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What we do

[ Standard non-linear New Keynesian model ]

Ja price of risk coming from

A

Aggregate volatility 1 == precautionary saving T = aggregate demand |

Endogenous Endogenous Endogenous

Takeaway (Self-fulfilling volatility)

In macroeconomic models with nominal rigidities, Jglobal solution where:

@ Taylor rules (targeting inflation and output) — Jself-fulfilling apparition of aggregate
volatility

o Only direct volatility (e.g., risk premium) targeting can restore determinacy
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A textbook New Keynesian model with rigid price
The representative household’s problem (given Bp):
1+

]E()/ efpt |Og Ct— 1:» dt s.t. Bt = I'tBt—ﬁCt—FWtLt—FDt

t = max
{Bt}t>01{ctvl—t}t20
where
@ B;: nominal bond holding, D; includes fiscal transfer + profits

o Rigid price: p; = p for Vt (i.e., purely demand-determined)
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A textbook New Keynesian model with rigid price
The representative household’s problem (given Bp):
1+

]E()/ efpt |Og Ct— 1:» dt s.t. Bt = I'tBt—ﬁCt—FWtLt—FDt

t = max
{Bt}t>01{ctvl—t}t20
where
@ B;: nominal bond holding, D; includes fiscal transfer + profits

o Rigid price: p; = p for Vt (i.e., purely demand-determined)

1. A log-linearized Euler equation (textboy) Monetary policy
dC .
Et <Ttt> :( It —p)dt

> Forward-looking M process (monetary policy i; stabilizes C;)

[

Endogenous
drift

Caveat: Taylor rules with the Taylor principle is enough 5/



A textbook New Keynesian model with rigid price
The representative household’s problem (given Bp):

1
7

9]
]E()/ efpt |Og Ct— 1:» dt s.t. Bt = I'tBt—ﬁCt—FWtLt—FDt
0

Ft— 1
Ui

= max
{Bt}t>0n{ctvl-t}t20

where

@ B;: nominal bond holding, Dy includes fisc

ransfer + profits

Endogenous
volatility

o Rigid price: p; = p for Vt (i.e., purely’"demand-determined)

2. A non-linear Euleir/eéation (in contrast to IogW)
dC . d¢
]Et <T:> = (It —p)dt+ Vart (?:)

———
N Precautionary premium

Endog¢nous
drift

> Aggregate volatility] = precautionary saving! = recession (the drift?)

Problem: both variance and drift are endogenous, is Taylor. rule enough?
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A textbook New Keynesian model with rigid price

Intra-temporal optimality:

Transversality condition:

1)
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A textbook New Keynesian model with rigid price
Firm i: face monopolistic competition 3 la Dixit-Stiglitz with Y/ = AL} and
dA:

Fundamental risk

@ dZ;: aggregate Brownian motion (i.e., only risk source)

@ (g,0) are exogenous

Flexible price economy as benchmark: the ‘natural’ output Y’ follows

d\/t,7 _ n 2
Yo —<r p+0>dt+c7dZt
dA
= gdt +0dZ, = =%
Ay

where r” = p + g — ¢ is the ‘natural’ rate of interest
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Non-linear IS equation

~ Y; Y/ 2 Y,
Ye=Int, (a)zdt:Vart (d—ﬁ> (O’—I— af) dt = Var; (Q>
Yi A Y{ A Yi

4 Benchmark volatility / Actual volatility
Exogenous Endogenous
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Non-linear IS equation

. Y, dyy 2 dv,
Ve=lnot (c)%dt=Var, (—f> (c+ o2) dt:Vart(7t>
AN 2 K Ye

4 Benchmark volatility / Actual volatility
Exogenous Endogenous

1. A log-linearized IS equation (textbook one)
d\’\/t: (it—rn) dt+U?dZt (2)

which becomes

Et (dyt> = (It — r") dt,

or
Vt = IEt (Y/tert) — (It — I’n) dt
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Non-linear IS equation

~ Y, dyy 2
Yt:In—Z, (g)zdt:Vart (7[5), (U+ 0’?) dt = Var;
Y{ 2 Y{ A
4 Benchmark volatility / Actual volatility
Exogenous Endogenous

2. A non-linear IS equation (in contrast to textbook linearized one)

New terms

1
dYt: iy — I’n7*<l7'+ (7? )2+ (7_2 dt + 0'1_? dZt

1
2 K 2
EI’[T

®3)

What is ] 7: a risk-adjusted natural rate of interest (c51t==r] |
t ) t t

1 1
rtT =r"— 5 (L+ af)2 +§U2

Precautionary
premium
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Non-linear IS equation

Big Question

Taylor rule ir = r” + ¢, Y¢ for ¢, > 0 = perfect stabilization?

