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Abstract

This paper studies the risk choices of a firm run by an effort and risk-averse man-

ager, where the firm’s initial risk exposure is only observed by the manager. By elim-

inating zero NPV risk, hedging can improve the ability of firms to efficiently induce

effort from their manager. We consider conditions under which information asymme-

try about risk exposure alters the optimal compensation contract. In some settings,

asymmetric information has no effect on the manager’s optimal compensation. How-

ever, in other settings, inducing the manager to hedge rather than speculate requires the

optimal contract to directly account for hedgeable risk. When inducing the manager

to hedge is sufficiently costly, the optimal contract may restrict the use of derivatives.
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Zhiguo He, Thomas Hellmann, Shachar Kariv, Andy Kim (discussant), Thomas Noe, Chris Shannon, Joel
Shapiro, Kathy Yuan, anonymous referees, and seminar participants at Berkeley, Oxford, CAFM 2024, and
Finance Theory Group meeting 2024 for helpful discussions.

†Seoul National University (sonkukim@snu.ac.kr)
‡Saı̈d Business School, Oxford University (seung.lee@sbs.ox.ac.uk)
§McCombs School of Business, University of Texas at Austin (Sheridan.Titman@mccombs.utexas.edu)



1 Introduction

Corporations spend substantial amounts of resources assessing and managing their expo-
sures to various sources of risk. In a setting with perfect information and frictionless mar-
kets, the Modigliani and Miller theorem holds, and these expenditures do not create value.
However, the finance literature identifies a number of market imperfections that provide
a rationale for risk management activities.1 Most of this literature explores the role of fi-
nancial constraints and implicitly assumes that the risk management choices are made by
value-maximizing rather than self-interested executives.2 In contrast, the focus of this pa-
per is on managerial incentive issues, and in particular, risk management choices that are
made by self-interested executives.

We present a model of a firm that is owned by risk neutral shareholders (i.e., the prin-
cipal) and managed by a manager (i.e., the agent) who is both risk and effort averse. While
the manager observes the firm’s inherent (i.e., initial) risk exposure, the shareholders can
only observe the distribution from which the exposure is drawn. We assume that this expo-
sure cannot be credibly disclosed to the principal, that is, there is no communication about
the firm’s initial risk exposure between the principal and the agent.3

The shareholders in our model offer the manager a compensation contract that is de-
signed to motivate the manager to expend effort. Given the existence of derivative markets,
however, the contract should also consider the manager’s choice in the derivative markets.
The contract can be contingent on the firm’s observed profits (net of the profits or losses
from the derivatives transactions), and the realization of hedgeable risks, both of which are
commonly observable. For example, the compensation of the CEO of an oil company may
be a function of the firm’s profits, and the price of oil. The contract may or may not allow
the manager to take derivatives positions. As we show, if the contract allows for the use of
derivatives, it is to be designed to induce the manager to hedge rather than speculate.

The use of derivatives in this paper towards hedging can potentially create value through
two channels. The first channel, which is our main focus, is that hedging can effec-

1For previous works, see Smith and Stulz (1985), Campbell and Kracaw (1990), and DeMarzo and Duffie
(1991, 1995), Froot et al. (1993), Geczy et al. (1997), Leland (1998) among others.

2For the role of financial (e.g., collateral) constraints in risk management activities, see e.g., Rampini and
Viswanathan (2010, 2013), Rampini et al. (2014). Since both financing and risk management need collaterals,
more financially constrained firms engage in less risk management, and sometimes do not hedge at all. Our
framework, in contrast, abstracts from external financing constraints and focus on managerial incentive issues,
noting that risk management policies of a firm are chosen by self-interested managers, not shareholders.

3In Appendix B, we also consider a setting in which there is contractable communication between the
principal and the agent, i.e., the contract can include the risk exposure disclosed by the agent.
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tively eliminate the shareholders’ (i.e., the principal’s) informational disadvantage about
the firm’s initial exposure to hedgeable risks. By doing so, hedging increases the correla-
tion between reported earnings and managerial effort, which enables the compensation con-
tract to more efficiently induce managerial effort. The second channel, which has been the
main focus of the existing literature on financial constraints, e.g., Smith and Stulz (1985),
is that hedging reduces the firm’s chance of facing with negative feedback effects includ-
ing bankruptcy possibilities arising from poor cash flows. In fact, this second channel is
especially needed to eliminate the equilibrium indeterminacy problem in our model.

Despite these two benefits of hedging, shareholders may not always allow managers to
take derivative positions. This is because the manager, when given the opportunity to trade
derivatives, may speculate rather than hedge. If this is the case, shareholders need to offer
a compensation contract that induces the manager to hedge, which is costly. If the cost of
inducing the manager to take derivative positions that hedge rather than speculate is higher
than the above mentioned efficiency gains from hedging, derivative transactions should not
be allowed, if possible.

While asymmetric information about firm’s risk exposure between shareholders and the
manager is a key feature of our model, as we show, this asymmetry does not always create
costs. The cost arising from such informational asymmetry actually depends on the curva-
ture of the manager’s indirect utility function, which is a composite of his utility function
and the optimal compensation contract under the counterfactual symmetric information
case, i.e., when the firm’s initial risk exposure is also observed by shareholders. When this
composite function is concave in output, the manager has a voluntary incentive to fully
hedge. When this is the case, the shareholders’ inability to observe or the manager’s in-
ability to communicate the firm’s risk exposure results in no efficiency loss. Indeed, the
manager’s compensation contract and the firm’s efficiency of the agency relationship is
identical with and without information asymmetry.

The manager’s indirect utility function under symmetric information, however, may not
be always concave. For example, with power utility, the slope of the manager’s compensa-
tion contract, which is optimal for inducing a high effort, becomes steeper at higher output
levels. This convex contract, combined with the manager’s utility, may result in a convex
indirect utility function if the manager’s utility function is not too concave, i.e., the man-
ager’s relative risk aversion is not too high.4 When this is the case, the optimal contract

4Hirshleifer and Suh (1992) characterize some special cases of the agent’s utility and the output distribu-
tion function that lead to the agent’s indirect utility function being convex.
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under symmetric information is no longer optimal when the firm’s initial risk exposure is
not observed by the shareholders and cannot be credibly communicated to them. This is
because the manager offered such a contract will take derivative positions that speculate
rather than hedge.

Thus, if the manager in the above situation is allowed to take derivative positions, the
optimal contract with asymmetric information should be different from that in the coun-
terfactual symmetric information case because the manager needs to be induced to hedge
rather than to speculate. As we show, this can be done by making the contract penalize
the manager when both profits and hedgeable risks simultaneously have extreme realiza-
tions. More specifically, to induce hedging, the shareholders penalize the manager for any
realized covariance (both positive and negative) between profits and hedgeable risks. Such
a contract can induce the manager to hedge rather than speculate, even if the manager’s
indirect utility function under symmetric information would be convex in hedged profits.
However, it is not costless to alter the contract in this way, and in some situations the firm
will be better off disallowing the manager to take derivative positions. This depends on the
level of uncertainty about the firm’s initial risk exposure from the shareholders’ perspec-
tives, the size of the initial risk exposure itself, and the magnitude of the feedback effects
that can amplify negative outcomes.

While there exists a large literature that studies risk management issues based on the
agency relationships, this paper contributes by combining insights from different strands of
the literature. Intuitively, hedging creates value in our setting because it allows contracts
to be contingent on the measures of outcomes which are more highly correlated with the
agent’s effort. In this sense, our analysis is closely related to the efficiency issue of the
optimal contract for inducing the agent’s hidden effort. Holmström (1979) shows that the
optimal contract should be based on state variables as long as they are informative about
the agent’s effort. Later, Kim (1995) shows that the efficiency of the agent’s compensa-
tion contract improves as those state variables provide more precise information about the
agent’s hidden effort.5 Our contribution is to extend the analysis to the case where the ex-
posure to these state variables is not exogenously given but affected by the agent‘s choices
(i.e., derivative positions).

