forward Guidance

The principal cause of ZLB recessions in our model is an excessively high risk premium,
driven by increased fundamental volatility σt. As a result, central banks might alternatively
consider focusing on mitigating financial risk by steering agents’ actions toward a favorable
trajectory for the asset price volatility {σq

t } during the ZLB period, aiming to support asset
prices and consumption demand.17

Context In the traditional forward guidance policy previously discussed, the central bank’s
commitment to perfect stabilization (with certainty) at T̂ TFG facilitates a smoother transi-
tion toward economic recovery. However, this approach prevents any deviation of σq

t from
zero, its natural level, during the ZLB period, as depicted in Figure 3. This suggests that
to sustain alternative equilibria where σq

t deviates from zero, the central bank must refrain
from promising perfect stabilization upon exiting the ZLB at T̂ TFG, as illustrated in Figure
4.

1. Central bank achieves perfect stabilization with certainty after T̂ TFG (i.e., Q̂t = 0, for t ≥ T̂ TFG)

2. Q̂T̂ TFG = 0 guarantees σq
t = σq,n

t = 0, rpt = rpn
t for t < T̂ TFG

Figure 3: Mechanism under traditional forward guidance.

¬2. σq
t < σq,n

t = 0, rpt < rpn
t for t < T̂ TFG

¬1. Q̂T̂ TFG ̸= 0: central bank commits not to perfectly stabilize the economy after T̂ TFG

Figure 4: Mechanism under higher-order forward guidance.

Implementation We define T̂HOFG as the duration of zero policy rate under our ’higher-
order’ policy. We model the commitment constraint described in Figure 4 by assuming
that after the forward guidance regime with it equal to zero ends at T̂HOFG, the monetary

17The risk premium, rpt, is given by rpt = (σ̄ + σq
t )

2 for t < T and rpt = (σ + σq
t )

2 for T ≤ t < T̂ TFG.
Therefore, a negative σq

t can reduce the risk premium below its natural level, thereby improving asset prices
and aggregate demand at the ZLB.
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authority implements a passive policy rule with it fixed at r̄, which allows for the exis-
tence of multiple equilibria. The central bank then coordinates the economy’s agents into
an optimal path within the admissible solutions set, subject to the constraints: σq

t = 0 for
t ≥ T̂HOFG and E0Q̂∞ = 0. The latter is necessary to meet the economy’s transversality
condition, while the former simplifies the optimization problem by assuming the central
bank ends its influence on financial market volatility at the conclusion of the forward guid-
ance period. Together with the dynamic IS equation in (10), these constraints indicate that
the asset price gap is initially expected to close, E0Q̂T̂HOFG = 0, by the end of the forward
guidance period at T̂HOFG. In Section 4.3, we will additionally assume that the central bank
permanently reverts to the active Taylor rule in equation (11) with a constant probability
less than one after T̂HOFG.

Formalism We denote the natural risk premiums as rpn
1 ≡ σ̄2 for t < T (high fundamen-

tal volatility region), rpn
2 ≡ σ2 for T ≤ t < T̂HOFG (low fundamental volatility region),

and rpn
3 ≡ σ2 for t ≥ T̂HOFG (low fundamental volatility region post-forward guidance

period).18

¬2. σq
t = σq,L

1 < 0 for t < T ; σq,L
2 < 0 for T ≤ t ≤ T̂HOFG; σq,n

t = 0 for t > T̂HOFG

¬1. Q̂T̂HOFG ̸= 0: central bank pegs its policy rate it = r̄ after T̂HOFG

Figure 5: Simplified higher-order forward guidance.

We can simplify the optimization problem by assuming that the central bank maintains
consistent financial volatility and risk-premium levels within each regime. Specifically,
financial volatility σq

t is set to be σq,L
1 for t < T , σq,L

2 for T ≤ t < T̂HOFG, and zero for
t ≥ T̂HOFG. The risk-premia associated with each period are rp1 ≡ (σ̄ + σq,L

1 )2 < rpn
1 for

t < T , rp2 ≡ (σ + σq,L
2 )2 < rpn

2 for T ≤ t < T̂HOFG, and rp3 ≡ (σ)2 for t ≥ T̂HOFG.19

This simplified problem is represented in Figure 5. Finally, the risk-adjusted natural rate in
equation (9) is expressed as rT1 for t < T and rT2 for T ≤ t < T̂HOFG, each being a function

18Risk premium is defined as rpt = (σt + σq
t )

2, and the expression for the natural level stems from the
existence of zero endogenous financial volatility in a flexible price economy, where σq,n

t = 0 for all t.
19Proposition 2 later proves that σq,L

1 < 0 and σq,L
2 < 0 at the optimum. For illustration purposes, we

assume these conditions are satisfied in the rest of the argument of this section.
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of σq,L
1 and σq,L

2 , respectively. This is represented by:

rT1

(
σq,L
1

)
≡ ρ+ g − σ̄2

2
−

(
σ̄ + σq,L

1

)2
2

> r ≡ rT1 (0) when σq,L
1 < 0 ,

rT2

(
σq,L
2

)
≡ ρ+ g − σ2

2
−

(
σ + σq,L

2

)2
2

> r̄ ≡ rT2 (0) when σq,L
2 < 0 .

(16)

From equation (16), we observe that lower risk premia during the forward guidance period
up to T̂HOFG lead to increased risk-adjusted rates and, consequently, higher values of the
asset price gap {Q̂t} along the expected equilibrium path (in comparison to a traditional
forward guidance policy of the same duration). This results in reduction of the expected
quadratic loss function in (14). However, as indicated by our IS equation (10), a σq

t different
from zero introduces stochastic fluctuations in the trajectory of Q̂t, resulting in potential
additional stabilization costs in the future. The green line in Figure 6 illustrates the expected
trajectory (or deterministic component) of {Q̂t} under a higher-order forward guidance
policy as detailed in this section. The dashed lines alongside the expected path depict two
possible sample paths that stem from stochastic variations in {Q̂t}.

In summary, central banks operating under our higher-order guidance with commitment
face a trade-off between achieving lower risk premiums and higher asset price levels prior
to T̂HOFG, and the subsequent costs of de-stabilization. This balancing act involves a careful
choice of σq,L

1 , σq,L
2 , and T̂HOFG, as we discuss next. It will turn out that due to the additional

stabilization effects coming from negative σq,L
1 and σq,L

2 , the duration of zero policy rate
T̂HOFG falls from T̂ TFG.

Optimal Higher-Order Forward Guidance The initial asset price gap Q̂0 is determined
by the condition E0Q̂T̂HOFG = 0 previously discussed and the dynamic IS equation in (10)
as follows:

Q̂0 = rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 ) (T̂HOFG − T ) . (17)

The central bank minimizes the loss function given by (14) by selecting the optimal values
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t

Q̂t, rpt

rpn1 = (σ̄)2

rp1 = (σ̄ + σ
q,L
1 )2

rp2 = (σ + σ
q,L
2 )2

rp3 = rpn3 = (σ)2

T

r
T
1 (0)︸ ︷︷ ︸
<0

T

rT1 (σ
q,L
1 )T+rT2 (σ

q,L
2 )(T̂HOFG − T )

T̂ TFGT̂HOFG
Q̂t

rT1 (0)T+rT2 (0)(T̂ TFG − T )

rT2 (0)(T̂ TFG − T )

rT2 (σ
q,L
2 )(T̂HOFG − T )

Path2(Q̂t)

Path1(Q̂t)

rpn2 = (σ)2

No guidance
Traditional forward guidance
Higher-order forward guidance

Figure 6: Intervention dynamics of {Q̂t} with σq,L
1 < 0, σq,L

2 < 0, and T̂HOFG < T̂ TFG.

for σq,L
1 , σq,L

2 , and T̂HOFG. The formulation of the optimization problem is:

min
σq,L
1 ,σq,L

2 ,T̂HOFG
E0

∫ ∞

0

e−ρtQ̂2
t dt, s.t. dQ̂t =


−rT1 (σ

q,L
1 )dt+ σq,L

1 dZt, for t < T,

−rT2 (σ
q,L
2 )dt+ σq,L

2 dZt, for T ≤ t < T̂HOFG,

0, for t ≥ T̂HOFG,

(18)
with Q̂0 determined by equation (17). The following Proposition 2 summarizes the result-
ing optimal commitment path for the central bank under higher-order forward guidance.

Proposition 2 (Optimal Commitment Path) The solution to the central bank’s higher-

order forward guidance optimization problem in (18) results in an optimal commitment

path characterized by σq,L
1 < 0, σq,L

2 < 0, and T̂HOFG < T̂ TFG. In addition, optimal higher-

order forward guidance always results in an equal or lower expected quadratic loss than
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the traditional forward guidance discussed in Section 4.1.

Proof. See Appendix II. The latter part follows from the fact that when (σq,L
1 , σq,L

2 , T̂HOFG) =

(0, 0, T̂ TFG), the trajectory of the asset price gap {Q̂t} becomes identical to that of a tra-
ditional forward guidance policy with duration T̂ TFG. Thus, an optimal choice of these
parameters will always lead to an equal or lower value of the quadratic loss function pre-
sented in equation (14).

