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What we do

Standard non-linear New Keynesian model

∃a price of risk coming from

Aggregate volatility︸ ︷︷ ︸
Endogenous

↑ =⇒ precautionary saving︸ ︷︷ ︸
Endogenous

↑ =⇒ aggregate demand︸ ︷︷ ︸
Endogenous

↓

Takeaway (Self-fulfilling volatility)

In macroeconomic models with nominal rigidities, ∃global solution where:

Taylor rules (targeting inflation and output) −→ ∃self-fulfilling apparition of aggregate
volatility

Only direct volatility (e.g., risk premium) targeting can restore determinacy
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A textbook New Keynesian model with rigid price
The representative household’s problem (given B0):

Γt ≡ max
{Bt}t>0,{Ct ,Lt}t≥0

E0

∫ ∞

0
e−ρt

logCt −
L
1+ 1

η

t

1+ 1
η

 dt s.t. Ḃt = itBt − p̄Ct +wtLt +Dt

where

Bt : nominal bond holding, Dt includes fiscal transfer + profits

Rigid price: pt = p̄ for ∀t (i.e., purely demand-determined)

1. A log-linearized Euler equation (textbook one)

Et

(
dCt

Ct

)
= ( it − ρ)dt

▶ Forward-looking consumption process (monetary policy it stabilizes Ct)

Endogenous
drift

Monetary policy

Caveat: Taylor rules with the Taylor principle is enough
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A textbook New Keynesian model with rigid price
The representative household’s problem (given B0):

Γt ≡ max
{Bt}t>0,{Ct ,Lt}t≥0

E0

∫ ∞

0
e−ρt

logCt −
L
1+ 1

η

t

1+ 1
η

 dt s.t. Ḃt = itBt − p̄Ct +wtLt +Dt

where

Bt : nominal bond holding, Dt includes fiscal transfer + profits

Rigid price: pt = p̄ for ∀t (i.e., purely demand-determined)

2. A non-linear Euler equation (in contrast to log-linearized one)

Et

(
dCt

Ct

)
= (it − ρ)dt + Vart

(
dCt

Ct

)
︸ ︷︷ ︸

Precautionary premium

▶ Aggregate volatility↑ =⇒ precautionary saving↑ =⇒ recession (the drift↑)
Endogenous

drift

Endogenous
volatility

Problem: both variance and drift are endogenous, is Taylor rule enough?
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A textbook New Keynesian model with rigid price

Intra-temporal optimality:

1

p̄Ct
=

L
1
η

t

wt

Transversality condition:
lim
t→∞

E0
[
e−ρtΓt

]
= 0 (1)
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A textbook New Keynesian model with rigid price

Firm i : face monopolistic competition à la Dixit-Stiglitz with Y i
t = AtL

i
t and

dAt

At
= gdt + σ︸︷︷︸

Fundamental risk

dZt

dZt : aggregate Brownian motion (i.e., only risk source)

(g , σ) are exogenous

Flexible price economy as benchmark: the ‘natural’ output Y n
t follows

dY n
t

Y n
t

=
(
rn − ρ + σ2

)
dt + σdZt

= gdt + σdZt =
dAt

At

where rn = ρ + g − σ2 is the ‘natural’ rate of interest
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Non-linear IS equation

Ŷt = ln
Yt

Y n
t
,
(

σ
)2

dt = Vart

(
dY n

t

Y n
t

)
︸ ︷︷ ︸

Benchmark volatility

,
(

σ + σs
t

)2
dt = Vart

(
dYt

Yt

)
︸ ︷︷ ︸

Actual volatility
Exogenous Endogenous

1. A log-linearized IS equation (textbook one)

dŶt = (it − rn) dt + σs
t dZt (2)

which becomes
Et
(
dŶt

)
= (it − rn) dt,

or
Ŷt = Et

(
Ŷt+dt

)
− (it − rn) dt
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Ŷt = ln
Yt

Y n
t
,
(

σ
)2

dt = Vart

(
dY n

t

Y n
t

)
︸ ︷︷ ︸

Benchmark volatility

,
(

σ + σs
t

)2
dt = Vart

(
dYt

Yt

)
︸ ︷︷ ︸

Actual volatility
Exogenous Endogenous

1. A log-linearized IS equation (textbook one)
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Non-linear IS equation