There are some other papers that have also examined the optimal contract when a risk
averse agent makes both effort and risk choices, e.g., Hirshleifer and Suh (1992), Sung

5See Kim (1995) for the MPS (mean preserving spread) criterion.
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(1995), Palomino and Prat (2003), DeMarzo et al. (2011), Barron et al. (2020).6 Unlike
those papers, we explicitly consider derivative transactions that can be distinguished from
real investments.7 Specifically, we consider a setting where realizations of hedgeable risk,
e.g., oil prices, are observable and can thus be included in the optimal contract mainly to
control the agent’s risk choice behaviors.

In summary, our model builds on the previous literature that highlights the importance
of including state variables as well as output in designing optimal compensation contracts.
Specifically, we provide a solution to such a problem when, in addition to effort, the agent
makes a hidden choice that influences the relation between the state variables, i.e., hedge-
able risks, and the output.

In the risk management literature, our paper is closely related to papers by DeMarzo and
Duffie (1991, 1995) and Breeden and Viswanathan (2016), in the sense that they point out
that hedging helps the firm’s profits provide more precise information about managerial in-
puts. In DeMarzo and Duffie (1991, 1995) and Breeden and Viswanathan (2016), however,
hedging allows the owners of a firm to more precisely learn about the managerial ability,
which increases the value of options to either continue or abandon the firm’s projects. In
contrast, in our framework the owners induce the manager’s effort, and with hedging, the
contract can more efficiently elicit better effort. In other words, they do not explicitly con-
sider the incentive issues associated with the manager’s hedging choice, which is the main
focus of our paper. More recently, Barth et al. (2024) find that in the hedge fund industry,
fund managers have a better knowledge of their funds’ risk exposure than what past returns
suggest.8 During market downturns, investors withdraw capital from funds whose reported
risk exposure is higher than suggested by past returns, implying that investors penalize the
‘covariance’ of market and the fund return.9 Our contribution is to provide a formal model
that includes not only asymmetric information about the firm’s initial risk exposure but also

6Hébert (2018) assumes that the agent picks his effort and risk-shifting activities by choosing the dis-
tribution of state in a non-parametric way. Under special cost functions (e.g., Kullback-Leibler divergence),
debt becomes optimal.

7In Appendix C, we also consider the case in which the agent can make not only derivatives transactions
but also real investment choices.

8Based on SEC Form PF which requires fund managers to report the exposure of their funds to a variety
of market factors, Barth et al. (2024) find that managers’ ‘reported’ betas differ from the beta estimated from
past returns and better predicts future returns, confirming that the manager has a private, valuable information
of the fund’s risk expsoure. Similarly, we assume that the firm’s initial risk exposure is only observed by the
manager while shareholders have a knowledge about its ex-ante distribution only.

9This result aligns with our characterization of the optimal contract in Proposition 3 when the manager’s
indirect utility function under symmetric information is convex.
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a moral hazard problem about the manager’s effort.
While we model the derivative choices of self-interested managers under moral hazard,

the idea that these choices may not be made in the interests of shareholders is not new.
For example, Tufano (1996) studies the gold mining industry, and finds that managerial
incentives are the most important determinants of corporate derivatives choices, e.g., a
firm hedges less if the compensation of management includes more options.10 Coles et al.
(2006) similarly find that a higher sensitivity of CEO wealth to stock volatility (i.e., vega)
leads to the CEO to make riskier choices, including relatively more investment in R&D and
higher leverage. More recently, a survey of executives by Bodnar et al. (2019) finds that
the risk aversion of executives has an important effect on their risk management decisions,
which is in line with our model.

Policymakers are also aware of this kind of incentive problems. For example, during the
global financial crisis, Ben Bernanke stated that “compensation practices at some banking
organizations have led to misaligned incentives and excessive risk-taking, contributing to
bank losses and financial instability.”11 While poorly written incentive contracts are clearly
inconsistent with our model, it is true that contract changes that should have been made
timely along with the introduction and growth of derivative markets were in fact slow to be
enacted.

The paper is organized as follows: In Section 2, we present the basic model without a
derivative market. In Section 3, we formulate our model with a derivative market. In Sec-
tion 4, we briefly discuss two extensions of our model, more precise explanations of which
are given in Appendix B and Appendix C. Concluding remarks are provided in Section
5. The proofs of the Lemmas and Propositions are all given in Appendix A. We consider
the case in which free communication between the principal and the agent is possible, and
discuss the optimal truth-telling mechanism in Appendix B. Finally, Appendix C considers
a variant of the model with discretionary real investment choices.

2 The Basic Model

We consider a two-person single-period agency model in which a risk-averse agent works
for a risk-neutral principal. The principal can be thought of as the firm’s shareholders, and

10Knopf et al. (2002) find similar results among a large sample of firms. Also, Bakke et al. (2016), based
on Financial Accounting Standard (FAS) 123R which required firms to expense options, find that an increase
in the cost of using options results in a large increase in hedging activities.

11Fed press release (2009): https://www.federalreserve.gov/newsevents/pressreleases/bcreg20091022a.htm
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the agent can be thought of as the firm’s top manager or CEO. Alternatively, we can think
of the principal as the CEO and the agent as the head of the firm’s one division. Hereafter,
we use the terms ‘agent’ and ‘manager’ interchangeably.

After his wage contract, which is denoted by w(·), is finalized, the agent chooses two
actions, a1 ∈ [0,∞) and ad ∈ (−∞,+∞). The first action, a1, is a productive effort
which increases expected output in a way that a high effort generates an output level that
first-order stochastically dominates the output level generated by a low effort. The agent’s
second action, ad, is his derivative choice. We can think of ad as the number of forward
contracts each of which has zero upfront cost and pays η at the end of the period, where η
can, for example, be the difference between the price of oil and its risk neutral expectation.

After the agent chooses a1 and ad, the firm’s output, x, is realized and publicly observ-
able without cost. Thus, output x can be used in the manager’s wage contract. The output
is determined not only by the agent’s choice of (a1, ad) but also by the state of nature,
(η, θ). For simplicity, we assume that the output function exhibits the following additively
separable form:

x = ϕ(a1) + σθ + (R− ad)η. (1)

The first term, ϕ(a1), is the firm’s expected output, which is affected by a1 but not by
ad. The firm’s risk consists of two components, η and θ, where η ∼ N(0, 1) represents
one unit of the firm’s hedgeable risks. Also, θ ∼ N(0, 1) represents one unit of the firm’s
non-hedgeable risks, where σ denotes the amount of non-hedgeable risks. We assume that
η and θ are uncorrelated. As denoted by (1), the firm’s total amount of non-hedgeable risks
is fixed at σ.12 However, the firm’s hedgeable risks are determined by market variables such
as commodity prices, interest rates, and exchange rates, which become publicly observable
after the agent chooses both a1 and ad.13 Accordingly, η can also be used in the man-
ager’s wage contract if necessary. In (1), R is a random variable with h(R) for its density
function, denoting the firm’s initial exposure to the hedgeable risks (e.g., the amount of oil
underground for a drilling company). The manager can observe the true value of R after
the contract is signed but before he chooses a1 and ad, whereas, the principal knows only
its distribution. We assume that the manager’s effort a1 does not affect the firm’s initial
exposure to the hedgeable risks, R. However, the firm’s final exposure to the hedgeable
risks is determined by the manager’s transaction ad in the derivative market. The manager

12In Appendix C, we also consider a setting in which σ is affected by the agent’s real investment decisions.
13In fact, if the relevant derivative market observable is denoted as p, then η = p−p

σp
where p is the expected

value of p and σ2
p is its variance.
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hedges, i.e., reduces the hedgeable risk, as long as |R− ad| < |R| and minimizes such risk
by setting ad = R. On the other hand, the manager speculates in the derivative market if
|R− ad| > |R|, and ad = 0 implies that the manager does not trade derivatives.

It should be emphasized that we only consider “corporate level” hedging, abstracting
from the possibility that managers trade derivatives on their own personal account to hedge
their compensation risk. In reality, financial firms either effectively ban or closely monitor
such derivative trades by their employees. The concern is that the ability to hedge their
compensation risk distorts not only the incentive of managers to hedge at the firm level, but
also their incentive to exert an effort.14

In addition, we make the following assumptions:

Assumption 1. The agent’s preferences on wealth and productive effort are additively sep-
arable:

U(w, a1, ad) = u(w)− v(a1), u
′ > 0, u′′ < 0, v′ > 0, v′′ > 0,

where v is the agent’s disutility of exerting a productive effort.
Assumption 1 implies that the agent is risk-averse and effort-averse, and his derivatives

choices have no direct effect on the agent’s utility.15

Assumption 2.
∂ϕ

∂a1
(a1) ≡ ϕ1(a1) > 0,

∂2ϕ

∂a21
(a1) ≡ ϕ11(a1) < 0.