4.3 Higher Order Forward Guidance with Stochastic Stabilization

In the previous section, we assumed that following the end of the forward guidance regime
at T̂HOFG, the monetary authority would passively peg the policy rate it to the natural rate
r̄ and set σq

t to zero indefinitely. This setup allows for σq
t to deviate from zero during the

ZLB period, as illustrated in Figure 6. Moving to this section, we relax these assumptions
while maintaining the support for the existence of multiple equilibria provided by the earlier
framework. Now, we assume that after forward guidance ends, the central bank not only
follows the outlined passive rule but also commits to a stochastic return to the perfect
stabilization rule in equation (11). This commitment is represented as a constant probability
outcome determined by a Poisson process. Accordingly, the process for the asset price gap
Q̂t after T̂HOFG becomes:

dQ̂t = −Q̂tdΠt , s.t. dΠt =

1 , with probability νdt ,

0 , with probability 1− νdt ,

where dΠt is a Poisson random variable, with rate parameter ν ≥ 0.20 The central bank’s
optimization problem can be expressed as:

min
σq,L
1 ,σq,L

2 ,T̂HOFG
E0

∫ T̂HOFG

0

e−ρtQ̂2
t dt+

∫ ∞

T̂HOFG
e−ρt · e−ν(t−T̂HOFG) · Q̂2

t dt ,

s.t. dQ̂t =


−rT1 (σ

q,L
1 )dt+ σq,L

1 dZt, for t < T,

−rT2 (σ
q,L
2 )dt+ σq,L

2 dZt, for T ≤ t < T̂HOFG,

0, for t ≥ T̂HOFG,

(19)

20Here, ν is treated as an exogenous parameter determined by external factors. If the central bank could
choose an optimal ν, it would select ν → +∞, as demonstrated in Online Appendix D.
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with Q̂0 determined by equation (17). Proposition 3 outlines the optimal commitment path
for the central bank under higher-order forward guidance with stochastic stabilization.

Proposition 3 (Optimal Commitment Path with Stochastic Stabilization) The solution

to the central bank’s forward guidance optimization problem in (19) results in an optimal

commitment path characterized by σq,L
1 < 0, σq,L

2 < 0, and T̂HOFG < T̂ TFG. In addition,

optimal higher-order forward guidance with a stochastic stabilization probability always

results in an equal or lower expected quadratic loss than the traditional forward guidance

discussed in Section 4.1.

Furthermore, an increased probability of stabilization, indicated by higher values of ν,

leads to a reduction in the optimal values of σq,L
1 and σq,L

2 , resulting in a decrease in risk

premia at the ZLB.

Proof. See Online Appendix D. The first part of the proposition directly extends the results
of Proposition 2 to a stochastic stabilization environment. The latter part of the proposition
is based on the reduced costs of a more aggressive countercyclical policy at the ZLB when
future stabilization is more likely.

Finally, Corollary 1 asserts that introducing a minimal degree of uncertainty about the
timing of future stabilization in its communications is always optimal for the central bank.
This approach facilitates the application of higher-order forward guidance, resulting in
equilibrium paths that are strictly superior from a quadratic loss perspective, compared
to those under traditional forward guidance.

Corollary 1 (Discontinuity at the Limit) The limit case where stabilization parameter ν

equals +∞ corresponds to the traditional forward guidance problem described in Section

4.1. As ν approaches +∞ from the left, the central bank’s expected quadratic loss function

exhibits a discontinuity. Specifically, the expected quadratic loss is always lower when

there’s a minimal probability of stabilization. Formally:

lim
ν→+∞−

LQ,∗
(
{Q̂t}t≥0, ν

)
< LQ,∗

(
{Q̂t}t≥0, ν = ∞

)
,

where L∗
(
{Q̂t}t≥0, ν

)
represents the quadratic loss function defined in equation (14),

evaluated at its optimum for an economy characterized by a Poisson rate ν.
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Proof. See Online Appendix D. The intuition behind the statement’s first part is that the
probability of immediate stabilization upon exiting the forward guidance period at T̂HOFG

becomes one when ν = +∞, aligning with the scenario of the traditional forward guidance
policy in Section 4.1. The second part is based on that higher-order guidance consistently
results in an equal or lower expected quadratic loss compared to the traditional guidance,
regardless of ν, as outlined in Proposition 3.

4.4 Welfare Comparison

For the quantitative evaluation of different forward guidance policies discussed in this pa-
per, we simulate optimal commitment paths at the ZLB under three scenarios: (i) no for-
ward guidance, (ii) traditional forward guidance, and (iii) higher-order forward guidance
with varying probabilities of stabilization. The initial ZLB duration T is set at 20 quarters
to reflect the lengthy ZLB periods that followed the global financial crisis. The Poisson
rate parameter ν in the higher-order forward guidance policy is first calibrated to zero, de-
noting a zero probability of reverting to an active policy rule, and then to one, signifying
the expectation of resuming an active policy rule one quarter after the forward guidance pe-
riod concludes. The remaining model parameters are calibrated based on values commonly
found in the literature, as detailed in Appendix Table I.1.

We define the loss function L as the quadratic output loss per quarter, and approximate
it by:

LY
Per-period ≡ ρ

∫ ∞

0

e−ρtE0

(
Ŷ 2
t

)
≈ ζ2 · ρ

∫ ∞

0

e−ρt1

s

s∑
i=1

(
Q̂

(i)
t

)2
dt ,

where ζ > 0 follows from the relationship Ŷt = ζQ̂t, as derived in equation (B.1) of Online
Appendix B. Here, Q̂(i)

t represents the ith simulated stochastic sample path of the asset price
gap.21 We consider a scenario characterized by a one-time ZLB recession commencing in
period zero, without any expectation of future recurrence. Therefore, L is to be interpreted
as the expected conditional loss associated with a single ZLB episode.

Table 1 presents the results of our simulation, where σq,L
1 and σq,L

2 are expressed as per-
centages of the fundamental volatilities σ̄ and σ, respectively. The initial columns report the

21We use s = 104 randomly simulated sample paths to approximate the quadratic loss of the higher-order
forward guidance policies.
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Policy No
guidance Traditional Higher-Order (no

stochastic stabilization)
Higher-Order (with
stoch. stab., ν = 1)

σq,L
1 0 0 −1.27% −4.13%

σq,L
2 0 0 −0.24% −3.79%

T̂HOFG 20 25.27 25.09 24.68

LY
Per-period 7% 1.93% 1.81% 1.69%

Table 1: Policy comparisons.

effectiveness of traditional guidance, showing the central bank extending the ZLB for just
over a year, reducing total loss by about five percentage points. These findings are aligned
with existing literature (see Campbell et al. (2012, 2019), Del Negro et al. (2013), McKay
et al. (2016)).22 The last two columns provide summary statistics on optimal higher-order
guidance implementation under the two stabilization regimes discussed above. The results
are consistent with higher-order guidance characteristics described in Propositions 2 and
3. Higher-order guidance, compared to traditional policy, further reduces ZLB costs by
a moderate 0.12%-0.24% per quarter through lower financial market volatility during the
guidance period, and allows for an earlier exit from the ZLB. Finally, the last column re-
ports that gains from higher-order guidance double when there is a positive probability of
returning to full stabilization in the future.

In Section 5, we shift our focus to explore potential macroprudential interventions from
a fiscal perspective, aimed at increasing asset prices Q̂t and stabilizing the business cycle
during a ZLB recession.

5 Macroprudential Policies

This section examines two types of macroprudential policies designed to stimulate the
economy at the ZLB. Firstly, we consider a fiscal subsidy aimed at encouraging capitalists
to undertake higher levels of risk, thereby boosting asset prices and other real economic
activities. Secondly, we explore the impact of direct fiscal transfers from capitalists to
hand-to-mouth workers, who typically exhibit a higher marginal propensity to consume.
This policy is shown to increase overall stock market dividends, and consequently, asset

22These studies also note the issue of traditional forward guidance being overly potent in plain vanilla
New-Keynesian frameworks compared to empirical estimates. This paper does not include the quantitative
adjustments proposed in the literature to address this discrepancy, focusing instead on the distinctions between
traditional and higher-order forward guidance policies.
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prices Q̂t and consumption. To assess the impact of macroprudential policies on the busi-
ness cycle, forward guidance is excluded from our analysis in this section. We maintain
the same scenario as outlined in Section 3, and assume that monetary policy reverts to the
perfect stabilization rule specified in equation (11) for t ≥ T .

5.1 Fiscal Subsidy on Stock Market Investment

In the period up to T , where rnt = r < 0 and monetary policy is constrained by the ZLB, the
risk-premium level rpn

1 = σ̄2 required by capitalists leads to a reduction in asset prices, Q̂t.
To counteract this, we propose a subsidy policy aimed at incentivizing capitalists’ holdings
of the risky stock market index. This intervention is expected to increase Q̂t, thereby
addressing the aggregate demand externalities responsible for dragging the economy into a
ZLB recession.23

We begin by examining a government subsidy for the purchase of (risky) stock market
index shares.24 Specifically, instead of the usual expected return imt , a capitalist earns an
expected return of (1 + τ)imt for every dollar invested in the stock market, where τ ≥ 0 is
the stock subsidy. To fund this intervention, the government imposes a ‘lump-sum’ tax Lt

on capitalists. Consequently, a capitalist solves the optimization problem with a modified
flow budget constraint given by:

max
Ct,θt

E0

∫ ∞

0

e−ρt logCt dt

s.t. dat = (at (it + θt((1 + τ)imt − it))− p̄Ct − Lt) dt+ θtat (σ̄ + σq
t ) dZt .