Ŷt = ln
Yt

Y n
t
,
(

σ
)2

dt = Vart

(
dY n

t

Y n
t

)
︸ ︷︷ ︸

Benchmark volatility

,
(

σ + σs
t

)2
dt = Vart

(
dYt

Yt

)
︸ ︷︷ ︸

Actual volatility
Exogenous Endogenous

2. A non-linear IS equation (in contrast to textbook linearized one)

dŶt =


it −

rn

New terms︷ ︸︸ ︷
−1

2
(σ + σs

t )2 +
1

2
σ2


︸ ︷︷ ︸

≡rTt


dt + σs

t dZt (3)

What is rTt ?: a risk-adjusted natural rate of interest (σs
t ↑=⇒rTt ↓)

rTt ≡ rn − 1

2
(σ + σs

t )
2︸ ︷︷ ︸

Precautionary
premium

+
1

2
σ2
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Non-linear IS equation

Big Question

Taylor rule it = rn + ϕy Ŷt for ϕy > 0 =⇒ perfect stabilization?

Answer (Up to a First Order)

ϕy > 0 (Taylor principle) guarantees

Unique equilibrium with perfect stabilization, i.e., Ŷt = 0 with σs
t = 0 for ∀t

Why? (recap): without the volatility feedback:

dŶt = (it − rn) dt + σs
t dZt =︸︷︷︸

Under
Taylor rule

ϕy Ŷtdt + σs
t dZt

Then,
Et
(
dŶt

)
= ϕy Ŷt .

If Ŷt ̸= 0,
lim
s→∞

Et
(
Ŷs
)
→ ±∞

Foundation of modern central banking
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Now, with the non-linear effects in (3)

Proposition (Fundamental Indeterminacy)

For any ϕy > 0, ∃an equilibrium supporting a volatility σs
0 > 0 satisfying:

1 Et
(
dŶt

)
= 0 for ∀t (i.e., local martingale)

2 σs
t

a.s−−−→ σs
∞ = 0 and Ŷt

a.s−−−→ 0 (i.e., almost sure stabilization)

3 0+-possibility divergence or non-uniform integrability given by

E0

(
sup
t≥0

(σ + σs
t )

2

)
= ∞

with
lim

K→∞
sup
t≥0

(
E0 (σ + σs

t )
2
1{(σ+σs

t )
2≥K}

)
> 0.

Aggregate volatility↑ possible through the intertemporal coordination of agents

Called a “martingale equilibrium” - non-stationary equilibrium

Satisfies the transversality condition (1)
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Key: a path-dependent intertemporal aggregate demand strategy

Ŷ0

Ŷ
(2)
1

Ŷ
(4)
2

Ŷ
(8)
3

-

Ŷ
(7)
3

+

-

Ŷ
(3)
2

Ŷ
(6)
3

-

Ŷ
(5)
3

+

+

-

Ŷ
(1)
1

Ŷ
(2)
2

Ŷ
(4)
3

-

Ŷ
(3)
3

+

-

Ŷ
(1)
2

Ŷ
(2)
3

-

Ŷ
(1)
3

+

+

+

σ
s,(1)
1

σ
s,(2)
2 σ

s,(1)
2

σ
s,(4)
3 σ

s,(3)
3 σ

s,(2)
3 σ

s,(1)
3

Stabilized

Ŷt < 0←
Average path

BP

Agents0

BP

Agents1

BP

Agents2

BP

Agents3

Sunspot

AttractionDivergence

Stabilized as attractor: σs
t

a.s−−−→ σs
∞ = 0 and Ŷt

a.s−−−→ 0
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Key: a path-dependent intertemporal aggregate demand strategy