Answer (Up to a First Order)
¢, > 0 (Taylor principle) guarantees

o Unique equilibrium with perfect stabilization, i.e., Y; = 0 with o; =0 for Vt

Why? (recap): without the volatility feedback:

dY; = (i — r") dt + 05 dZ; = Yidt + 0fdZ;
Tagljlgcrierrule
Then,
E: (dV:) = ¢y Ye.
If ¥; #0,

lim E; (Ys) — +oo

S—00

o Foundation of modern central banking
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Now, with the non-linear effects in (3)
Proposition (Fundamental Indeterminacy)

For any ¢, > 0, Jan equilibrium supporting a volatility o5 > 0 satisfying:
Q E; (th) = 0 for V't (i.e., local martingale)

Q@ o 22505 =0and ¥y =225 0 (i.e., almost sure stabilization)

@ 0" -possibility divergence or non-uniform integrability given by

Eg (sup((f—l-af)Z) = 0
t>0
with

. 5\2
KT, Sup (Bo (0 +0° 1 (g sy > O

Aggregate volatility] possible through the intertemporal coordination of agents

o Called a "martingale equilibrium” - non-stationary equilibrium

o Satisfies the transversality condition (1)
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Key: a path-dependent intertemporal aggregate demand strategy

Average path Stabilized
1 A
1 Ye <0«

8 i

Sunspot

Agents;
e
®" '
1
1
— L]
Agentsy i 2) :
2 1
3 7 -
1
1
+ . I\t
1
/. gents3 / () [} (1
o oy 1 I o3
“yés) «— y3(7) y?Eﬁ) - 5 y3(5) Iyé“) <> y§3/ 91(12:?*‘7?51)
Divergence Attraction

Stabilized as attractor: o7 ELLEN 05, =0and Y; 2240




Key: a path-dependent intertemporal aggregate demand strategy

Average path Stabilized
1 A
1 Ye <0«

8 i

Sunspot

Agents;
e
®" '
1
1
— L]
Agentsy i 2) :
2 1
3 7 -
1
1
+ . I\t
1
/. gents3 / () [} (1
o oy 1 I o3
“yés) «— y3(7) y?Eﬁ) - 5 y3(5) Iyé“) <> y§3/ 91(12:?*‘7?51)
Divergence Attraction

But divergence with 0T -probability: Eq (suptzo (0 + Ut5)2) = o0
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Simulation results - martingale equilibrium

Excess volatility (of) when ¢, =0.11 ¢ =0.009 1 =0 =0
Initial excess volatility o = 0.18 , Number of sample paths =50
16~
)

4
il

"N/\‘«w JW/

I h Na

W W N [

e \ M W “W. "V",
4 pY

(a) With Taylor coefficient ¢, = 0.11

Excess volatility (o7) when ¢, =0.33 0 =0.009 1 =06 =0
Initial excess volatility o =0.18 , Number of sample paths =50
12

10 12 14 16 18 20
Time ()

(b) With Taylor coefficient ¢, = 0.33

Figure: Martingale equilibrium: with ¢, = 0.11 (Figure 1a) and ¢, = 0.33 (Figure 1b)
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A new monetary policy with volatility targeting

New monetary policy:

. 1 5
ir=r"+¢,Y: — | (c+0o)? = o
t Py Ye 5 | (o +o7)

=pp, =pp”
A

Aggregate volatility targeting?

@ Restores a determinacy and stabilization, but what does it mean?
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A new monetary policy with volatility targeting

Leadi Ito term Ito term
eading to: / /
r 7 7
H 1 n n 1 n \/
it + PPt = SPP; =| r"+ep’— opp + Y
N’
\ 1l 1l Business cycle
|| ” targeting
o+ ]Er(djjc;g Ye) 0+ ]Et(dlog Ye)

@ A % change of (i.e., return on) aggregate output (i.e., demand), not just the policy
rate, follows Taylor rules

[ Key issue: monetary policy tool available # objective
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Motivation

Big Question

Forward guidance — How does it work, exactly?

o First-order effects (level): “Interest rates will stay low” — intertemporal substitution
channel (aggregate demand?)