(20)

In equilibrium, capitalists finance the stock market subsidy by paying taxes Lt equal
to τ p̄AtQti

m
t . Setting θt = 1 in equilibrium, we can express the stock market’s expected

return as follows:

imt =
it + (σ̄ + σq

t )
2

1 + τ
= ρ︸︷︷︸

Dividend
yield

+ g + µq
t + σtσ

q
t︸ ︷︷ ︸

Capital gain

. (21)

23Numerous studies have examined the link between externalities (e.g., pecuniary or aggregate-demand)
and macroprudential policies. Notable references include Caballero and Krishnamurthy (2001), Lorenzoni
(2008), Farhi et al. (2009), Bianchi and Mendoza (2010), Jeanne and Korinek (2010), Stein (2012), Farhi and
Werning (2012, 2016, 2017), Korinek and Simsek (2016), Dàvila and Korinek (2018), among others.

24In our model, a subsidy for stock investments functions similarly to a tax break on capital income, a
policy commonly implemented in practice by governments. We opt for the subsidy model for simplicity in
notation.
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As detailed in Section 3, given that σq
t and it equal zero for t ≤ T , equation (21) simplifies

to
imt =

σ̄2

1 + τ
,

which is lower than σ̄2 and inversely proportional to τ . Thus, a positive subsidy rate τ > 0

increases Q̂t along the path up to time T , when the economy achieves perfect stabilization
with Q̂T = 0. Proposition 4 summarizes this result.

Proposition 4 (Fiscal Subsidy on Stock Market Expected Returns) Under the ZLB en-

vironment of Section 3, where a fiscal subsidy τ ≥ 0 is applied to the expected return of

stock markets, the dynamics of Q̂t during the period t < T are given by:

dQ̂t = −

 r︸︷︷︸
≡rn(σ̄)<0

+
τ

1 + τ
σ̄2︸ ︷︷ ︸

>0

 dt , (22)

for r + τ
1+τ

σ̄2 < 0 and Q̂T = 0. When r + τ
1+τ

σ̄2 > 0, the subsidy τ > 0 lifts the economy

out of the ZLB and immediate stabilization becomes possible by adhering to the policy rule

outlined in equation (11).

Proof. See Appendix II.

In equation (22), a positive subsidy τ > 0 increases the effective natural rate from r

to r + τ
1+τ

σ̄2. This rise narrows the gap between the ZLB and the ‘effective’ natural rate,
consequently raising Q̂t relative to the scenario described in Section 3. It is important to
note that as τ approaches infinity, the expression r+ τ

1+τ
σ̄2 converges to r+σ̄2 = ρ+g > 0.

In this situation, the economy moves away from the ZLB and the monetary authority can
achieve perfect stabilization by adhering to the policy rule outlined in equation (11).

Tax on whom? We now consider an alternative funding scheme for the stock market
subsidy τ by imposing a lump-sum tax Lt on hand-to-mouth workers. Under this policy,
the budget constraint of the workers (1) becomes

wt

p̄
NW,t = CW,t +

Lt

p̄
. (23)
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Hand-to-mouth workers, characterized by a marginal propensity to consume of one, expe-
rience a proportional reduction in their consumption due to taxation. This fall in workers’
consumption adversely impacts stock dividends and prices, Q̂t. In this context, the formula
for the stock market’s expected return imt is as follows:

imt =

yt −
wt

p̄
NW,t

AtQt︸ ︷︷ ︸
Dividend yield

+Et

[
d(��̄pAtQt)

��̄pAtQt

1

dt

]
= ρ− τimt︸ ︷︷ ︸

Dividend yield

+Et

[
d(��̄pAtQt)

��̄pAtQt

1

dt

]
, (24)

where we used an equilibrium tax equal to τimt p̄AtQt to obtain the last equality. Propo-
sition 5 summarizes our findings, highlighting the crucial role of tax scheme design in
determining the effectiveness of the macroprudential policy.

Proposition 5 (Fiscal Subsidy and Tax on Workers) The positive impact of a subsidy τ

on asset prices is precisely offset by the reduced consumption of hand-to-mouth workers

due to taxation Lt. Consequently, this results in no net effect on the dynamics of {Q̂t}
during a ZLB episode, apart from a redistribution of wealth from workers to capitalists.

The trajectory of asset prices under this taxation scheme corresponds with the benchmark

scenario, which lacks forward guidance and macroprudential interventions, as depicted in

Figure 1.

Proof. See Appendix II.

5.2 Fiscal Redistribution

Lastly, we consider a redistribution policy in the form of a fiscal transfer Lt > 0 from cap-
italists to hand-to-mouth workers during a ZLB episode.25 This policy increases aggregate
demand due to the high marginal propensity to consume of workers and, in turn, the total
dividends paid by the stock market index. The expected return on the stock market imt then

25A policy subsidizing firms’ payroll, financed through a lump-sum tax Lt on capitalists, produces identi-
cal results. When firms incur net payroll costs of wtNW,t−Lt, the consequent rise in employment effectively
creates a transfer of income equivalent to Lt to the workers. We opt for the direct transfer formulation for
simplicity in notation.
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becomes:

imt =

yt −
wt

p̄
NW,t

AtQt

+ Et

[
d(��̄pAtQt)

��̄pAtQt

1

dt

]
= ρ+

Lt

p̄AtQt︸ ︷︷ ︸
>0

+Et

[
d(��̄pAtQt)

��̄pAtQt

1

dt

]
.

Assuming capitalists finance this transfer Lt by paying a portion φ of their wealth at, the
dividend yield increases to ρ+ φ from a baseline yield (before transfers) of ρ. This adjust-
ment raises the effective natural rate of interest from r to r + φ, resulting in an increase in
asset prices Q̂t and a narrower output gap during a ZLB episode. Proposition 6 summarizes
this result.

Proposition 6 (Fiscal Redistribution) In the ZLB environment presented in Section 3, and

under a redistribution scheme where a φ ≥ 0 portion of capitalists’ wealth is transferred

to hand-to-mouth workers, the dynamic IS equation for Q̂t becomes:

dQ̂t = −( r︸︷︷︸
<0

+φ) dt , (25)

for r+φ < 0. After time T , the central bank perfectly stabilizes the economy and eliminates

the volatility in asset prices, σq
t = 0, for all t ≥ T . When r+φ > 0, fiscal transfers lift the

economy out of the ZLB and immediate stabilization is possible by adhering to the policy

rule outlined in equation (11), with r + φ as the effective natural rate.

Proof. See Appendix II.

From the capitalists’ perspective, this policy effectively reduces their expected wealth
growth by φ, taking the expected stock market return imt as given. At the ZLB, imt does
not react to fiscal transfers due to the the binding constraint on the policy rate it.26 As a
result, the equilibrium growth rates of capitalists’ wealth and the stock price index fall by
φ, due to a less significant initial decline in asset prices Q̂0 at the start of the ZLB episode.
Therefore, fiscal transfers to workers with a high marginal propensity to consume not only
enhance aggregate demand but also create additional wealth effects which manifest through
increases in dividend yields and asset prices, Q̂t.

26Note from the capitalists’ optimization that risk-premium rpt is given by σ̄2 during the ZLB, and imt =
it + rpt.
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6 Conclusion

This paper begins by exploring the likelihood of increased financial volatility at the ZLB,
and finds that a credible commitment to economic stabilization in the future prevents ex-
cess financial volatility from developing. Next, we examine the effects of traditional for-
ward guidance, defined by the monetary authority’s promise to maintain a zero policy rate
for an extended period of time. We show that this commitment fosters expectations of
higher future asset prices and aggregate demand, thereby increasing the market valuation
of households’ financial wealth and, consequently, their aggregate consumption at the ZLB.

Our findings also suggest that a central bank might not always find it optimal to commit
to perfectly stabilizing the business cycle in the future. By refusing to do so, the central
bank opens up the possibility for alternative equilibrium paths with lower financial volatil-
ity at the ZLB and higher expected welfare. While this strategy is preferable from a welfare
perspective, it involves trade-offs. Specifically, a lack of a commitment to future stabiliza-
tion allows the central bank to reduce financial volatility at the ZLB, but at the expense of
potentially large and costly output gap deviations in the future.

Finally, our analysis investigates the efficacy of alternative fiscal policies at the ZLB,
such as subsidies for risky asset investments and fiscal redistribution among households.
We show that both policies have the potential to augment the households’ risk bearing ca-
pacity, resulting in a higher valuation of their financial wealth and consequently, an increase
in aggregate consumption demand.

This paper aims to provide valuable insights for academics and policymakers interested
in the interplay between financial uncertainty and unconventional policies at the ZLB, no-
tably forward guidance. We leave to future research the study of central banks’ communi-
cations policy under alternative scenarios, such as private information about the state of the
economy held by the central bank.
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I Parameter Calibration

Parameter Description Value Source
φ Relative Risk Aversion 0.2 Within the admissible calibration ranges

specified by Gandelman and Hernández-
Murillo (2014).

χ0 Inverse Frisch labor supply
elasticity

0.25 See King and Rebelo (1999).

ρ Subjective time discount factor 0.020 Target 2.8% natural rate.
g TFP growth rate 0.0083 Annual growth rate of 3.3%, which corre-

sponds to the US TFP growth rate from
2009 to 2020, as detailed in Table 8 of
Comin et al. (2023).

σ TFP volatility, low volatility
regime

0.009 See Dordal i Carreras et al. (2016).

σ̄ TFP volatility, high volatility
regime

0.209 Target -1.5% natural rate (ZLB reces-
sion).

T ZLB duration (quarters) 20 A five-year ZLB duration, consistent with
periods such as the Global Financial Cri-
sis and the Great Recession. See Dordal i
Carreras et al. (2016).

ν Stabilization probability pa-
rameter

1 Target average duration 1/ν of one quar-
ter before returning to stabilization.

α 1 − Labor income share 0.4 See Alvarez-Cuadrado et al. (2018).
ϵ Elasticity of substitution inter-

mediate goods
7 Target steady-state mark-up of 16.7%.