Ŷ0
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1
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2
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(8)
3

-

Ŷ
(7)
3

+

-

Ŷ
(3)
2

Ŷ
(6)
3

-

Ŷ
(5)
3

+

+

-

Ŷ
(1)
1

Ŷ
(2)
2

Ŷ
(4)
3

-

Ŷ
(3)
3

+

-

Ŷ
(1)
2

Ŷ
(2)
3

-

Ŷ
(1)
3

+

+

+

σ
s,(1)
1

σ
s,(2)
2 σ

s,(1)
2

σ
s,(4)
3 σ

s,(3)
3 σ

s,(2)
3 σ

s,(1)
3

Stabilized

Ŷt < 0←
Average path

BP

Agents0

BP

Agents1

BP

Agents2

BP

Agents3

Sunspot

AttractionDivergence

But divergence with 0+-probability: E0

(
supt≥0 (σ + σs

t )
2
)
= ∞
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Simulation results - martingale equilibrium

(a) With Taylor coefficient ϕy = 0.11 (b) With Taylor coefficient ϕy = 0.33

Figure: Martingale equilibrium: with ϕy = 0.11 (Figure 1a) and ϕy = 0.33 (Figure 1b)

Stationary equilibria
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A new monetary policy with volatility targeting

New monetary policy:

it = rn + ϕy Ŷt −
1

2

(σ + σs
t )

2︸ ︷︷ ︸
≡ppt

− σ2︸︷︷︸
≡ppn



Aggregate volatility targeting?

Restores a determinacy and stabilization, but what does it mean?

17 / 30



A new monetary policy with volatility targeting

Leading to:

it + ppt −
1

2
ppt = rn + ppn − 1

2
ppn + ϕy Ŷt︸ ︷︷ ︸

Business cycle
targeting

Ito term

ρ + Et (d logYt )
dt ρ + Et (d logY n

t )
dt

Ito term

A % change of (i.e., return on) aggregate output (i.e., demand), not just the policy
rate, follows Taylor rules

Key issue: monetary policy tool available ̸= objective

Model with sticky prices
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Motivation

Big Question

Forward guidance — How does it work, exactly?

First-order effects (level): “Interest rates will stay low” −→ intertemporal substitution
channel (aggregate demand↑)

Second-order effects (volatility): reduce uncertainty, avoid worst-case scenarios, “what-
ever it takes” −→ precautionary savings channel (aggregate demand↑)

This paper: focus on central bank’s strategic uncertainty management and coor-
dination. Possible for central banks to pick an equilibrium where:

During the ZLB (now): reduce aggregate volatility. Then aggregate demand↑

But central banks now create uncertainty about where the economy ends up after the
ZLB (future): commit less stabilization after the ZLB

Welfare-enhancing overall
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Again, the non-linear IS equation in a standard New Keynesian model

dŶt =

it −

rn − 1

2
( σ + σs

t )2 +
1

2
σ

2


︸ ︷︷ ︸

≡rTt

 dt + σs
t dZt

= (it − rTt )dt + σs
t dZt

Fundamental volatility

ppt
ppn

σs
t ↑ −→ ppt↑ −→ Ŷt↓
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ZLB from fundamental volatility shock

Thought experiment: fundamental volatility σ↑: σ̄ on [0,T ] (e.g., Werning (2012)) and
comes back to σ with σ̄ > σ

r̄ ≡ rn(σ) = ρ + g − σ2 > 0: no ZLB before, t < 0, or after, t > T

r ≡ rn(σ̄) = ρ + g − σ̄2 < 0: ZLB binds for 0 ≤ t ≤ T

Assume: perfect stabilization (i.e., Ŷt = 0) is achievable outside ZLB, i.e.,

it = r̄ + ϕy Ŷt −
1

2

ppt − ppnt︸ ︷︷ ︸
Variance gap

 , with ϕy > 0

Result: perfect stabilization of variance gap (i.e., excess uncertainty) inside the ZLB