@ Second-order effects (volatility): reduce uncertainty, avoid worst-case scenarios, “what-
ever it takes” — precautionary savings channel (aggregate demandT)

This paper: focus on central bank’s strategic uncertainty management and coor-
dination. Possible for central banks to pick an equilibrium where:

@ During the ZLB (now): reduce aggregate volatility. Then aggregate demand?

@ But central banks now create uncertainty about where the economy ends up after the
ZLB (future): commit less stabilization after the ZLB

o Welfare-enhancing overall
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Again, the non-linear IS equation in a standard New Keynesian model

Fundamental volatility

dYe=|ir—(r"— o dt+ o7 dZ;

N |

= (ir — r, )dt + o5dZ;
t t

[ o5t — ppt — Vil

21/30



ZLB from fundamental volatility shock

Thought experiment: fundamental volatility o1: & on [0, T| (e.g., Werning (2012)) and
comes back to o with & > ¢

o F=r"(c) =p+g—0?>0: noZLB before, t <0, or after, t > T

(]
I~
Il

@) =p+g—02<0: ZLBbindsfor 0 <t < T

Assume: perfect stabilization (i.e., Y; = 0) is achievable outside ZLB, i.e.,

| .
lt:r—|—4>th—§ Ep_t—pp? . with ¢, >0

Variance gap

Result: perfect stabilization of variance gap (i.e., excess uncertainty) inside the ZLB

@ Recursive argument: full stabilization at T implies Y =0 — 05 _4; = 0, and keeps
going on (so pp; = pp? = 72 for Vt)
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ZLB path (full stabilization after T)

Yt pP:
ppf = (0)

pp§ = ()2

No guidance

Figure: ZLB dynamics (Benchmark)
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Traditional forward guidance (keep i = 0 until TTF¢ > T)

Yt, PPt
ppf = (2)2

ppd = (0)?

T
!
|
|
|
|
|
|
|

rT+R(TTFG _7)

r T
~ ¢
<0

Yt

FTFG t

No guidance

Traditional forward guidance

Figure: ZLB dynamics with forward guidance until 7TF6¢ > T
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Alternative forward guidance policies

Big Question

Can we do even better than the traditional forward guidance?

What if we reduce aggregate uncertainty via 07 < 0?7

o Then pp; = (('T—i—tfts)z < pp?, raising aggregate demand and Y;

But how?

o Nominal rigidities — demand-determined production

Policy challenge: the central bank must convince households to “coordinate” on this
particular equilibrium — higher-order forward guidance

o Give up perfect stabilization in the future (no stabilization at all)

Imagine the central bank pegs the policy rate at iy = 7 after zero rate periods
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Central bank picks
Yt PPt

ppf = (0)?

bp1 = (¢ 03)2

ppf = (0)?

o] (o3t (FHOFG _ )
] (0)(FTFG 1)

7"-HOFG

and {07 < 0},_ jHorc

pp3 = ppj = (2)?

%‘ pp2 = (€ +05' Ly

|
:
n

s

U R

e Pathy (Y¢)

@D T+e] (@3 (THOFS — 1) ¢

i (0)T+r) (0)(FTFG - 1)

(0T
——
<0

At optimum, o7’ L<o=

Sn

L _ s,
<0=o0;

t?f

e Pathy (V¢)

No guidance

Traditional forward guidance

", and THOFG & £TFG
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Optimal policy

Proposition (Optimal forward guidance policy)

Optimal higher-order forward guidance (HOFG) always results in an equal or lower expected
quadratic loss than the traditional guidance policy

Proof.