See Galı́ (2015).

Table I.1: Parameter calibration used in Section 4.
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II Proofs and Derivations

Proof of Proposition 2. In the context outlined in Section 4.2, the central bank solves the
following problem:1

min
σq,L
1 ,σq,L

2 ,T̂HOFG
E0

∫ ∞

0
e−ρtQ̂2

tdt , s.t. dQ̂t =



− rT1 (σ
q,L
1 )︸ ︷︷ ︸

<0

dt+ σq,L
1 dZt , for t < T ,

− rT2 (σ
q,L
2 )︸ ︷︷ ︸

>0

dt+ σq,L
2 dZt , for T ≤ t < T̂HOFG ,

0 , for t ≥ T̂HOFG ,

with Q̂0 = rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T ) ,

(II.1)

where

rT1 (σ
q,L
1 ) ≡ ρ+ g − σ̄2

2
− (σ̄ + σq,L

1 )2

2
< 0 , rT2 (σ

q,L
2 ) ≡ ρ+ g − σ2

2
− (σ + σq,L

2 )2

2
> 0 .

After T̂HOFG, there are no additional fluctuation in Q̂t. Defining rTs as rT1 (σ
q,L
1 ) for s < T

and as rT2 (σ
q,L
2 ) for T ≤ s ≤ T̂HOFG, the process of Q̂t can be articulated as follows:

Q̂t =



∫ T̂HOFG

t

rTs ds︸ ︷︷ ︸
≡Q̂d(t;T̂HOFG)

+σq,L
1 Zt︸︷︷︸

∼N(0,t)

, for t ≤ T ,

∫ T̂HOFG

t

rT (s)ds︸ ︷︷ ︸
≡Q̂d(t;T̂HOFG)

+σq,L
1 ZT + σq,L

2 Wt−T︸ ︷︷ ︸
∼N(0,t−T )

, for T < t ≤ T̂HOFG ,

σq,L
1 ZT + σq,L

2 WT̂−T︸ ︷︷ ︸
∼N(0,T̂−T )

= Q̂T̂HOFG , for T̂HOFG < t .

(II.2)

where it is assumed that after T̂HOFG, central banks maintain σq
t = σq,n

t = 0. In this
equation, Zt, Wt−T , and UT̂−T are independent Brownian motions. If we square each
term in equation (II.2) and apply the expectation operator with respect to the information

1For this proof, it is implicitly assumed that rT1 (σ
q,L
1 ) < 0 and rT2 (σ

q,L
2 ) > 0 hold for the optimal values

of σq,L
1 and σq,L

2 , ensuring that the ZLB remains effective up to time T .
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available at t = 0, we obtain:

E0 Q̂
2
t =


Q̂d(t; T̂

HOFG)2 +
(
σq,L
1

)2
t , for t ≤ T ,

Q̂d(t; T̂
HOFG)2 +

(
σq,L
1

)2
T +

(
σq,L
2

)2
(t− T ) , for T < t ≤ T̂HOFG ,(

σq,L
1

)2
T +

(
σq,L
2

)2
(T̂HOFG − T ) , for T̂HOFG < t .

(II.3)

If we substitute equation (II.3) into the central bank’s loss function (14), the central bank’s
commitment problem can be expressed as follows:

min
T̂HOFG,σq,L

1 ,σq,L
2

E0

∫ ∞

0

e−ρtQ̂2
t dt

= min
T̂HOFG,σq,L

1 ,σq,L
2

∫ T̂

0

e−ρtQ̂d(t; T̂
HOFG)2dt+

(
σq,L
1

)2 ∫ T

0

te−ρtdt︸ ︷︷ ︸
= 1

ρ2
− 1

ρ2
e−ρT−

���T
ρ
e−ρT

+
(
σq,L
1

)2
T

∫ ∞

T

e−ρtdt︸ ︷︷ ︸
=
�

��1
ρ
e−ρT

+
(
σq,L
2

)2 ∫ T̂HOFG

T

e−ρt(t− T )dt︸ ︷︷ ︸
=−(((((((((

1
ρ
(T̂HOFG−T )e−ρT̂HOFG

+ e−ρT−e−ρT̂HOFG

ρ2

+
(
σq,L
2

)2
(T̂HOFG − T )

∫ ∞

T̂HOFG
e−ρtdt︸ ︷︷ ︸

=�����1
ρ
e−ρT̂HOFG

= min
T̂ ,σq,L

1 ,σq,L
2

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)2dt︸ ︷︷ ︸

Deterministic fluctuations

+
(
σq,L
1

)2 1

ρ2
(1− e−ρT ) +

(
σq,L
2

)2(e−ρT − e−ρT̂HOFG

ρ2

)
︸ ︷︷ ︸

Stochastic fluctuations

.

(II.4)
The central bank now has control over σq,L

1 , σq,L
2 , and T̂HOFG, in addition to its conventional

monetary policy tool {it}. Initially, we derive the first-order condition for T̂HOFG, which is
as follows:

2 · rT2 (σ
q,L
2 )︸ ︷︷ ︸

>0

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt+

(
σq,L
2

)2 1
ρ
e−ρT̂HOFG

= 0 , (II.5)

from which we obtain∫ ∞

0

e−ρtQ̂d(t; T̂
HOFG)dt =

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG∥σq,L

1 < 0, σq,L
2 < 0)dt < 0 . (II.6)
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The first-order condition for T̂HOFG indicates that, at the optimum, the central bank reduces
the value of T̂HOFG compared to T̂ TFG (traditional forward guidance), as discussed in Sec-
tion 4.1. This is because when the central bank utilizes traditional forward guidance and
achieves perfect stabilization for t ≥ T̂ TFG, the expression above becomes

∫ T̂ TFG

0

e−ρtQ̂d(t; T̂∥σq,L
1 = σq,n

1 = 0, σq,L
2 = σq,n

2 = 0)dt = 0 , (II.7)

which is derived by plugging σq,L
1 = 0 and σq,L

2 = 0 into equation (II.5).
Given that at the optimum, σq,L

1 < 0 and σq,L
2 < 0 (which we will demonstrate),

Q̂d(t; T̂
HOFG∥σq,L

1 = 0, σq,L
2 = 0) < Q̂d(t; T̂

HOFG∥σq,L
1 < 0, σq,L

2 < 0) .

Therefore, we deduce from equation (II.1) that at the optimum, T̂HOFG < T̂ TFG, as evi-
denced by comparing (II.7) with (II.6).

To characterize the optimal values of σq,L
1 and σq,L

2 , a variational argument is required.
This is because σq,L

1 and σq,L
2 influence the levels of rT1 (σ

q,L
1 ), rT2 (σ

q,L
2 ), and Q̂d(t; T̂

HOFG).
Specifically, we can derive:

∂rT1 (σ
q,L
1 )

∂σq,L
1

= −
(
σ̄ + σq,L

1

)
< 0,

∂rT2 (σ
q,L
2 )

∂σq,L
2

= −
(
σ + σq,L

2

)
< 0 .

Determining σq,L
1 An increase in σq,L

1 leads to a decrease in rT1 (σ
q,L
1 ), which alters the

trajectory of Q̂d(t; T̂
HOFG). This change is illustrated in Figure II.1, as depicted by the

transition from the thick blue line to the dashed red line.

t

Q̂d(t; T̂
HOFG)

0 A

B

T

rT2 (σ
q,L
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

r1(σ
q,L,New
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

T̂HOFG

Figure II.1: Variation along σq,L
1 . Increase to σq,L,New

1 > σq,L
1 .
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Differentiating Q̂d(t; T̂
HOFG) =

∫ T̂HOFG

t
rTs ds with respect to σq,L

1 , we obtain:

∂Q̂d(t; T̂
HOFG)

∂σq,L
1

=

∫ T

t

−
(
σ̄ + σq,L

1

)
ds = −

(
σ̄ + σq,L

1

)
(T − t), ∀t ≤ T .

To find optimal σq,L
1 , we differentiate the objective function in (II.4) by σq,L

1 and obtain the
following condition:

(
σ̄ + σq,L

1

)∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =

(
σq,L
1

) 1− e−ρT

ρ2
,

from which we can prove that σq,L
1 < 0 must be satisfied at the optimum, given that∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =

∫ t

0

e−ρsQ̂d(s; T̂
HOFG)ds(T − t)

∣∣∣T
0︸ ︷︷ ︸

=0

+

∫ T

0

∫ t

0

e−ρsQ̂d(s; T̂
HOFG)ds︸ ︷︷ ︸

<0

dt < 0 ,

where
∫ t

0
e−ρsQ̂d(s; T̂

HOFG)ds < 0 for t ≤ T , as derived in equation (II.6).

Determining σq,L
2 An increase in σq,L

2 leads to a decrease in rT2 (σ
q,L
2 ), which alters the

shape of Q̂d(t; T̂
HOFG). This effect is illustrated in Figure II.2 by the transition from the

thick blue line to the dashed red line. To further analyze this, we differentiate Q̂d(t; T̂
HOFG)

with respect to σq,L
2 and obtain:

∂Q̂d(t; T̂
HOFG)

∂σq,L
2

=


∫ T̂HOFG

T

−
(
σ + σq,L

2

)
ds = −

(
σ + σq,L

2

)
(T̂HOFG − T ) , t < T ,∫ T̂HOFG

t

−
(
σ + σq,L

2

)
ds = −

(
σ + σq,L

2

)
(T̂HOFG − t) , T ≤ t ≤ T̂HOFG .