Assumption 2 indicates that the effort a1 affects the expected output with the usual
property of decreasing marginal productivity.

Assumption 3. The principal suffers a cost (or damage), D, when the firm is financially
distressed. For analytical simplicity, we assume that the firm is financially distressed if
output x is smaller than a certain critical level, xb, and the firm’s cost of financial stress, D,
is fixed. Therefore, the principal’s payoff (or utility) is x−w(·) if x > xb and x−w(·)−D
if x ≤ xb.

Assumption 3 captures negative feedback effects that arise when firms report very low
earnings. These effects include difficulties in attracting high quality employees, strategic

14Gao (2010) explores cases where CEOs are allowed to hedge their compensation and shows that pay-
performance sensitivity (PPS) increases when executives can trade more on personal accounts. More recently,
Huang et al. (2023) develop a dynamic contracting model where the agent, protected by limited liability,
privately trades the market portfolio to hedge market risks contained in his compensation.

15For the derivative choice ad, we assume that a direct hedging cost (e.g., option premium) is negligible
compared with the nominal amount of the firm’s cash flows. Therefore, we assume away costs for derivative
choice ad.
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partners, and so on. We introduce Assumption 3 in part to be consistent with the existing
literature, and also, because it allows us to rule out less intuitive equilibria.16

2.1 The Benchmark Case

In this section, we consider the benchmark case in which the firm’s initial exposure to the
hedgeable risks, R, is known to the principal as well as the agent and there is no derivative
market, i.e., ad = 0.17 Since R and η are commonly known to the principal and the agent,
following the ‘informativeness principle’ of Holmström (1979), the optimal contract should
be designed based on y ≡ x−Rη = ϕ(a1) + σθ.

The optimal wage contract w(y), in this case, is found by solving for the contract that
maximizes the combined utilities of the principal and the agent subject to the restriction that
the agent chooses effort a1 to maximize his utility given the contract. Thus, the optimization
is given by

max
a1,w(·)

SW ≡ ϕ(a1)−
∫
w(y)f(y|a1)dy + λ

(∫
u(w(y))f(y|a1)dy − v(a1)

)
− Pr[x ≤ xb|a1, ad = 0]D

s.t. (i) a1 ∈ argmax
a′1

∫
u(w(y))f(y|a′1)dy − v(a′1), ∀a′1,

(ii) w(y) ≥ k, ∀y,

(2)

where f(y|a1) denotes a probability density function of y ∼ N (ϕ(a1), σ
2) given the agent’s

effort a1, and λ is a welfare weight placed on the agent’s utility in the joint benefits, whereas
the last term in the joint benefits , Pr[x ≤ xb|a1, ad = 0]D, denotes the firm’s expected cost
of financial stress. Note that, since there is no derivative market, the probability of getting
into financial distress depends only on a1 and decreases as a1 increases due to the first-
order stochastic dominance relation of x with respect to a1. As shown, the joint benefits
are maximized subject to the agent’s incentive compatibility constraint, which specifies that
the agent chooses effort to maximize his utility, and the limited liability constraint, which

16As long as D is a decreasing function of x, our main results in this paper will not change qualitatively
because the firm’s expected cost of financial stress, Pr[x ≤ xb|a1, ad] ·D, is a decreasing function of x.

17Assuming that there is no derivative market is equivalent to assuming that the agent is prohibited from
trading in the derivatives market. Thus, the introduction of a derivative market later can also be understood
as allowing the agent to trade in that market.
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specifies that the agent should receive at least k, the subsistence level of utility.18,19

Based on the first-order approach, instead of the optimization in (2), we solve the fol-
lowing alternative:

max
a1,w(·)≥k

SW ≡ ϕ(a1)−
∫
w(y)f(y|a1)dy + λ

(∫
u(w(y))f(y|a1)dy − v(a1)

)
− Pr[x ≤ xb|a1, ad = 0]D

s.t. (i)

∫
u(w(y))f1(y|a1)dy − v′(a1) = 0,

(3)

where we replace the agent’s incentive compatibility constraint with its first-order condition
and f1(y|a1) ≡ ∂f(y|a′1)

∂a′1
|a′1=a1 .20

To find the optimal solution (a∗1, w
∗(y|a∗1)) for the optimization in (3), we first derive

an optimal contract for inducing an arbitrarily given action a1. Let w∗(y|a1) be the contract
that optimally motivates the agent to choose a particular level of a1. Then, by solving the
Euler equation of the above program in (3) after fixing a1, we derive that w∗(y|a1) must
satisfy

1

u′(w∗(y|a1))
= λ+ µ∗

1(a1)
f1
f
(y|a1), (4)

for almost every y for which the solution in (4) satisfies w∗(y|a1) ≥ k, and otherwise
w∗(y|a1) = k. In (4), µ∗

1(a1) denotes the optimized Lagrange multiplier for the agent’s
incentive compatibility constraint associated with a1. Since y ∼ N (ϕ(a1), σ

2), (4) reduces
to:

1

u′(w∗(y|a1))
= λ+ µ∗

1(a1)
y − ϕ(a1)

σ2
ϕ1(a1). (5)

18The optimization in (2) yields a mathematically equivalent solution to the case where a principal max-
imizes her utility subject to an optimizing agent receiving his reservation utility level: see e.g., Holmström
(1979). Our purpose here is to analyze the overall efficiency implications of financial market innovations and
thus we choose to fix λ, which is usually an endogenous Lagrange multiplier in the literature.

19The limited liability constraint, i.e., w(y) ≥ k, is introduced to guarantee the existence of the optimal
solution for w(y). This condition is needed because we assume that the signal y is normally distributed. For
details about this ‘unpleasantness’, see Mirrlees (1974) and Jewitt et al. (2008).

20We assume that the first-order approach is valid. Grossman and Hart (1983) and Rogerson (1985) show
that MLRP and CDFC are sufficient for the validity of the first-order approach when the signal space is of one
dimension. Jewitt (1988) finds less restrictive conditions for the validity of the first-order approach, based on
the agent’s risk preferences as well as the distribution function of the signal. Sinclair-Desgagné (1994) shows
that more general versions of MLRP and CDFC in a multi-dimensional space are sufficient for the validity of
the first-order approach when the signal space is of multiple dimensions. For more recent treatments along
this line, see Conlon (2009) and Jung and Kim (2015) among others. Recently, Jung et al. (2024) show the
cases in which the use of the first-order approach can be justified even when the technology follows normal
distributions, which corresponds to our problem in (2).
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Then, the optimized joint benefits associated with a1 in this case is given by

SW ∗(a1) = ϕ(a1)− C∗(a1)− λv(a1)− Pr[x ≤ xb|a1, ad = 0]D, (6)

where
C∗(a1) ≡

∫
(w∗(y|a1)− λu(w∗(y|a1))) f(y|a1)dy (7)

represents the efficiency loss in this case compared with the full information case as shown
in Kim (1995). In other words, C∗(a1) can be understood as the agency cost arising from
motivating the agent to take a particular action a1.

The optimized joint benefits for inducing a1 in (6) can also be regrouped into two parts
such as

SW ∗(a1) = EAR∗(a1)− Pr[x ≤ xb|a1, ad = 0]D, (8)

where

EAR∗(a1) ≡
∫

(x− w∗(y|a1))f(y|a1)dy + λ

[∫
u(w∗(y|a1))f(y|a1)dy − v(a1)

]
, (9)

represents the firm’s efficiency which purely comes from the agency relation, in which the
agent is to be induced to take a1 under w∗(y|a1), whereas, as explained earlier, Pr[x ≤
xb|a1, ad = 0]D is the firm’s expected cost of financial stress given (a1, ad = 0).

Finally, the optimal action a∗1 can be found by solving

a∗1 ∈ argmax
a1

SW ∗(a1). (10)

To simplify notation, we use w∗(y) ≡ w∗(y|a∗1) and SW ∗ ≡ SW ∗(a∗1).