With (o't, o5k, THOFG) — (0,0, 7TFC), solutions coincide O

Remarks:

o Alternative higher-order forward guidance policy implementations are possible

@ This paper shows HOFG dominates TFG in a simple setting
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Optimal policy: stochastic stabilization

Extension: still higher-order forward guidance policy, now with stochastic stabi-
lization after THOFG_ Return to stabilization with vdt probability after THOFG

o Central bank commits to stabilizing the economy after THOFG \ith some probability.
Expected stabilization after 1/v quarters

@ v = 0: the above higher-order forward guidance

@ v = co: the traditional forward guidance policy

Big discontinuity:
lim ]LY’* ({Vt}tEOvV> < ILY’* ({Vt}tzo,v = OO)

V—>4oo~

Traditional forward guidance

@ Slight probability that stabilization might not happen — HOFG possible
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Policy implication
Real World Example (Covid-19 and the Federal Reserve)

Flexible Average Inflation Targeting (FAIT) (2020)
o Commitment to delaying stabilization — by allowing inflation to “moderately” over-
shoot its target after periods of persistent undershooting at the ZLB

o “Moderate” overshooting of the business cycle now is allowed: nudging agents toward
a favorable equilibrium with lower volatility

HOFG equilibrium — can be supported by fiscal policy as a unique equilibrium
@ Zero transfer along the equilibrium path (out-of-equilibrium threat)
@ Draghi's “whatever it takes” speech — lower periphery yields without actual

expenditures, coordinating agents to an equilibrium with lower risk premium
(Acharya et al., 2019)

Actual paper: based on a Two-Agent New Keynesian (TANK) model with capitalists and
workers to illustrate these aspects
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Thank you very much!

(Appendix)
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Potential stationary equilibria?
Conjecture: Ornstein-Uhlenbeck process with endogenous volatility {07}

New terms

1 1
dVe=|ie— | r"—S(0+ U§)2+§a2 dt + of dZ;

= 0 - 1z 7Yt dt+(7?dzt

>
20
@ J/ as an approximate average of Y

@ ( as a speed of mean reversion

o iy = r"+¢,Y: (i.e, Taylor rule) stays the same
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Proposition (Fundamental Indeterminacy)
2
For9>0,y<2‘%ywmh;4750:
@ {07} process satisfying (4) is stable, and admits a unique stationary distribution: with

o — 0 and p < 0, the stationary distribution coincides with the “generalized gamma
distribution” GGD(a, d, p), given by

20+9,)° 2049,
N (R WEY

and p=2, (5)

where a is the scale parameter, d is the power-law shape parameter, p is the expo-
nential shape parameter.

@ For 0 >0 and p = 0, the g7 process is again non-stationary (degenerate distribution
at 03, = 0).

2 2

© The long-run expectations of the output gap Y; and excess variance (¢ + o)
are given by

— 0

2 v ] E s\2 _ 2| _ _
lim Bo [Ve] =, and  lim Eo [(c+0f) a]_ 2, .

t—oo
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Simulation results - Ornstein-Uhlenbeck equilibrium
With 6 > 0, 51 < 0

Excess volatility () when ¢, =0.11 ¢ =0.009 pp =-0.16 =0.1 Premium ((o + 7)?) when ¢, =0.11 ¢ =0.009 p =-0.16 =0.1
Tnitial excess volatility o§ =0, Number of sample paths =50 Initial excess volatility o =0 , Number of sample paths =50
14 2
|
il
12 - ,A A\ }I

i

10 1
Time (1)

(a) Endogenous volatility o7 (b) Precautionary premium (o + 0% )?

Figure: Ornstein-Uhlenbeck equilibrium: endogenous volatility {7} (Figure 4a) and the precau-
tionary premium{(c + 0£)?} (Figure 4b)

o Even with g§ = 0 (no initial volatility) = stationary {07} process
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Simulation resglts - Ornstein-Uhlenbeck equilibrium
With 0 < jt < ~—

2¢y
Excess volatility (of) when ¢, =0.11 ¢ =0.009  =3.6818¢-05 6 =0.1 Premium (0 + 07)2) when ¢, =0.11 5 =0.009  =3.6818¢-05 0 =0.1
. oeInitial volatility oj =0 , Number of sample paths =50 L 1oeInitial volatility of =0 , Number of sample paths =50
9 m m m 9
| ) —————————————
(L
al 7 [ T ‘ ‘
o
15 -
s
2t
.
25
s
ol
2
35 1
oz 4 o o 1z 1 16 1w 2 T T
Time (£) Time (t)
(a) Endogenous volatility o7 (b) Precautionary premium (o + 0F)?2