To find the optimal σq,L
2 , we differentiate the objective function in (II.4) by σq,L

2 and obtain

(
σ + σq,L

2

)∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − t)dt


= (σq,L

2 )
e−ρT − e−ρT̂

ρ2
,
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B

T

rT2 (σ
q,L
2 )(T̂HOFG − T )

rT2 (σ
q,L,New
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ
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2 )(T̂HOFG − T )

T̂HOFG

Figure II.2: Variation along σq,L
2 . Increase to σq,L,New

2 > σq,L
2 .

from which we can demonstrate that at the optimum, σq,L
2 < 0 must be satisfied, given that

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − t)dt

<

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − T )dt

= (T̂HOFG − T )

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt︸ ︷︷ ︸

<0

< 0 ,

where the final inequality is derived from equation (II.6). Hence, during periods of high
TFP volatility (i.e., t < T ) and low TFP volatility with forward guidance (i.e., T ≤ t ≤
T̂HOFG), a central bank aims to target financial volatility levels below those in a flexible
price economy: σq,L

1 < σq,n
1 = 0 and σq,L

2 < σq,n
2 = 0. Such intervention reduces the

required risk premium and raises the asset price level Q̂t, thereby increasing output.

First-Order Conditions for σq,L
1 , σq,L

2 , and T̂HOFG The deterministic component of the
capitalists’ asset gap process Q̂t, denoted as Q̂d(t; T̂

HOFG), is defined as follows (with
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rT1 (σ
q,L
1 ) and rT2 (σ

q,L
2 ) specified in equation (16)):

Q̂d(t; T̂
HOFG) =

∫ T̂HOFG

t

rTs ds =


rT1 (σ

q,L
1 )︸ ︷︷ ︸

<0

(T − t) + rT2 (σ
q,L
2 )︸ ︷︷ ︸

>0

(T̂HOFG − T ), for ∀t ≤ T ,

rT2 (σ
q,L
2 )(T̂HOFG − t), for T ≤ ∀t < T̂HOFG ,

from which we derive the following:

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt =

∫ T

0

e−ρt
[
rT1 (σ

q,L
1 )(T − t) + rT2 (σ

q,L
2 )(T̂HOFG − T )

]
dt

+

∫ T̂HOFG

T

e−ρtrT2 (σ
q,L
2 )(T̂HOFG − t)dt .

(II.8)
The first condition for T̂HOFG can be written as

2 · rT2 (σ
q,L
2 )

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt+

(
σq,L
2

)2 e−ρT̂HOFG

ρ
= 0 , (II.9)

where∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt =rT1 (σ

q,L
1 )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

1− e−ρT

ρ

+ rT2 (σ
q,L
2 )

[
e−ρT̂HOFG

ρ2
+

T̂HOFG − T

ρ
e−ρT − 1

ρ2
e−ρT

]
,

follows from equation (II.8). Combined with equation (II.9), the first-order condition for
T̂HOFG is expressed as follows:

2 · rT2 (σ
q,L
2 )

[
rT1 (σ

q,L
1 )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

1− e−ρT

ρ

+ rT2 (σ
q,L
2 )

[
e−ρT̂HOFG

ρ2
+

T̂HOFG − T

ρ
e−ρT − 1

ρ2
e−ρT

]]
+
(
σq,L
2

)2 e−ρT̂HOFG

ρ
= 0 .

The first-order condition for σq,L
1 is expressed as

(
σ̄ + σq,L

1

)∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =

(
σq,L
1

) 1− e−ρT

ρ2
, (II.10)
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where∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =rT1 (σ

q,L
1 )

[
− 2

ρ3
e−ρT +

T 2

ρ
− 2T

ρ2
+

2

ρ3

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]
.

(II.11)

Substituting equation (II.11) into equation (II.10), we arrive at:

(σ̄ + σq,L
1 )

[
rT1 (σ

q,L
1 )

[
− 2

ρ3
e−ρT +

T 2

ρ
− 2T

ρ2
+

2

ρ3

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]]
= (σq,L

1 )
1− e−ρT

ρ2
,

as the first-order condition for σq,L
1 . Finally, the first-order condition for σq,L

2 is as follows:

(
σ + σq,L

2

)(
(T̂HOFG − T )

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)dt+

∫ T̂HOFG

T

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − t)dt

)

= (σq,L
2 )

e−ρT − e−ρT̂HOFG

ρ2
,

Therefore, the first-order condition for σq,L
2 is expressed as:2

(
σ + σq,L

2

)[[
rT1 (σ

q,L
1 )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

1− e−ρT

ρ

]
(T̂HOFG − T )

+ rT2 (σ
q,L
2 )

[
− 2

ρ3
e−ρT̂HOFG

+
(T̂HOFG − T )2

ρ
e−ρT − 2(T̂HOFG − T )

ρ2
e−ρT +

2

ρ3
e−ρT

]]

=
(
σq,L
2

) e−ρT − e−ρT̂HOFG

ρ2
.

2We use the following properties of Q̂d

(
t; T̂HOFG

)
:

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)dt = rT1 (σ

q,L
1 )

[
e−ρT

ρ2
+

T

ρ
− 1

ρ2

]
+ rT2 (σ

q,L
2 )(T̂HOFG − T )

1− e−ρT

ρ
,

and∫ T̂HOFG

T

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − t)dt = rT2 (σ

q,L
2 )

[
−2e−ρT̂HOFG

ρ3
+

(T̂HOFG − T )2

ρ
e−ρT − 2(T̂HOFG − T )

ρ2
e−ρT +

2e−ρT

ρ3

]
.
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Proof of Proposition 4. We begin by solving the capitalist’s problem presented in equa-
tion (20), considering a subsidy rate τ on stock market investments for t ≤ T :

max
Ct,θt

E0

∫ ∞

0

e−ρt logCtdt

s.t. dat = (at(it + θt((1 + τ) imt − it))− p̄Ct − Lt)dt+ θtat (σ̄ + σq
t ) dZt .

(II.12)

Since the subsidy τ is financed through a lump-sum tax on capitalists, the dividend process
in equation (4) and the stock market valuation equation (5) remain unchanged. As a result,
p̄Ct = ρat and Ct = ρAtQt. Equilibrium taxes Lt equal to τimt at, and the budget constraint
in equation (II.12) becomes

dCt

Ct

=
dat
at

= ((1 +�τ)i
m
t − ρ−�

��τimt )dt+ (σ̄ + σq
t )dZt

= (imt − ρ)dt+ (σ̄ + σq
t )dZt ,

(II.13)

where we used equilibrium condition θt = 1. Since ξNt = e−ρt 1
p̄Ct

, we obtain:

dξNt
ξNt

(imt , σ
q
t ) = −ρdt− dCt

Ct

+

(
dCt

Ct

)2

= −�ρdt− [(imt −�ρ)dt+ (σ̄ + σq
t )dZt] + (σ̄ + σq

t )
2dt

= −
[
imt − (σ̄ + σq

t )
2
]
dt− (σ̄ + σq

t )dZt .

(II.14)

The subsidy τ on the expected return imt alters the original Euler equation Et
dξNt
ξNt

= −itdt.
Consequently, the revised expression with a subsidy τ must be :

Et

[
dξNt
ξNt

((1 + τ)imt , σ
q
t )

]
= −

[
(1 + τ)imt − (σ̄ + σq

t )
2
]
= −itdt ,

from which we obtain equation (21):

imt =
it + (σ̄ + σq

t )
2

1 + τ
=

σ̄2

1 + τ
,

where the final equality results from substituting it = 0 and σq
t = 0 into the equation. From

equation (II.13),it follows that:

dCt

Ct

= (imt − ρ)dt+ σ̄dZt =

(
σ̄2

1 + τ
− ρ

)
dt+ σ̄dZt , (II.15)
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with which we obtain

d lnCt =

(
σ̄2

1 + τ
− ρ− σ̄2

2

)
dt+ σ̄dZt .

Finally, by using equation (A.6) from Online Appendix A, we derive the natural counterpart
to the above expression:

d lnCn
t =

(
r̄︸︷︷︸
<0

−ρ+
σ̄2

2

)
+ σ̄dZt . (II.16)

Combining both expressions, we obtain the dynamic IS equation in (22).

Proof of Proposition 5. By equation (24), the condition that characterizes the equilibrium
stock market return imt is given by:

imt =

yt −

=CW,t+
Lt
p̄︷ ︸︸ ︷

wt

p̄
NW,t

AtQt

+
d(��̄pAtQt)

��̄pAtQt

1

dt
= ρ− τimt︸ ︷︷ ︸

Dividend yield

+
d(��̄pAtQt)

��̄pAtQt

1

dt
,

from which we obtain (1 + τ)imt = ρ + g + µq
t using σq

t = 0. Since (1 + τ)imt = σ̄2

by equation (21), we infer that µq
t remains constant in comparison to the scenario without

subsidy, conditional on it = 0 and σq
t = 0. Therefore, the subsidy policy does not alter

the {Q̂t} process. To align this intuition with the mathematical representation, we begin by
examining the process for Ct, which is different from that in equation (II.15), as capitalists
are now exempt from paying taxes Lt:

dCt

Ct

= ((1 + τ)imt − ρ)dt+ σ̄dZt

= (σ̄2 − ρ)dt+ σ̄dZt .