2.2 When the Principal Does Not Know the Firm’s Risk Exposure

In this subsection, we consider the case in which the firm’s initial exposure to hedgeable
risks, R, is observed by the agent but not by the principal. As in Section 2.1, we also as-
sume that there is no derivative market (i.e., ad = 0), and rule out communication between
the principal and the agent, i.e., the agent cannot communicate observed R to the princi-
pal.21 Thus, the compensation contract must be based on (x, η), i.e., w = w(x, η), and the

21In general, communication between principals and agents are likely to be very costly, especially when
the principal is actually composed of multiple shareholders. For a more detailed discussion about communi-
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principal’s optimization is:

max
a1(·),w(·)≥k

SWN ≡
∫
R

[∫
x,η

(x− w(x, η)) g(x, η|a1(R), R)dxdη
]
h(R)dR

+ λ

∫
R

(∫
x,η

u(w(x, η))g(x, η|a1(R), R)dxdη − v(a1(R))

)
h(R)dR

−
∫
R

Pr[x ≤ xb|a1(R), ad = 0]D · h(R)dR

s.t. (i) a1(R) ∈ argmax
a1

∫
x,η

u(w(x, η))g(x, η|a1, R)dxdη − v(a1), ∀R,

(11)
where

g(x, η|a1, R) =
1

2πσ
exp

(
−1

2

(
(x− ϕ(a1)−Rη)2

σ2
+ η2

))
(12)

denotes the probability density function of (x, η) given (a1, R) when ad = 0.
Let

(
aN1 (R), w

N(x, η)
)

be the solution for the optimization program in (11). Then, the
optimal contract, wN(x, η), can be written as:

1

u′(wN(x, η))
= λ+

∫
R

µ1(R)

 g1(x, η|aN1 (R), R)∫
R′
g(x, η|aN1 (R′), R′)h(R′)dR′

h(R)dR, (13)

when wN(x, η) ≥ k in (13) and wN(x, η) = k otherwise. In the above equation, µ1(R) is
the optimized Lagrange multiplier attached to the incentive constraint for a1 given R.

We define SWN as the optimized joint benefits in this case. Thus,

SWN ≡
∫
R

[
ϕ(aN1 (R))− CN(aN1 (R))− λv(aN1 (R))− Pr[x ≤ xb|aN1 (R), ad = 0]D

]
h(R)dR,

(14)
where

CN(aN1 (R)) ≡
∫
x,η

[wN(x, η)− λu(wN(x, η))]g(x, η|aN1 (R), R)dxdη (15)

denotes the agency cost arising from inducing aN1 (R) given a realized value of R.
SWN in this case is lower than SW ∗ of Section 2.1, since R, which is an informative

cation costs, see Laffont and Martimort (1997). In Appendix B, we study the optimal truth-telling mechanism
when communication between the principal and the agent is possible.
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signal about the agent’s effort, can no longer be used in the compensation contract. This is
summarized in the following Proposition 1.

Proposition 1. When there is no derivative market (i.e., ad = 0) and any communication

between the principal and the agent is not possible, the principal’s inability to observe the

firm’s exposure to hedgeable risks, R, lowers welfare, i.e.,

SWN < SW ∗.

Intuitively, when the principal observes the firm’s initial risk exposure, R, this infor-
mation can be used for designing a compensation contract which eliminates the influence
of the hedgeable risks, i.e., w = w∗(y ≡ x − Rη).22 However, if R is not observable and
cannot be communicated, this is impossible.

3 When Managers Can Trade Derivatives

We now turn to our original model specification, where the firm’s initial exposure to hedge-
able risks, R, is not known and cannot be communicated to the principal. However, there
is a derivative market and the agent can choose any level of ad (i.e., ad is not fixed at 0).

Since the firm’s initial exposure to hedgeable risks, R, is assumed to be known only to
the agent before he takes (a1, ad), the agent’s choice of ad can be thought of as his hidden
choice of b ≡ R− ad. Then, the pricipal’s optimization program in this case reduces to

max
a1,b,w(·)≥k

SW o ≡
∫
x,η

(x− w(x, η)) g(x, η|a1, b)dxdη + λ

[∫
x,η

u(w(x, η))g(x, η|a1, b)dxdη − v(a1)

]
− Pr[x ≤ xb|a1, b ≡ R− ad]D

s.t. (i) a1 ∈ argmax
a′1

∫
x,η

u(w(x, η))g(x, η|a′1, b)dxdη − v(a′1),∀a′1,

(ii) b ∈ argmax
b′

∫
x,η

u(w(x, η))g(x, η|a1, b′)dxdη,∀b′,

(16)
where

g(x, η|a1, b) =
1

2πσ
exp

(
−1

2

(
(x− ϕ(a1)− bη)2

σ2
+ η2

))
. (17)

22As we explained in Section 2.1, this is related to the ‘informativeness principle’ in Holmström (1979),
which shows a signal has a positive value (i.e., should be used in contracts) if it affects the local likelihood
ratio.
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Let (ao1, b
o, wo(x, η)) be the optimal solution for the above program in (16). To derive

the optimal solution, especially the optimal contract, wo(x, η), we take the following steps.
Since the principal can rationally anticipate the agent’s choice of b ≡ R − ad given a

wage contract, for analytical simplicity, we start by considering a wage contract based on
z(b̂) only, i.e., w(x, η) = w(z(b̂)), where z(b̂) ≡ x− b̂η and b̂ is the principal’s beliefs of the
agent’s choice of b ≡ R − ad given the contract. Then, in order for the principal’s beliefs
to be consistent, it must be that the agent actually chooses ad satisfying b ≡ R − ad = b̂

given the contract, w(z(b̂)).
Note that, since

z(b̂) ≡ x− b̂η = ϕ(a1) +
(
b− b̂

)
η + σθ, (18)

if the agent actually chooses ad satisfying b ≡ R − ad = b̂ when w(z(b̂)) is designed, we
have

z(b̂) = ϕ(a1) + σθ = y. (19)

This indicates two things. First, as long as it is guaranteed that the agent will actually
choose b = b̂ when w(z(b̂)) is designed, w∗(z(b̂)|a1), the optimal contract for inducing a
certain a1 based on z(b̂), should have a similar form as the contract in (5) of Section 2.1.
That is, w∗(z(b̂)|a1) satisfies

1

u′(w∗(z(b̂)|a1))
= λ+ µ1

(
a1|b̂

) z(b̂)− ϕ(a1)

σ2
ϕ1(a1), (20)

if w∗(z(b̂)|a1) ≥ k in (20), and w∗(z(b̂)|a1) = k otherwise. In (20), µ1

(
a1|b̂

)
is the

optimized Lagrange multiplier for the incentive constraint for inducing a certain a1 given
b̂.

Second, since z(b̂) is independent of b̂ if the agent actually chooses b = b̂ underw(z(b̂)),
which b̂ to be induced is a matter of indifference as far as maximizing the firm’s efficiency
from the agency relation (i.e., EAR) is concerned. To see this more precisely, we decom-
pose the joint benefits (i.e., SW o) into two parts as shown in equations (8) and (9) such
as

SW o(a1, b̂) = EARo(a1, b̂)− Pr[x ≤ xb|a1, b̂]D, (21)
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where

EARo(a1, b̂) ≡
∫
x,η

(x− w∗(z(b̂)|a1))g(x, η|a1, b̂)dxdη

+ λ

[∫
x,η

u(w∗(z(b̂)|a1))g(x, η|a1, b̂)dxdη − v(a1)

]
,

(22)

represents the firm’s efficiency which purely comes from the agency relation, in which the
agent is induced to take a1 given b = b̂ under w∗(z(b̂)|a1). As shown in (19), since z(b̂) is
independent of b̂, and, as can be seen from (17), since g(x, η|a1, b̂) is also independent of b̂,
as long as the agent actually takes b = b̂ under w∗(z(b̂)|a1) in (20), which b̂ to be induced
is a matter of indifference in maximizing EARo(a1, b̂) for any given a1.23