Recursive argument: full stabilization at T implies ŶT = 0 −→ σs
T−dt = 0, and keeps

going on (so ppt = ppnt = σ̄2 for ∀t)
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ZLB path (full stabilization after T )

t

Ŷt , ppt

ppn1 = (σ̄)2

T
Ŷt

r︸︷︷︸
<0

T

ppn2 = (σ)2

No guidance

Figure: ZLB dynamics (Benchmark)
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Traditional forward guidance (keep it = 0 until T̂TFG > T )

t

Ŷt , ppt

ppn1 = (σ̄)2

T

r︸︷︷︸
<0

T

T̂TFG
Ŷt

rT+r̄ (T̂TFG −T )

ppn2 = (σ)2

No guidance

Traditional forward guidance

Figure: ZLB dynamics with forward guidance until T̂TFG > T

Details 24 / 30



Alternative forward guidance policies

Big Question

Can we do even better than the traditional forward guidance?

What if we reduce aggregate uncertainty via σs
t < 0?

Then ppt = (σ̄ + σs
t )

2 < ppnt , raising aggregate demand and Ŷt

But how?

Nominal rigidities −→ demand-determined production

Policy challenge: the central bank must convince households to “coordinate” on this
particular equilibrium −→ higher-order forward guidance

Give up perfect stabilization in the future (no stabilization at all)

Imagine the central bank pegs the policy rate at it = r̄ after zero rate periods
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Central bank picks T̂HOFG and {σs
t < 0}t<T̂HOFG

t

Ŷt , ppt

ppn1 = (σ̄)2

pp1 = (σ̄ + σs,L1 )2

pp2 = (σ + σs,L2 )2
pp3 = ppn3 = (σ)2

T

rT1 (0)︸ ︷︷ ︸
<0

T

rT1 (σs,L1 )T+rT2 (σs,L2 )(T̂HOFG −T )

T̂TFGT̂HOFG
Ŷt

rT1 (0)T+rT2 (0)(T̂TFG −T )

rT2 (0)(T̂TFG −T )

rT2 (σs,L2 )(T̂HOFG −T )

Path2(Ŷt )

Path1(Ŷt )

ppn2 = (σ)2

No guidance

Traditional forward guidance

At optimum, σs,L
1 < 0 = σs,n

1 , σs,L
2 < 0 = σs,n

2 , and T̂HOFG < T̂TFG Details
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Optimal policy

Proposition (Optimal forward guidance policy)

Optimal higher-order forward guidance (HOFG) always results in an equal or lower expected
quadratic loss than the traditional guidance policy

Proof.

With (σs,L
1 , σs,L

2 , T̂HOFG) = (0, 0, T̂TFG), solutions coincide

Remarks:

Alternative higher-order forward guidance policy implementations are possible

This paper shows HOFG dominates TFG in a simple setting
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Optimal policy: stochastic stabilization

Extension: still higher-order forward guidance policy, now with stochastic stabi-
lization after T̂HOFG. Return to stabilization with νdt probability after T̂HOFG

Central bank commits to stabilizing the economy after T̂HOFG with some probability.
Expected stabilization after 1/ν quarters

ν = 0: the above higher-order forward guidance

ν = ∞: the traditional forward guidance policy

Big discontinuity:

lim
ν→+∞−

LY ,∗ ({Ŷt}t≥0, ν
)
< LY ,∗ ({Ŷt}t≥0, ν = ∞

)︸ ︷︷ ︸
Traditional forward guidance

Slight probability that stabilization might not happen −→ HOFG possible

Details
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Policy implication

Real World Example (Covid-19 and the Federal Reserve)

Flexible Average Inflation Targeting (FAIT) (2020)

Commitment to delaying stabilization – by allowing inflation to “moderately” over-
shoot its target after periods of persistent undershooting at the ZLB

“Moderate” overshooting of the business cycle now is allowed: nudging agents toward
a favorable equilibrium with lower volatility

HOFG equilibrium −→ can be supported by fiscal policy as a unique equilibrium

Zero transfer along the equilibrium path (out-of-equilibrium threat)

Draghi’s “whatever it takes” speech −→ lower periphery yields without actual
expenditures, coordinating agents to an equilibrium with lower risk premium
(Acharya et al., 2019)

Actual paper: based on a Two-Agent New Keynesian (TANK) model with capitalists and
workers to illustrate these aspects
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Thank you very much!