Given that the previous expression remains unchanged in the presence of subsidy τ , it can
be inferred that a policy subsidizing the expected return of the stock market and financed by
a lump-sum tax on workers does not impact the {Q̂t} process. Consequently, the dynamics
of {Q̂t} are identical to those in an economy without this policy.
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Proof of Proposition 6. A fiscal transfer Lt > 0 from capitalists to hand-to-mouth workers
increases the aggregate dividends in the financial market. This results in a reduced need for
expected future capital gains, which translates into higher asset prices Q̂t at the ZLB. The
expected stock market return imt under these circumstances is given by:

imt =

AtNW,t −

=CW,t−
Lt
p̄︷ ︸︸ ︷

wt

p̄
NW,t

AtQt

+
d(��̄pAtQt)

��̄pAtQt

1

dt
= ρ+

Lt

p̄AtQt︸ ︷︷ ︸
>0

+
d(��̄pAtQt)

��̄pAtQt

1

dt

= ρ+ φ+
d(��̄pAtQt)

��̄pAtQt

1

dt
,

where the last equality follows from Lt being equal to φp̄AtQt in equilibrium.
To derive equation (25), we start from the capitalists’ optimization problem:

max
Ct,θt

E0

∫ ∞

0

e−ρt logCtdt

s.t. dat = (at(it + θt(i
m
t − it))− p̄Ct − Lt)dt+ θtat(σ̄ + σq

t )dZt ,

which features equilibrium conditions for Ct and θt identical to those described in equations
(5) and (6), together with σq

t = 0. As a result, Ct = ρp̄AtQt and imt = it+(σ̄+σq
t )

2 follows.
In an equilibrium where σq

t = 0 and it is constrained by the ZLB, the wealth process for
capitalists is given by:

dCt

Ct

=
dat
at

= (imt − ρ− φ) dt+ σ̄tdZt = (σ̄2 − φ− ρ)dt+ σ̄tdZt ,

from which we derive

d lnCt =

(
σ̄2

2
− φ− ρ

)
dt+ σ̄tdZt .

Subtracting the process for Cn
t in equation (II.16) yields the dynamic IS equation in (25).
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A Flexible Price Equilibrium

This section derives the flexible price equilibrium of the model, establishing it as the bench-

mark for economic and welfare analysis. We begin by revisiting the Fisherian identity, in-

corporating an inflation premium linked to wealth volatility into the relation. Lemma A.1

summarizes the modified identity.

Lemma A.1 (Inflation Premium) The real interest rate of the economy is given by:

rt = it − πt +

Inflation Premium︷ ︸︸ ︷
σp
t (σ + σp

t + σq
t )︸ ︷︷ ︸

Wealth volatility

. (A.1)

Proof of Lemma A.1. The financial wealth of capitalists is equal to the value of the

stock market index, at = ptAtQt, which follows from bonds being in zero net supply and

capitalists being symmetric and identical in equilibrium. We start by stating capitalist’s

nominal state-price density ξNt , which satisfies the following condition:

dξNt
ξNt

= −itdt− (σ + σq
t )dZt ,

and the real state price density ξrt , which is given by

ξrt = e−ρt 1

Ct

= ptξ
N
t . (A.2)

Utilizing equations (2) and (3), and considering that θt = 1 in equilibrium, the application

of Ito’s Lemma to equation (A.2) yields the following expression:

dξrt
ξrt

=

πt − it − σp
t (σ + σq

t + σp
t )︸ ︷︷ ︸

=−rt

 dt− (σ + σq
t )dZt ,

resulting in the modified Fisherian identity detailed in equation (A.1).
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Definition A.1 Let χ−1 ≡ 1− φ

χ0 + φ
represent the effective labor supply elasticity of work-

ers, conditional on their optimal consumption decision.

Proposition A.1 summarizes the dynamics of the real wage, asset price, natural interest

rate rnt , and the consumption process of capitalists within the flexible price equilibrium.

Proposition A.1 (Flexible Price Equilibrium) In the flexible price equilibrium,1 the fol-

lowing results are obtained:

1. The real wage is proportional to aggregate technology At, and given by

wn
t

pt
=

(ϵ− 1)(1− α)

ϵ
At .

2. The equilibrium asset price Qn
t is constant and given by

Qn
t =

1

ρ

(
(ϵ− 1)(1− α)

ϵ

) 1
χ
(
1− (ϵ− 1)(1− α)

ϵ

)
, and µq,n

t = σq,n
t = 0 .

3. The natural interest rate rnt is constant and defined as rnt ≡ rn = ρ + g − σ2. The

consumption of capitalists evolves according to the following equation:

dCn
t

Cn
t

= gdt+ σdZt = (rn − ρ+ σ2)︸ ︷︷ ︸
≡µc,n

t

dt+ σ︸︷︷︸
≡σc.n

t

dZt .

Proof of Proposition A.1. Starting with the optimization problem of intermediate firms,

the presence of an externality à la Baxter and King (1991) imposes extra steps on the

aggregation process of individual decisions across firms. Utilizing the production function,

the employed labor of firm i can be expressed as

nt(i) =

(
yt(i)

AtEt

) 1
1−α

,

1Variables in the flexible price (i.e., natural) equilibrium are denoted with the superscript n.
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where we defined Et ≡ (NW,t)
α. At any given time t, each intermediate firm i determines

the optimal price pt(i) to maximize its profits,

max
pt(i)

pt(i)

(
pt(i)

pt

)−ϵ

yt − wt

(
yt

AtEt

) 1
1−α
(
pt(i)

pt

)− ϵ
1−α

, (A.3)

taking the aggregate demand of the economy yt as given. In the flexible price equilibrium,

all firms charge the same price, pt(i) = pt for all i, and hire the same amount of labor,

nt(i) = Nw,t for all i. From the first-order condition (A.3), we obtain the real wage as

wn
t

pt
=

ϵ− 1

ϵ
(1− α)y

−α
1−α

t (At)
1

1−α NW,t

α
1−α =

ϵ− 1

ϵ
(1− α)y

−α
1−α

t (At)
1

1−α

(
wn

t

pnt

) α
χ(1−α)

A
−α

χ(1−α)

t ,

which can be further simplified to the following expression:

wn
t

pt
=

(
ϵ− 1

ϵ
(1− α)

) χ(1−α)
χ(1−α)−α

y
−χα

χ(1−α)−α

t A
χ−α

χ(1−α)−α

t .

Aggregate production in the flexible price equilibrium is linear, yt = AtNW,t. We obtain:

yt = At

(
ϵ− 1

ϵ
(1− α)

) (1−α)
χ(1−α)−α

y
−α

χ(1−α)−α

t A

1−α
χ

χ(1−α)−α

t A
− 1

χ

t .

The previous expression allows us to write the natural level of output ynt and the natural

real wage wn
t

pt
as

ynt =

(
ϵ− 1

ϵ
(1− α)

) 1
χ

At and
wn

t

pt
=

ϵ− 1

ϵ
(1− α)At ,

from which we obtain

Nn
W,t =

(
ϵ− 1

ϵ
(1− α)

) 1
χ

and Cn
W,t =

(
ϵ− 1

ϵ
(1− α)

)1+ 1
χ

At . (A.4)

In equilibrium, the combined consumption of capitalists and workers equates to the total

3
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final output, as detailed in equation (7). Following from equation (A.4), we obtain:

ρAtQ
n
t +

(
ϵ− 1

ϵ
(1− α)

)1+ 1
χ

At =

(
ϵ− 1

ϵ
(1− α)

) 1
χ

At .

where we defined Qn
t to be the natural stock price. Therefore, we obtain an expression for

Qn
t as

Qn
t =

1

ρ

(
ϵ− 1

ϵ
(1− α)

) 1
χ
(
1− (ϵ− 1)(1− α)

ϵ

)
,

and Cn
t = ρAtQ

n
t . Since Qn

t is constant in equilibrium, its process in a flexible price econ-

omy exhibits neither drift nor volatility, which implies µq,n
t = σq,n

t = 0. To determine the

natural interest rate rnt , we start from the capital gain component outlined in equation (8).

The application of Ito’s lemma yields:

Et
d (ptAtQt)

ptAtQt

1

dt
= πt + µq

t︸︷︷︸
=0

+g + σq
t︸︷︷︸

=0

σp
t + σ

σp
t + σq

t︸︷︷︸
=0

 .

Given a constant dividend yield equal to ρ, applying expectations to both sides of equa-

tion (8) and combining this expression with the equilibrium condition presented in equa-

tion (6) results in:

imt = ρ+ πt + g + σσp
t = it + (σ + σp

t )
2 .

Inserting the previous expression into the Fisherian identity in equation (A.1), we express

the natural rate of interest rnt as

rnt = it − πt + σp
t

σ + σq,n
t︸︷︷︸
=0

+σp
t

 = ρ+ g − σ2 , (A.5)

which is a function of structural parameters, including σ, thereby proving the final point of
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Proposition A.1. As the consumption of capitalists Cn
t is directly proportional to the level

of technology At, it follows that:

dCn
t

Cn
t

= gdt+ σdZt =
(
rnt − ρ+ σ2

)
dt+ σdZt , (A.6)

where the last equality is derived using equation equation (A.5).

B Co-movements between gap variables

The following Lemma B.2 demonstrates that Assumption B.1 serves as a sufficient condi-

tion for the model to exhibit the empirical regularities of positive co-movements between

asset prices and various business cycle variables, such as real wage and consumption (of

capitalists and workers), as observed in data.2

Assumption B.1 (Labor Supply Elasticity) The effective labor supply elasticity of work-

ers satisfies: χ−1 >
(ϵ−1)(1−α)

ϵ

1− (ϵ−1)(1−α)
ϵ

.