However, the firm’s expected cost of financial stress, Pr[x ≤ xb|a1, b̂]D, will be min-
imized when b̂ = 0 (i.e., ad = R, corresponding to complete hedging) for any given a1.
Thus, we obtain that the solution, (ao1, b

o, wo(x, η)), for the optimization program in (16)
should satisfy bo = 0 (i.e., ad = R) and wo(x, η) = w∗(z(0)|ao1) in (20), where ao1 satisfies

ao1 ∈ argmax
a1

SW o(a1, b̂ = 0),

as long as the agent actually takes b = 0 when w∗(z(0)|ao1) is designed.
Note that, since z(0) = x = ϕ(a1) + σθ = y after the agent completely hedges in the

derivative market (i.e., b = bo = 0), the optimal contract in this case, w∗(z(0)|ao1), reduces
to w∗(x|ao1) which has the same contractual form as the one in (5) but depends on x instead
of y ≡ x−Rη. That is, the optimal contract in this case, w∗(x|ao1), satisfies

1

u′(w∗(x|ao1))
= λ+ µ∗

1(a
o
1)
x− ϕ(ao1)

σ2
ϕ1(a

o
1), (23)

if w∗(x|ao1) ≥ k in (23), and w∗(x|ao1) = k otherwise. In (23), µ∗
1(a

o
1) is the optimized

Lagrange multiplier of the incentive constraint for inducing ao1.
24

The above discussion about the solution for the above program in (16), i.e., (ao1, b
o =

0, wo(x, η) = w∗(x|ao1)), however, is valid only when the agent voluntarily takes b = 0

(i.e., ad = R) when w∗(x|ao1) in (23) is designed. Thus, an important question of whether

23This issue of a matter of indifference associated with which b̂ to be induced will be proven in a more
general setting later in Lemma 1.

24Note that ao1 here can be different from a∗1 defined in optimization (10), since the probability Pr[x ≤
xd|a1, b] is affected by a change from b = R in Section 2.1 to b = 0 here.
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the agent will actually choose b = 0 when w∗(x|ao1) in (23) is offered still remains.
Given the optimal contract, w∗(x|ao1), the agent’s incentive for risk choice depends on

the curvature of his indirect utility V (·) such as

V (x) ≡ u(w∗(x|ao1)). (24)

If V (x) is convex (concave) in x, then the agent wants to raise (reduce) the level of
risk embedded in x if possible. In general, the curvature of the agent’s indirect utility
function V (x) depends on the distribution of random state variables (θ, η) as well as the
utility function u(·) itself. In this model, however, since all the state variables are assumed
to be normal, the agent’s utility function, u(·), mainly determines his risk preferences. To
see how different utility functions affect this curvature differently, for example, consider
the case where the agent has constant relative risk aversion with degree 1− t, where t < 1

(i.e., u(w) = 1
t
wt, t < 1). Then, we obtain from (23) that

w∗(x|ao1) =
(
λ+ µ∗

1(a
o
1)

(
x− ϕ(ao1)

σ2

)
ϕ1(a

o
1)

) 1
1−t

, (25)

and the agent’s indirect utility under this wage contract is

V (x) ≡ u(w∗(x|ao1)) =
1

t

(
λ+ µ∗

1(a
o
1)

(
x− ϕ(ao1)

σ2

)
ϕ1(a

o
1)

) t
1−t

. (26)

The above equation shows that the agent’s indirect utility V (x) becomes strictly convex

in x if t > 1
2
, linear if t = 1

2
, and concave if t < 1

2
for x satisfying w∗(x) ≥ k.25 Thus, if we

assume w∗(x) = k only for sufficiently low x, as far as the agent’s induced risk preferences
are concerned, the agent acts as if he is risk-loving if t > 1

2
(i.e., the agent’s relative risk

aversion is lower than 1
2
), as if he is risk-neutral if t = 1

2
, and as if he is risk averse if t < 1

2
.

Voluntary hedging case With a concave indirect utility function V (x), the agent has an
incentive to minimize the risk of output x. Thus, his optimal strategy is to eliminate the
firm’s risk exposure, R, by choosing ad = R.26 As a result, w∗(x|ao1) in (23) works well as
the optimal contract in this case.

25It is widely known in the literature that µ∗
1(a

o
1) > 0. For various versions of the proof, see Holmström

(1979), Jewitt (1988), Jung and Kim (2015), Jung et al. (2024) among others.
26Since x = ϕ(a1) + σθ + (R− ad)η, the agent can minimize the risk of x by choosing ad = R.
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In this case, the introduction of a derivative market unambiguously increases social
welfare (i.e., SWN < SW o) via two channels. To see these two channels more precisely,
we decompose the changes in welfare by the introduction of a derivative market as follows.

SW o − SWN = (SW o − SW ∗) +
(
SW ∗ − SWN

)
. (27)

The first term on the right-hand side of equation (27), which represents the welfare change
from the benchmark case, is always positive in this case (i.e., SW o > SW ∗). The intro-
duction of a derivative market improves on social welfare mainly by reducing the firm’s
chance of getting into the financially stressful situation compared with the benchmark case
of Section 2.1 (i.e., Pr[x ≤ xb|a1, R − ad = 0] < Pr[x ≤ xb|a1, R],∀a1) because it gives
the agent the opportunity to hedge completely (i.e., ad = R).27 Furthermore, the second
term on the right-hand side of equation (27), which represents the welfare change to the
benchmark case, is also positive as shown in Proposition 1 (i.e., SW ∗ > SWN ). The
agent’s voluntary hedging in the derivative market improves on the firm’s efficiency from
the agency relation by effectively eliminating the principal’s informational disadvantage
about the firm’s risk exposure, R. Actually, the agent’s hedging in the derivative market
provides the principal with better (i.e., more precise) information about the agent’s hidden
choice of a1 compared with when there is no derivative market. It becomes thereby easier
for the principal to control the agent’s hidden action a1.28

In sum, the introduction of a derivative market provides hedging opportunities for firms,
and thus improves social welfare by reducing their expected cost of financial stress (i.e.,
SW o > SW ∗), which is rather well recognized in the literature as the main benefit of
having a hedging opportunity. However, as is explicitly shown in this paper, there is another
benefit of hedging in the derivative market, that is, improving on the firm’s efficiency from
the agency relation by providing the principal with better information about the agent’s
hidden effort choice a1.

This result is summarized in the following Proposition 2.

Proposition 2. When the agent’s indirect utility defined as V (x) = u(w∗(x|ao1)) in (24) is

concave in output x, the agent will voluntarily choose ad = R (i.e., b = 0, complete hedg-

ing) in the derivative market given w∗(x|ao1), which not only lowers the firm’s expected cost

of financial stress but also eliminates the welfare loss that would arise from the principal’s
27In fact, in the overall effect that SW o − SWN > 0, not only the reduction in the expected cost of the

firm’s financial stress but the changes in the optimal effort from a∗1 to ao1 thereby is also included.
28For detailed discussion on the value of information in the agency setting, see Kim (1995).
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informational disadvantage about the firm’s risk-exposure R. Thus, we have that the so-

lution for the optimization program in (16), (ao1, b
o, wo(x, η)), becomes (ao1, 0, w

∗(x|ao1))
and

SWN < SW ∗ < SW o.

As we discussed earlier, for the agent with constant relative risk aversion with degree
1 − t (i.e., u(w) = 1

t
wt, t < 1), for example, if the agent’s preferences show a higher risk

aversion than t = 1
2

(i.e., t < 1
2
), the agent will have a concave indirect utility, V (x), and

thereby the above Proposition 2 holds.

Speculation case On the other hand, if the agent’s indirect utility V (x) = u(w∗(x|ao1)) in
(24) becomes convex in output x, the agent will choose |ad| = ∞ (i.e., infinite speculation),
given w∗(x|ao1). Thus, w∗(x|ao1) in (23) can be no longer optimal because it is an optimal
contract only when the agent actually takes ad = R (i.e., b = 0). Furthermore, the agent’s
taking |ad| = ∞ will dramatically increase the firm’s expected cost of financial stress.
Thus, the principal should revise w∗(x|ao1) to another contract to restrict the agent’s such
unlimited speculation.29 To derive the new optimal contract, wo(x, η), which is different
from w∗(x|ao1) in this case, we start with the following lemma.