Figure: Ornstein-Uhlenbeck equilibrium: endogenous volatility {¢§} (Figure 5a) and the precau-
tionary premium{(c + )2} (Figure 5b)

@ Even with g§ = 0 (no initial volatility) = stationary {07} process
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Simulation results - Ornstein-Uhlenbeck equilibrium
With 0 > 0, 1 =0

Excess volatility (o7) when ¢, =0.11 ¢ =0.009 1 =0 § =0.1
Initial excess volatility o —0.18 , Number of sample paths =50

Figure: Endogenous volatility o7

@ Again, degenerate distribution at 05, =0

o Faster convergence than the martingale equilibrium (8 = 0)
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Model with inflation
Nominal rigidities a la Rotemberg (1982)

dpé = népé dt,
with adjustment cost of inflation rate 7ri:

. T .
O(m;) = 5("2)2Ptyt

Volatility of inflation growth
New Keynesian Phillips curve (NKPC):

dry = HZ(p-Hrt)—it—(a+0f)(a+ats+ of )] me - (5_1) (e(”T“)“—l)] dt

T
+ U{[ TTt dZt

The IS equation then becomes:
dYe = |iy — e — rtT} dt + 03 dZ; (6)
Taylor rule: iy = r" + ¢, Y:

o Transversality given by the same equation (1)
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Model with inflation

Proposition (Fundamental Indeterminacy)

The model with sticky prices a la Rotemberg (1982) admits an alternative solution to
the benchmark equilibrium given by:

thZB[V_Vt] dt—l—(deZt, ()
7

e = f(03),

where f(-) is a smooth function of excess volatility 5. This alternative equilibrium solu-
tion exists for any positive degree of price stickiness, as captured by the adjustment rate
parameter T > 0.

@ Similar structure to the Ornstein-Uhlenbeck equilibrium, with 71+ as a smooth function
of 03

@ Similar in the case of pricing a la Calvo (1983): see Online Appendix G

37/30




Traditional forward guidance

Assume:

o Central bank commits to keep iz = 0 until TTFG > T (i-e., Odyssean guidance)
o Perfect stabilization (i.e., Y; = 0) afterwards, i.e., for t > TTFC

o By the same arguments, volatility gap stabilization beforehand, t < TTFG (no excess
volatility while iy = 0)

Problem: minimize smooth quadratic welfare loss

min LY ({¥}e20) = Eo ‘/0°°efpf (Ve)? dt

FTFG
st. Yo= r T4 _F ('f'TFG - T)
~—~ ~

<0 >0

@ Smoothing the ZLB costs over time (i.e., welfare enhancing)
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Higher-order forward guidance
Assume:

@ Central bank can commit to keep iy = 0 until THOFG >T

o No stabilization (i.e., Y, = \77»-,40;6) guaranteed afterwards, t > THOFG

o Pick {07} for t < THOFG

Problem: minimize smooth quadratic welfare loss

i LY ({Y}is0) = E /Oo Pt (v,)?
af'L,crgn'Ll,r}HOFG ({¥}e20) =Eo o © (ve)" dt.
v T s, L s,L
dVe =~ (cit) dt+oitdz, fore<T,

——
<0

st. qdVe=—r] (03")dt+0itdze, for T <t < THOFC,

A >0 A
dY; =0, for t > THOFC,

with
Yo=r (Uf’L) T+r) (UQS'L) ('fHOFG - T)
N— -’

<0 >0
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Higher-order forward guidance with stochastic stabilization
Change:

o Central bank commits to stabilizing the economy after THOFG with Poisson probability

v: at each point after THOFG ¥, becomes 0 with probability vdt

Problem: minimize smooth quadratic welfare loss
)

7”-HOFG

FHOFG

e Pt Y2 dt+/°° e Pte VT g2 g

dYy=— r1T (U'f‘L) dt+(7f‘LdZt, fort < T,

—_——
<0
st. qdVe=—rf (03")dt+o3tdz,, for T <t < THOFC,
N——
A >O A
dY; =0, for t > THOFC,

with
Yo=r (rff’L) T+r) (UQS'L> ('fHOFG — T)
~—— ———

<0 >0
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