Lemma B.2 (Positive comovement) Under Assumption B.1, the consumption gaps of cap-

italists Ct and workers CW,t, employment NW,t, and real wage wt

pt
exhibit joint positive

comovement. This relationship is approximated up to a first-order as follows:

Q̂t = Ĉt =

(
χ−1 −

(ϵ−1)(1−α)
ϵ

1− (ϵ−1)(1−α)
ϵ

)
︸ ︷︷ ︸

>0

ŵt

pt
=

1

1 + χ−1

(
χ−1 −

(ϵ−1)(1−α)
ϵ

1− (ϵ−1)(1−α)
ϵ

)
ĈW,t ,

and is related to the output gap of the economy by:

Ŷt = ζQ̂t , where ζ ≡ χ−1

(
χ−1 −

(ϵ−1)(1−α)
ϵ

1− (ϵ−1)(1−α)
ϵ

)−1

> 0 . (B.1)

2See Table I.1 in the Appendix for a plausible calibration of the model parameters.
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Proof of Lemma B.2. From Ct = ρAtQt, we obtain Ĉt = Q̂t. We start from the flexible

price economy’s good market equilibrium condition, which can be written as

At

(
wn

t

pnt

) 1
χ 1

A
1
χ

t

= ρAtQ
n
t +

(
wn

t

pnt

)1+ 1
χ 1

A
1
χ

t

, (B.2)

where wn
t

pnt
is the real wage in the flexible price economy. We subtract equation (B.2) from

the analogous good market condition in the sticky price economy, and divide by ynt ≡

A
1− 1

χ

t (
wn

t

pnt
)

1
χ , which yields the following result:

(
wt

pt

) 1
χ

−
(
wn

t

pnt

) 1
χ

(
wn

t

pnt

) 1
χ

︸ ︷︷ ︸
= 1

χ
ŵt
pt

=
Cn

t

A
1− 1

χ

t

(
wn

t

pnt

) 1
χ︸ ︷︷ ︸

=1− (ϵ−1)(1−α)
ϵ

Ĉt +

(
wt

pt

)1+ 1
χ

−
(
wn

t

pnt

)1+ 1
χ

At

(
wn

t

pnt

) 1
χ

︸ ︷︷ ︸
=

(ϵ−1)(1−α)
ϵ (1+ 1

χ)
ŵt
pt

,

which can be written as

1

χ

ŵt

pt
=

(
1− (ϵ− 1)(1− α)

ϵ

)
Ĉt +

(ϵ− 1)(1− α)

ϵ

(
1 +

1

χ

)
ŵt

pt︸ ︷︷ ︸
=ĈW,t

,

which, together with Ĉt = Q̂t, leads to

Q̂t =

χ−1 −

(ϵ− 1)(1− α)

ϵ

1− (ϵ− 1)(1− α)

ϵ


︸ ︷︷ ︸

>0

ŵt

pt
=

1

1 + χ−1

χ−1 −

(ϵ− 1)(1− α)

ϵ

1− (ϵ− 1)(1− α)

ϵ


︸ ︷︷ ︸

>0

ĈW,t .

Finally, equation (B.1) follows by combining the previous expression with the market clear-

ing condition Yt = Ct + CW,t, from which we obtain

Ŷt =

(
1− (ϵ− 1)(1− α)

ϵ

)
Q̂t +

(ϵ− 1)(1− α)

ϵ
ĈW,t = ζQ̂t .
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C Deriving the IS equation (10)

Proof of Proposition 1. With equations (2) with θt = 1 and (6), capitalists’ consumption

Ct follows
dCt

Ct

=
(
it + (σ + σq

t )
2 − ρ

)
dt+ (σt + σq

t )dZt. (C.1)

where we use imt = it + (σ + σq
t )

2. Thus, with equations (A.6), we obtain

dQ̂t = dĈt =

it −

(
rnt − (σ + σq

t )
2

2
+

σ2

2

)
︸ ︷︷ ︸

≡rTt

 dt+ σq
t dZt

=
(
it − rTt

)
dt+ σq

t dZt.

(C.2)

Since we have risk-premium levels rpt = (σt + σq
t )

2 in the sticky price economy and rpn
t =

σ2 in the flexible price economy, we can express our risk-adjusted natural rate rTt as

rTt = rnt − 1

2
(rpt − rpn

t ) = rnt − 1

2
r̂pt, (C.3)

D Stochastic Stabilization in Section 4.3

Proof of Proposition 3. We derive the equilibrium when there is a Poisson (with ν

as its parameter) probability that the economy returns to full stabilization after T̂HOFG.

ν ∈ [0,+∞), where ν = 0 means no return to stabilization (as in Proposition 2). Central

7
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bank solves:

min
σq,L
1 ,σq,L

2 ,T̂HOFG
E0

∫ T̂HOFG

0
e−ρtQ̂2

tdt+ E0

∫ ∞

T̂HOFG
e−ρt · e−ν(t−T̂HOFG) · Q̂2

tdt,

s.t.



dQ̂t = −(rT1 (σ
q,L
1︸ ︷︷ ︸

<0

))dt+ (σq,L
1 )dZt, for t < T,

dQ̂t = −(rT2 (σ
q,L
2︸ ︷︷ ︸

>0

))dt+ (σq,L
2 )dZt, for T ≤ t < T̂HOFG,

dQ̂t = 0, for t ≥ T̂HOFG,

,

with Q̂0 = rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T ).

(D.1)

where the discounting becomes ρ + ν > ρ after T̂HOFG, which is itself endogenous. The

loss function in (D.1) can be written then as

min
σq,L
1 ,σq,L

2 ,T̂HOFG
E0

∫ T̂HOFG

0

e−ρtQ̂2
tdt+ E0

∫ ∞

T̂HOFG
e−ρt · e−ν(t−T̂HOFG) · Q̂2

tdt

= min
T̂ ,σq,L

1 ,σq,L
2

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)2dt︸ ︷︷ ︸

From deterministic fluctuation

+
(
σq,L
1

)2 [1− e−ρT

ρ2
− Te−ρT̂HOFG

ρ

(
ν

ρ+ ν

)]
︸ ︷︷ ︸

From stochastic fluctuation

+
(
σq,L
2

)2 [(e−ρT − e−ρT̂HOFG

ρ2

)
−
(
T̂HOFG − T

)
e−ρT̂HOFG ν

ρ(ρ+ ν)

]
︸ ︷︷ ︸

From stochastic fluctuation
(D.2)

where Q̂d(t; T̂
HOFG) is defined in (II.2): we observe new terms appear compared with the

baseline case of ν = 0. Now, notice that if the central bank is allowed to maximize with

respect to ν, then we obtain a corner solution with ν → +∞. This means that the most effi-

cient would be to immediately return to perfect stabilization, with a very small probability

of no adjustment.

The central bank has control over σq,L
1 , σq,L

2 , and T̂HOFG, in addition to its conventional

8
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monetary policy tool {it}. We derive the first-order condition for T̂HOFG as follows:

2 · rT2 (σ
q,L
1 )︸ ︷︷ ︸

>0

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt+

(
σq,L
1

)2
e−ρT̂HOFG

(
ν

ρ+ ν

)
T︸ ︷︷ ︸

>0

+
(
σq,L
2

)2 [e−ρT̂HOFG

ρ+ ν
+
(
T̂HOFG − T

)
e−ρT̂HOFG

(
ν

ρ+ ν

)]
︸ ︷︷ ︸

>0

= 0

(D.3)

from which we obtain

∫ ∞

0

e−ρtQ̂d(t; T̂
HOFG)dt =

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG∥σq,L

1 < 0, σq,L
2 < 0)dt < 0 . (D.4)

The first-order condition for T̂HOFG indicates that, at the optimum, the central bank reduces

the value of T̂HOFG compared to T̂ TFG (traditional forward guidance). This is because when

the central bank utilizes traditional forward guidance and achieves perfect stabilization for

t ≥ T̂ TFG, the expression above becomes

∫ T̂ TFG

0

e−ρtQ̂d(t; T̂∥σq,L
1 = σq,n

1 = 0, σq,L
2 = σq,n

2 = 0)dt = 0 , (D.5)

which is derived by plugging σq,L
1 = 0 and σq,L

2 = 0 into equation (D.3).

Given that at the optimum, σq,L
1 < 0 and σq,L

2 < 0 (which we will demonstrate),

Q̂d(t; T̂
HOFG∥σq,L

1 = 0, σq,L
2 = 0) < Q̂d(t; T̂

HOFG∥σq,L
1 < 0, σq,L

2 < 0) .

Therefore, we deduce from equation (D.1) that at the optimum, T̂HOFG < T̂ TFG, as evi-

denced by comparing (D.4) with (D.5).

To characterize the optimal values of σq,L
1 and σq,L

2 , a variational argument is required.

This is because σq,L
1 and σq,L

2 influence the levels of rT1 (σ
q,L
1 ), rT2 (σ

q,L
2 ), and Q̂d(t; T̂

HOFG).

9
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Specifically, we can derive:

∂rT1 (σ
q,L
1 )

∂σq,L
1

= −
(
σ̄ + σq,L

1

)
< 0,

∂rT2 (σ
q,L
2 )

∂σq,L
2

= −
(
σ + σq,L

2

)
< 0 .

Determining σq,L
1 An increase in σq,L

1 leads to a decrease in rT1 (σ
q,L
1 ), which alters the

trajectory of Q̂d(t; T̂
HOFG). This change is illustrated in Figure D.1, as depicted by the

transition from the thick blue line to the dashed red line.

t

Q̂d(t; T̂
HOFG)

0 A

B

T

rT2 (σ
q,L
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

r1(σ
q,L,New
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

T̂HOFG

Figure D.1: Variation along σq,L
1 . Increase to σq,L,New

1 > σq,L
1 .