Lemma 1. As far as maximizing only the firm’s efficiency from the agency relation (i.e.,

EAR) is concerned, if wo(x, η) is the optimal contract which induces (ao1, b
o), where

−∞ < bo < +∞, then wo(t, η) inducing (ao1, b1), where t ≡ x + (bo − b1)η, is also

the optimal contract in the sense that

EARo(ao1, b
o) = EARt(ao1, b1),

where
EARo(a1, b) ≡

∫
x,η

(x− wo(x, η))g(x, η|a1, b)dxdη

+ λ

[∫
x,η

u(wo(x, η))g(x, η|a1, b)dxdη − v(a1)

]
,

(28)

29As explained earlier, this will be the case, for example, when the agent with constant relative risk
aversion with degree 1− t (i.e., u(w) = 1

tw
t, t < 1) has less risk aversion than 1

2 (i.e., t > 1
2 ).
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and
EARt(a1, b) ≡

∫
t,η

(x− wo(t, η))g(t, η|a1, b)dtdη

+ λ

[∫
t,η

u(wo(t, η))g(t, η|a1, b)dtdη − v(a1)

]
.

(29)

It is already explained that which b to be induced for maximizing only the firm’s effi-
ciency from the agency relation (i.e., EAR) by designing w∗(z(b̂)|a1) in (20) is a matter
of indifference. Lemma 1 proves this in a more general way. Lemma 1 actually shows that
even if V (x) ≡ u(w∗(x|ao1)) in (24) is convex in x, and thereby the agent prefers specu-
lation to hedging given w∗(x|ao1), to which level the principal should limit the agent’s risk
choice by revising the contract is also a matter of indifference as far as maximizing only
the firm’s efficiency from the agency relation is concerned.

However, if we take the firm’s concern to reduce its expected cost of financial stress into
consideration, we can easily see that, as in the previous case in which V (x) ≡ u(w∗(x|ao1))
is concave in x, the principal should induce the agent to completely hedge (i.e., bo = 0) even
in this case. Therefore, given that V (x) ≡ u(w∗(x|ao1)) in (24) is convex in x, the optimal
solution for b for the program in (16) will be 0 (i.e., bo = 0), and the new optimal contract,
wo(x, η), inducing the agent to take (ao1, b = 0) must solve the following optimization
problem:

max
w(·)≥k

SW o ≡
∫
x,η

(x− w(x, η)) g(x, η|ao1, b = 0)dxdη + λ

[∫
x,η

u(w(x, η))g(x, η|ao1, b = 0)dxdη − v(ao1)

]
− Pr[x ≤ xb|ao1, b = 0] ·D

s.t. (i)

∫
x,η

u(w(x, η))g1(x, η|ao1, b = 0)dxdη − v′(ao1) = 0,

(ii) b = 0 ∈ argmax
b

∫
x,η

u(w(x, η))g(x, η|ao1, b)dxdη,∀b.

(30)
The optimization program in (30) takes optimal ao1 as given, and relies on the first-

order approach for the incentive constraint associated with a1, as we do in the optimization
program in (3).30 Note that, however, we do not use the same first-order approach for
the incentive constraint associated with the agent’s risk choice b. The following Lemma
2 demonstrates the reason why we cannot use the first-order approach for the incentive
constraint associated with b.

30g1(x, η|a1, b) is defined as a partial derivative of g(x, η|a1, b) with respect to a1.
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Lemma 2. If w∗(x|ao1) in (23) is designed, the agent will be indifferent between taking b

and taking −b, ∀b.

Lemma 2 shows that if w∗(x|ao1) in (23) is offered, the agent’s expected utility becomes
symmetric around b = 0 (i.e., ad = R) in the space of b (i.e., in the space of ad). Since∫
u(w∗(x|ao1))g(x, η|ao1, b)dxdη is continuous and differentiable in b, Lemma 2 implies that∫

u(w∗(x|ao1))gb(x, η|ao1, b = 0)dzdη = 0.31 (31)

Note that (ao1, w
∗(x|ao1)) is the solution for the optimization program in (30), as long as

the agent’s taking b = 0 (complete hedging) is guaranteed under w∗(x|ao1). Also, equation
(31) shows that w∗(x|ao1) always satisfies the first-order condition of constraint (ii) in (30)
at b = 0 regardless of whether w∗(x|ao1) actually guarantees the agent’s taking b = 0 or
not. This tells that if we replace the original ‘argmax’ constraint (ii) in (30) with the its
first-order condition, we will always end up with w∗(x|ao1) in (23) as the optimal contract.
However, since what we consider here is the case in which V (x) ≡ u(w∗(x|ao1) is convex
in x, the agent will take b = ±∞ instead of b = 0 given w∗(x|ao1). This indicates that using
the first-order approach for the incentive constraint associated with b cannot be justified in
this case.

Thus, by following Grossman and Hart (1983), we replace the incentive constraint for
b (i.e., (ii) in (30)) with:∫

u(w(x, η)) (g(x, η|ao1, b = 0)− g(x, η|ao1, b)) dxdη ≥ 0, ∀b, (32)

which guarantees that the manager’s indirect utility is maximized when he takes b = 0 (i.e.,
ad = R).

Since (ao1, b
o, wo(x, η)) is already defined as the solution for the optimization program

in (16), and since we know that the optimal level of b (i.e., bo) should be 0 (i.e., complete

31We also define gb(x, η|a1, b) as a partial derivative of g(x, η|a1, b) with respect to b.
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hedging), the optimal contract in this case, wo(x, η) should solve:32

max
w(·)≥k

SW o ≡
∫
x,η

(x− w(x, η)) g(x, η|ao1, b = 0)dxdη + λ

[∫
x,η

u(w(x, η))g(x, η|ao1, b = 0)dxdη − v(ao1)

]
− Pr[x ≤ xb|ao1, b = 0] ·D

s.t. (i)

∫
x,η

u(w(x, η))g1(x, η|ao1, b = 0)dxdη − v′(ao1) = 0,

(ii)

∫
x,η

u(w(x, η))(g(x, η|ao1, b = 0)− g(x, η|ao1, b))dxdη ≥ 0, ∀b.

(33)
The Euler equation of the above program in (33) yields the optimal contract, wo(x, η),

that satisfies

1

u′(wo(x, η))
=λ+ µo

1(a
o
1)
x− ϕ(ao1)

σ2
ϕ1(a

o
1) +

∫
µo
b(b)

(
1− g(x, η|ao1, b)

g(x, η|ao1, b = 0)

)
db︸ ︷︷ ︸

Additional term to (23)

,

(34)
for (x, η) satisfying wo(x, η) ≥ k in (34) and wo(x, η) = k otherwise. In (34), µo

1(a
o
1) and

µo
b(b) are the optimized Lagrange multipliers associated with the first constraint (i.e., (i))

and the second constraint for a particular b (i.e., (ii)), respectively.33

As we formally show in Appendix A, from equation (34), we can derive the following
properties of the optimal contract wo(x, η):

Proposition 3. When the agent’s indirect utility V (x) ≡ u(w∗(x|ao1)) in (24) is convex in

output x, the principal should motivate the agent to hedge completely (i.e., b = 0 or ad =

R) by designing a new contract, wo(x, η) in (34), which (i) satisfies wo(x, η) = wo(x,−η)
for all x, η; (ii) penalizes the agent for having a high realization of (x − ϕ(ao1))

2η2, and

(iii) for any given output x and (x− ϕ(ao1))
2η2, pays more for a higher η2.

Proposition 3 can be understood as follows. Since the agent is induced to choose b = 0

by wo(x, η), x = ϕ(ao1) + σθ will be generated, which is independent of η. Thus, η is now
irrelevant in inducing ao1 (as x does not depend on η under b = 0). Furthermore, since η is
symmetrically distributed around 0, we have wo(x, η) = wo(x,−η) for all x to minimize
the amount of risk imposed on the agent.

32Note that ao1 here will usually be different from ao1 defined in (23) becausewo(x, η) here may be different
from w∗(z(0)|ao1) ≡ w∗(x|ao1) included in (23). Yet, we use the same notation ao1 to avoid notational
complexity.