(Appendix)
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Potential stationary equilibria?
Conjecture: Ornstein-Uhlenbeck process with endogenous volatility {σs

t }

dŶt =


it −

rn

New terms︷ ︸︸ ︷
−1

2
(σ + σs

t )2 +
1

2
σ2


︸ ︷︷ ︸

≡rTt


dt + σs

t dZt

= θ︸︷︷︸
>0

·

 µ︸︷︷︸
⪌0

−Ŷt

 dt + σs
t dZt

(4)

µ as an approximate average of Ŷt

θ as a speed of mean reversion

it = rn + ϕy Ŷt (i.e., Taylor rule) stays the same

Go back
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Proposition (Fundamental Indeterminacy)

For θ > 0, µ < σ2

2ϕy
with µ ̸= 0:

1 {σs
t } process satisfying (4) is stable, and admits a unique stationary distribution: with

σ→ 0 and µ < 0, the stationary distribution coincides with the “generalized gamma
distribution” GGD(a, d , p), given by

a =

√
2(θ + ϕy )2

θ
, d = − 2θµϕy

(θ + ϕy )2
, and p = 2, (5)

where a is the scale parameter, d is the power-law shape parameter, p is the expo-
nential shape parameter.

2 For θ > 0 and µ = 0, the σs
t process is again non-stationary (degenerate distribution

at σs
∞ = 0).

3 The long-run expectations of the output gap Ŷt and excess variance (σ + σs
t )

2 − σ2

are given by

lim
t→∞

E0
[
Ŷt
]
= µ, and lim

t→∞
E0

[
(σ + σs

t )
2 − σ2

]
= −2µϕy .

Go back
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Simulation results - Ornstein-Uhlenbeck equilibrium
With θ > 0, µ < 0

(a) Endogenous volatility σs
t (b) Precautionary premium (σ + σs

t )
2

Figure: Ornstein-Uhlenbeck equilibrium: endogenous volatility {σs
t } (Figure 4a) and the precau-

tionary premium{(σ + σs
t )

2} (Figure 4b)

Even with σs
0 = 0 (no initial volatility) =⇒ stationary {σs

t } process
Go back
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Simulation results - Ornstein-Uhlenbeck equilibrium

With 0 < µ <
σ2

2ϕy

(a) Endogenous volatility σs
t (b) Precautionary premium (σ + σs

t )
2

Figure: Ornstein-Uhlenbeck equilibrium: endogenous volatility {σs
t } (Figure 5a) and the precau-

tionary premium{(σ + σs
t )

2} (Figure 5b)

Even with σs
0 = 0 (no initial volatility) =⇒ stationary {σs

t } process
Go back
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Simulation results - Ornstein-Uhlenbeck equilibrium
With θ > 0, µ = 0

Figure: Endogenous volatility σs
t

Again, degenerate distribution at σs
∞ = 0

Faster convergence than the martingale equilibrium (θ = 0)

Go back
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Model with inflation
Nominal rigidities à la Rotemberg (1982)

dpit = πi
tp

i
t dt,

with adjustment cost of inflation rate πi
t :

Θ(πi
t ) =

τ

2
(πi

t )
2ptYt

New Keynesian Phillips curve (NKPC):

dπt =

[[
2(ρ + πt )− it − (σ + σs

t )(σ + σs
t + σπ

t )
]

πt −
(

ϵ− 1

τ

)(
e

(
η+1

η

)
Ŷt − 1

)]
dt

+ σπ
t πt dZt

The IS equation then becomes:

dŶt =
[
it − πt − rTt

]
dt + σs

t dZt (6)