Differentiating Q̂d(t; T̂
HOFG) =

∫ T̂HOFG

t

rTs ds with respect to σq,L
1 , we obtain:

∂Q̂d(t; T̂
HOFG)

∂σq,L
1

=

∫ T

t

−
(
σ̄ + σq,L

1

)
ds = −

(
σ̄ + σq,L

1

)
(T − t), ∀t ≤ T .

To find optimal σq,L
1 , we differentiate the objective function in (D.2) by σq,L

1 and obtain the

following condition:

(
σ̄ + σq,L

1

)∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =

(
σq,L
1

){1− e−ρT

ρ2
− e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

]
· T

}
.

(D.6)

10
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First, we obtain

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T − t)dt =

∫ t

0

e−ρsQ̂d(s; T̂
HOFG)ds · (T − t)

∣∣∣T
0︸ ︷︷ ︸

=0

+

∫ T

0

∫ t

0

e−ρsQ̂d(s; T̂
HOFG)ds︸ ︷︷ ︸

<0

dt < 0 ,

where
∫ t

0
e−ρsQ̂d(s; T̂

HOFG)ds < 0 for t ≤ T , as derived in equation (D.4). Also, as we

know

1− e−ρT

ρ2
− e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

]
T ≥ 1− e−ρT

ρ2
− e−ρT̂HOFG

ρ
T

=

∫ T

0

te−ρtdt︸ ︷︷ ︸
>0

+
T

ρ
e−ρT − T

ρ
e−ρT̂HOFG

︸ ︷︷ ︸
≥0

> 0,
(D.7)

from (D.6), we obtain that σq,L
1 < σq,n

1 = 0 at optimum.3

Determining σq,L
2 An increase in σq,L

2 leads to a decrease in rT2 (σ
q,L
2 ), which alters the

shape of Q̂d(t; T̂
HOFG). This effect is illustrated in Figure D.2 by the transition from the

thick blue line to the dashed red line. To further analyze this, we differentiate Q̂d(t; T̂
HOFG)

with respect to σq,L
2 and obtain:

∂Q̂d(t; T̂
HOFG)

∂σq,L
2

=


∫ T̂HOFG

T

−
(
σ + σq,L

2

)
ds = −

(
σ + σq,L

2

)
(T̂HOFG − T ) , t < T ,∫ T̂HOFG

t

−
(
σ + σq,L

2

)
ds = −

(
σ + σq,L

2

)
(T̂HOFG − t) , T ≤ t ≤ T̂HOFG .

3Note that in (D.6), due to the additional term

e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

]
· T,

σq,L
1 becomes more negative at optimum taking T̂HOFG and σq,L

2 as given, compared with our benchmark
case in which ν = 0.
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t

Q̂d(t)

0 A

B

T

rT2 (σ
q,L
2 )(T̂HOFG − T )

rT2 (σ
q,L,New
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ

q,L
2 )(T̂HOFG − T )

rT1 (σ
q,L
1 )T + rT2 (σ

q,L,New
2 )(T̂HOFG − T )

T̂HOFG

Figure D.2: Variation along σq,L
2 . Increase to σq,L,New

2 > σq,L
2 .

To find the optimal σq,L
2 , we differentiate the objective function in (D.2) by σq,L

2 and obtain

(
σ + σq,L

2

)∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − t)dt


= (σq,L

2 )

{
e−ρT − e−ρT̂

ρ2
− e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

](
T̂HOFG − T

)}
,

(D.8)

from which we can demonstrate that at the optimum, σq,L
2 < 0 must be satisfied, given that

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − t)dt

<

∫ T

0

e−ρtQ̂d(t; T̂
HOFG)(T̂HOFG − T )dt+

∫ T̂HOFG

T

e−ρt Q̂d(t; T̂
HOFG)︸ ︷︷ ︸

>0

(T̂HOFG − T )dt

= (T̂HOFG − T )

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt︸ ︷︷ ︸

<0

< 0 ,

where the final inequality is derived from equation (D.4), and

e−ρT − e−ρT̂

ρ2
− e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

](
T̂HOFG − T

)
≥ e−ρT − e−ρT̂

ρ2
− e−ρT̂HOFG

ρ

(
T̂HOFG − T

)
=

∫ T̂HOFG

T

e−ρt(t− T )dt > 0.

(D.9)
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Equation (D.8) proves that σq,L
2 < 0 at optimum.4 Therefore, we have proven that during

periods of high TFP volatility (i.e., t < T ) and low TFP volatility with forward guidance

(i.e., T ≤ t ≤ T̂HOFG), a central bank aims to target financial volatility levels below those in

a flexible price economy: σq,L
1 < σq,n

1 = 0 and σq,L
2 < σq,n

2 = 0. Such intervention reduces

the required risk premium and raises the asset price level Q̂t, thereby increasing output.

Proof of Corollary 1. Note that ν = ∞ implies that full stabilization immediately follows

after T̂HOFG when the zero policy rate regime is over. It corresponds to the traditional for-

ward guidance case of Section 4.1, so when ν = ∞, the only feasible
(
σq,L
1 , σq,L

2 , T̂HOFG
)

would be (0, 0, T̂ ) in this case. Since for every ν,
(
σq,L
1 , σq,L

2 , T̂HOFG
)

= (0, 0, T̂ TFG) is

feasible, we obtain

lim
ν→+∞−

LQ,∗
(
{Q̂t}t≥0, ν

)
≤ LQ,∗

(
{Q̂t}t≥0, ν = ∞

)
.

To obtain the strict inequality between the two sides, we compare the first-order conditions

for T̂HOFG when ν = ∞ and ν → ∞. When ν = ∞, the optimality is given by (15), which

can be written as

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt = 0 , (D.10)

where Q̂d is defined in (II.2). In contrast, when ν → ∞, the first-order condition of T̂HOFG

in (D.3) becomes

2 · rT2 (σ
q,L
1 )︸ ︷︷ ︸

>0

∫ T̂HOFG

0

e−ρtQ̂d(t; T̂
HOFG)dt+

(
σq,L
1

)2
e−ρT̂HOFG

T︸ ︷︷ ︸
>0

+
(
σq,L
2

)2 [(
T̂HOFG − T

)
e−ρT̂HOFG

]
︸ ︷︷ ︸

>0

= 0

4Note that in (D.8), due to the additional term

e−ρT̂HOFG

ρ

[
1− ρ

ρ+ ν

]
· (T̂HOFG − T ),

σq,L
2 becomes more negative at optimum taking T̂HOFG and σq,L

1 as given, compared with our benchmark
case in which ν = 0.

13
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which is different from the above (D.10). Therefore, we obtain

lim
ν→+∞−

LQ,∗
(
{Q̂t}t≥0, ν

)
< LQ,∗

(
{Q̂t}t≥0, ν = ∞

)
.

E Stochastic T in Section 3 and Section 4.1

Here we prove the result of Section 3 and Section 4.1 that σq
t = σq,n

t ≡ 0 still holds even

when the mandatory ZLB duration T is stochastic. First, we do not consider the traditional

forward guidance policy.

For illustration purposes, we assume that T follows a discrete distribution: T1, T2, and

T3 with probabilities p1, p2, and p3 with p1+p2+p3 = 1. The same logic can be applied to

more general cases where T has a continuous distribution. We keep assuming that after T

is realized, i.e., the ZLB ends, the monetary authority achieves perfect stabilization based

on a rule in (11). We similarly rely on the backward induction. First, we know certainly

that after T3, the economy is fully stabilized, implying σq
t = 0 for t ≥ T3. For t ∈ [T2, T3),

1. If the ZLB already ended at T1 or T2, then σq
t = 0.

2. The ZLB has not ended: then it is certain that T = T3 and Q̂t = 0 for t ≥ T3, which

means that σq
t = 0 for t ∈ (T2, T3). In that case, Q̂T2 = r(T3−T2) < 0 is determined.

For t ∈ [T1, T2), we know that

1. If the ZLB already ended at T1, then σq
t = 0.

2. The ZLB has not ended: then it is for sure that T = T2 or T = T3. At t = T2 − dt

for small dt > 0, Q̂T2−dt is determined by a conditional probability-weighted linear

combination of 0 (when T = T2) and r(T3 − T2) (when T = T3), so that

Q̂T2−dt = rdt+
p2

1− p1
· 0 + p3

1− p1
· r(T3 − T2).

14
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Since Q̂T2−dt is determined, σq
t = 0 for t ∈ [T1, T2).

For t < T1, we know that

1. T = T1 or T2 or T3. At t = T1 − dt for small dt > 0, Q̂T1−dt is determined by a

conditional probability-weighted linear combination of 0 (when T = T1), r(T2−T1)

(when T = T2) and r(T3 − T1) (when T = T3), so that

Q̂T1−dt = rdt+ p1 · 0 + p2 · r(T2 − T1) + p3 · r(T3 − T1).

Since Q̂T1−dt is determined, σq
t = 0 for t < T1.

Therefore, σq
t = σq,n

t = 0 for all t even if ZLB duration T is stochastic.

Traditional forward guidance When T is stochastic, the zero rate duration under tradi-

tional forward guidance, i.e., T̂ in Section 4.1, becomes stochastic as well and dependent

on T . The above logic can be applied in this case, and we can similarly prove that if the

monetary authority commits to perfectly stabilizing the economy after any realized T̂ , then

σq
t = σq,n

t = 0 for t ≤ T̂ .
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