33For general reference about the variational approach to the optimization program in (33), see e.g., Lu-
enberger (1969).
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Since b can be expressed as Cov(x, η) ≡ E((x − ϕ(ao1))η) with output x = ϕ(ao1) +

bη + σθ given ao1, the agent’s derivative choice ad, or equivalently his choice of the firm’s
adjusted exposure to hedgeable risks b = R − ad can be best measured by the covariance
between output x and derivative market observable η. If the agent fully hedges (i.e., b = 0),
the covariance between output x and derivative market observable η becomes zero, whereas
any other b ̸= 0 generates non-zero covariance.

Thus, by penalizing any (positive or negative) covariance between x and η, the principal
can effectively induce full hedging (i.e., b = 0) from the agent. In our single period model,
any positive or negative sample covariance Ĉov = (x− ϕ(ao1))η, instead of the population
covariance is used in a way that a higher |Ĉov| pays a lower compensation in wo(x, η).
More precisely, as shown in the proof in Appendix A, since the optimization program
in (33) is symmetric around b = 0, the optimal contract wo(x, η) punishes positive and
negative sample covariance (x − ϕ(ao1))η in a symmetric way, i.e., penalizes higher ((x −
ϕ(ao1)η)

2.
On the other hand, if the sample covariance Ĉov = (x − ϕ(ao1))η = bη2 + σθη is big

(positively or negatively), not because of the agent’s speculation (i.e., b ̸= 0) but from a
high level of the realized market observable, |η|, the principal will take it into account and
penalize less in wo(x, η). Actually, given the output level, x, and the sample covariance,
Ĉov, wo(x, η) pays more for a higher |η|.

Note that our characterization of the optimal contract in Proposition 3 is different from
Barron et al. (2020) in several dimensions: while Barron et al. (2020) assume that the agent
can choose any mean-preserving spread of output in a non-parametric way,34 the agent in
our model affects the output distribution only in a certain way, given by (1). Also, in our
setting, contracts can depend on not only output but also hedgeable risks, while contracts
are written on output only in Barron et al. (2020). In our framework, the optimal contract
in Proposition 3 yields a higher welfare than a contract that would optimally concavify the
agent’s indirect utility function in output, which is suggested by Barron et al. (2020) as an
optimal contract.

Welfare implication Unlike the previous case where V (x) ≡ u(w∗(x|ao1)) is concave in
x, if V (x) ≡ u(w∗(x|ao1)) is convex in x, however, the social welfare can be lowered by
the introduction of a derivative market.

34In our model, it would correspond to the case in which the agent can choose any distribution of (R−ad)η
(i.e., not just a level of ad) in (1).
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To see how the introduction of the derivative market affects social welfare in this case
more precisely, we consider equation (27) here again.

As in the previous case where V (x) = u(w∗(x|ao1)) is concave in x, the second term on
the right-hand side of equation (27),

(
SW ∗ − SWN

)
, is also positive in this case, indicat-

ing that there arises the same informational gain from the derivative market.
Such informational gain will be costlessly obtained in the previous case as explained

in Proposition 2. However, in this case where V (x) ≡ u(w∗(x|ao1)) is convex in x, it will
be obtained with an extra agency cost since the principal should revise the agent’s contract
from w∗(x|ao1) to wo(x, η) to motivate the agent to choose ad = R (i.e., b = 0). On the
other hand, the introduction of a derivative market improves on social welfare by lowering
the firm’s chance of getting into the financially stressful situation through ad = R (i.e.,
b = 0) as in the previous case.

Thus, the first term on the right-hand side of equation (27), (SW o − SW ∗), can be pos-
itive or negative in this case. Especially, if the extra agency cost for motivating the agent to
hedge (i.e., ad = R) by changing the optimal contract from w∗(x|ao1) to wo(x, η) dominates
the gain from lowering the firm’s expected cost of financial stress, (SW o − SW ∗) can be
negative, which does not occur in the case where V (x) ≡ u(w∗(x|ao1)) is concave in x.

Note that SWN depends on the density function of R, h(R), whereas SW ∗ does not.
This actually indicates that the informational gain from the introduction of a derivative
market,

(
SW ∗ − SWN

)
, depends on σ2

R in a way that it decreases as σ2
R decreases. It is

rather obvious that if the randomness of R (say, σ2
R) becomes small, then the benefits from

knowing R also becomes small, and thus
(
SW ∗ − SWN

)
→ 0 as σ2

R → 0.
On the other hand, the gain from reducing the firm’s expected cost of financial stress

(i.e., the positive effect on (SW o − SW ∗)) due to the introduction of a derivative market
depends crucially on the size of R itself rather than the randomness of R, σ2

R, whereas
the extra agency cost (i.e., the negative effect on (SW o − SW ∗)) by its introduction is
independent of both the size of R as well as its variability σ2

R. This is mainly because both
w∗(x|ao1) and wo(x, η) are independent of both R and h(R).35 Actually, when the firm’s
initial exposure to hedgeable risks, R, is small, the efficiency gain from reducing the firm’s
expected cost of financial stress becomes small as well.

Consequently, if the firm’s initial exposure to hedgeable risks, R, is small, and its ran-
domness (i.e., σ2

R) is small as well, then it is possible that the introduction of a derivative
market lowers social welfare, i.e., SW o < SWN . In other words, sometimes, banning

35Also, note that it is assumed that there is no hedging cost.
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the agent’s access to derivative markets can be welfare improving from the social welfare
perspective.

This is summarized in the following proposition.

Proposition 4. When the agent’s indirect utility given w∗(x|ao1) in equation (23), V (x), is

convex in output x, then social welfare can be lowered by the introduction of a derivative

market, i.e., SW o < SWN . This may happen especially when the firm’s initial exposure to

hedgeable risks, R, is small and its randomness, σ2
R, is also small.

4 Extensions

In this section we briefly discuss two ways in which the model is extended in the Appendix
(i.e., Appendix B and Appendix C). We first consider communication between the principal
and the agent and describe conditions under which the agent truthfully reveals the firm’s
risk exposure to the principal. We then consider the case in which the agent has discretion
over the firm’s risky project choice as well as the derivative choice.

Communication between the principal and the agent In Appendix B, we consider
the case in which communication between the principal and the agent is allowed about
the value of the firm’s initial risk exposure, R, that is observed only by the agent. We
show that under some conditions, the agent, given the compensation contract that would
be optimal under symmetric information, will truthfully reveal the firm’s risk exposure.
These conditions are identical to the condition under which the agent voluntarily hedges.
This illustrates how hedging improves the firm’s efficiency with the agency relationship by
eliminating the cost associated with asymmetric information.

Discretionary project choices In Appendix C, we consider the case in which the firm’s
non-hedgeable risks and expected rate of return are endogenous. Specifically, instead of
(1) where the firm’s amount of non-hedgeable risks, σ, is given, we assume

x = ϕ(a1, a2) + a2θ + (R− a3)η, (35)

where the agent can choose the amount of the firm’s non-hedgeable risks, a2. We interpret
the agent’s second action a2 as his (risky) project choice and assume that a riskier project
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generates a higher expected output, i.e., ϕ2(a1, a2) > 0. As in (1), a1 and a3 denote the
agent’s effort and derivative choices.

It is interesting to compare the results in Appendix C to those in Section 3 which takes
the firm’s real investment choice as given. Recall that in Section 2, we start from the bench-
mark case whereR is observed by the principal, which reduces the problem to the canonical
principal-agent model (e.g., Holmström (1979)). The agent’s indirect utility function under
the optimal contract w∗(x|ao1) in this benchmark scenario becomes V (x) ≡ u(w∗(x|ao1)).
As we have shown, (i) if V (x) is concave (convex) in x, then the agent will choose to per-
fectly hedge (infinitely speculate) when there is a derivatives market and (ii) V (x) is more
likely to be concave (convex) when the agent’s utility function exhibits higher (lower) risk-
aversion. Therefore, a “less risk-averse” manager is more likely to speculate in a derivative
market given the benchmark optimal contract.

In cases with a flexible project choice a2, we obtain the opposite result: a “more risk-
averse” manager tends to speculate infinitely when derivative transaction is allowed. When
the agent’s risk aversion is sufficiently high, the principal tends to design a contract to in-
duce the manager to choose a higher project risk level a2, to benefit from the positive risk-
return trade-off. Such a contract, by rewarding a higher level of risk taking, will in turn in-
duce the manager to speculate infinitely in the presence of a derivative market. It can be un-
derstood as a side effect of inducing “productive” project risk-taking (i.e., ϕ2(a1, a2) > 0)
through an incentive contract. A contract that promotes risk-taking in the real investment
choice induces the manager to speculate infinitely with the introduction of derivative mar-
kets, as he effectively acts as if he is risk-loving under the contract. Therefore, when the
manager with sufficiently high risk-aversion has discretion about project choice, the opti-
mal contract is more likely to explicitly account for hedgeable risks or restrict the use of
derivatives.