Taylor rule: it = rn + ϕy Ŷt

Transversality given by the same equation (1)

Volatility of inflation growth

Go back
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Model with inflation

Proposition (Fundamental Indeterminacy)

The model with sticky prices à la Rotemberg (1982) admits an alternative solution to
the benchmark equilibrium given by:

dŶt = θ
[
µ− Ŷt

]
dt + σs

t dZt ,

πt = f (σs
t ),

(7)

where f (·) is a smooth function of excess volatility σs
t . This alternative equilibrium solu-

tion exists for any positive degree of price stickiness, as captured by the adjustment rate
parameter τ > 0.

Similar structure to the Ornstein-Uhlenbeck equilibrium, with πt as a smooth function
of σs

t

Similar in the case of pricing à la Calvo (1983): see Online Appendix G

Go back

37 / 30



Traditional forward guidance

Assume:

Central bank commits to keep it = 0 until T̂TFG ≥ T (i.e., Odyssean guidance)

Perfect stabilization (i.e., Ŷt = 0) afterwards, i.e., for t > T̂TFG

By the same arguments, volatility gap stabilization beforehand, t ≤ T̂TFG (no excess
volatility while it = 0)

Problem: minimize smooth quadratic welfare loss

min
T̂TFG

LY
(
{Ŷ }t≥0

)
≡ E0

∫ ∞

0
e−ρt

(
Ŷt
)2

dt

s.t. Ŷ0 = r︸︷︷︸
<0

T + r̄︸︷︷︸
>0

(
T̂TFG −T

)

Smoothing the ZLB costs over time (i.e., welfare enhancing)

Go back
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Higher-order forward guidance
Assume:

Central bank can commit to keep it = 0 until T̂HOFG ≥ T

No stabilization (i.e., Ŷt = ŶT̂HOFG ) guaranteed afterwards, t ≥ T̂HOFG

Pick {σs
t } for t < T̂HOFG

Problem: minimize smooth quadratic welfare loss

min
σs,L
1 ,σs,L

2 ,T̂HOFG
LY

(
{Ŷ }t≥0

)
≡ E0

∫ ∞

0
e−ρt

(
Ŷt
)2

dt,

s.t.



dŶt = − rT1

(
σs,L
1

)
︸ ︷︷ ︸

<0

dt + σs,L
1 dZt , for t < T ,

dŶt = − rT2

(
σs,L
2

)
︸ ︷︷ ︸

>0

dt + σs,L
2 dZt , for T ≤ t < T̂HOFG ,

dŶt = 0, for t ≥ T̂HOFG ,

with
Ŷ0 = rT1

(
σs,L
1

)
︸ ︷︷ ︸

<0

T + rT2

(
σs,L
2

)
︸ ︷︷ ︸

>0

(
T̂HOFG −T

)
Go back
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Higher-order forward guidance with stochastic stabilization
Change:

Central bank commits to stabilizing the economy after T̂HOFG with Poisson probability
ν: at each point after T̂HOFG , Ŷt becomes 0 with probability νdt

Problem: minimize smooth quadratic welfare loss

min
σs,L
1 , σs,L

2 , T̂HOFG
E0

[∫ T̂HOFG

0
e−ρt Ŷ 2

t dt +
∫ ∞

T̂HOFG
e−ρt e−ν(t−T̂HOFG)Ŷ 2

t dt

]
,

s.t.



dŶt = − rT1

(
σs,L
1

)
︸ ︷︷ ︸

<0

dt + σs,L
1 dZt , for t < T ,

dŶt = − rT2

(
σs,L
2

)
︸ ︷︷ ︸

>0

dt + σs,L
2 dZt , for T ≤ t < T̂HOFG ,

dŶt = 0, for t ≥ T̂HOFG ,

with
Ŷ0 = rT1

(
σs,L
1

)
︸ ︷︷ ︸

<0

T + rT2

(
σs,L
2

)
︸ ︷︷ ︸

>0

(
T̂HOFG −T

)

Go back
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