5 Conclusion

The literature on risk management is vast and growing, but to a large extent it ignores issues
that are most relevant especially to large public firms. In particular, most of the literature
focuses on financially constrained firms, and does not account for the fact that risk manage-
ment choices are made by self-interested managers rather than by value-maximizing equity
holders.

While information asymmetries generally play an important role in agency relation-
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ships, as we show, the ability to hedge can sometimes nullify the negative effects of asym-
metric information about a firm’s risk exposure between the principal and the self-interested
manager. Specifically, we show that under some conditions, the manager, compensated on
the firm’s hedged profits, makes the hedging choice that would have been chosen by fully
informed shareholders. Asymmetric information about risk exposure, however, will not
be always eliminated costlessly. In other situations, the manager’s compensation contract
must be altered to motivate him to hedge appropriately.36 In these situations, derivatives
markets may or may not contribute to welfare, and if the required alteration in the man-
ager’s compensation contract is too costly, the firm may be better off banning the use of
derivatives.

While we present our model in the context of a relationship between shareholders of a
corporation and its CEO, it can also be applied to the relationship between the CEO and the
heads of the firm’s divisions. In such a setting, the division heads can be interpreted as the
agents, each of whom is supposed to report to the firm’s CEO, who may not observe each
division’s risk exposure. The CEO thus has to design a contract for each division head that
elicits information about the division’s risk exposure and simultaneously induces effort.

There are three reasons why information about each division’s exposure to hedgeable
risks can be useful for the CEO. The first reason, which we emphasize in this framework,
is that by taking out the effect of hedgeable risks, the contract for each division head can
be designed to induce effort more efficiently. The second reason, which is considered in
DeMarzo and Duffie (1991, 1995) and Breeden and Viswanathan (2016), is that the better-
informed CEO may be able to better allocate resources among different divisions. The third
reason is that, by aggregating information from the divisions, the CEO can provide a more
accurate estimate of the firm’s total risk exposure to the firm’s board of directors, who can
then use this information to better evaluate and compensate the CEO.

This description of incentives and risk choices of multi-divisional firms is especially rel-
evant in the financial sector, where each business unit is likely to be exposed to unique risks
that may be difficult to communicate. As illustrated in this paper, designing compensation
contracts that optimally elicit both efforts and hedging choices can be quite complicated,
and in some situations, the firm is better off banning the use of derivatives. Indeed, one of
the lessons of the 2008 Global Financial Crisis (GFC) was that inappropriately compen-

36When the indirect utility function is not concave, the optimal contract deviates from the contract speci-
fied by Holmström (1979), and in addition to being a function of hedged projects, it includes the realization
of the hedgeable risk.
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sated executives can potentially be induced to take risks that destroy considerable value.
Although our model is already quite complex, there are several extensions that may be

considered in future research. The first is to consider this problem in a dynamic setting.
We have shown that the optimal compensation contract sometimes penalizes the agent for
realizing unusually high or low output when the payoff from the derivative trading is also
unusually high or low, respectively. We interpret this as penalizing covariance between
hedgeable risks and the output. In a dynamic extension of the model, where output and
hedgeable risk are observed each period, the compensation contract can explicitly penalize
an estimate of covariance. We conjecture that the efficiency of the compensation contract
will improve as this covariance estimate becomes more accurate, increasing the gains from
hedging.

A second potential extension has to do with uncertainty about the agent’s risk aversion
of the agent. In our model, the risk aversion plays an important role, because it affects the
curvature of the agent’s indirect utility function, and thereby his risk choices. Uncertainty
about the agent’s risk aversion, however, makes it difficult to design a contract that induces
the agent to take appropriate derivative positions, which may increase the incentive of firms
to restrict the use of derivatives.
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Appendix A Proofs

Proof of Proposition 1: Consider the principal’s following alternative maximization pro-
gram:

max
a1(·),w(·)≥k

∫
R

∫
x,η

(x− w(x,R, η)) g(x, η|a1(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x,R, η))g(x, η|a1(R), R)dxdη − v(a1(R))

)
h(R)dR

−
∫
R

Pr [x ≤ xb|a1(R), ad = 0]D · h(R)dR

s.t. (i)

∫
x,η

u(w(x,R, η))g1(x, η|a1(R), R)dxdη − v′(a1(R)) = 0,∀R.

(A1)

Note that the above optimization program is different from the original program in (11) in
that the contract here can be written based on the realized value of R, implying that the
principal also observes R. If we let the Lagrange multipliers to the incentive constraint be
µ1(R)h(R), we get the following optimal contractual form:

1

u′(w(x,R, η))
= λ+ µ1(R)

x−Rη︸ ︷︷ ︸
≡y

−ϕ(a1(R))

σ2
ϕ1(a1(R)), (A2)

when w(x,R, η) ≥ k. Equation (A2) implies that the optimal contract depends only on
y ≡ x − Rη, and it is obvious that the solution in (A1) is (a∗1, w

∗(y) ≡ w∗(x−Rη)). By
comparing (A1) with the program in (11) where the principal does not observe R, one can
easily see that the set of wage contracts, {w(x,R, η)}, satisfying the incentive constraint for
a given action a1(R) in the above program (A1) always contains the set of wage contracts,
{w(x, η)}, satisfying the incentive constraint for the same action in (11). Therefore, we
have

SWN ≤ SW ∗. (A3)

However, one can easily see that w∗(y) = w∗(x − Rη), which is a unique solution for the
above program (A1), is not in the set of {w(x, η)}. As a result, we finally derive

SWN < SW ∗. (A4)
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Proof of Lemma 1: Since x = ϕ(a1) + bη + σθ for any given (a1, b), and t ≡ x + (bo −
b1)η = ϕ(a1) + (bo − b1)η + b′η + σθ for any given (a1, b

′). We have

x given (a1, b) = t given (a1, b
′), whenever b′ = b− (bo − b1),

which implies that, if b′ = b− (bo − b1), then density function

g(x, η|a1, b) =
1

2πσ
exp

(
−1

2

(
(x− ϕ(a1)− bη)2

σ2
+ η2

))
is the same as density function

g(t, η|a1, b′) =
1

2πσ
exp

(
−1

2

(
(t− ϕ(a1)− (bo − b1 + b′)η)2

σ2
+ η2

))
=

1

2πσ
exp

(
−1

2

(
(t− ϕ(a1)− bη)2

σ2
+ η2

))
where t = x+ (bo − b1)η.

Thus, we have∫
x,η

u(wo(x, η))g(x, η|a1, b)dxdη =

∫
t,η

u(wo(t, η))g(t, η|a1, b′ = b− (bo − b1))dtdη,

for any given (a1, b), indicating that if the agent is induced to take (ao1, b
o) under wo(x, η),

then he will also be induced to take (ao1, b1) under wo(t, η) where t = x+ (bo − b1)η.
Furthermore, since∫

x,η

wo(x, η)g(x, η|a1, b)dxdη =

∫
t,η

wo(t, η)g(t, η|a1, b′ = b− (bo − b1))dtdη,

if wo(x, η) is the optimal contract which maximizes EARo(a1, b) in equation (28) by in-
ducing (ao1, b

o), then wo(t, η), where t = x + (bo − b1)η, equally maximizes EARt(a1, b)

in (29) by inducing (ao1, b1), i.e.,

EARo(ao1, b
o) = EARt(ao1, b1).
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Proof of Lemma 2: Given that w∗(x|ao1) described in (23) is designed,1 if the agent takes
(ao1, b), then his expected utility becomes:∫
u(w∗(x|ao1))g(x, η|ao1, b)dxdη − v(ao1) =

∫
u(w∗(x|ao1))q(x|ao1, b, η)l(η)dxdη − v(ao1),

(A5)
where q(·) denotes the conditional density function of x given (ao1, b, η) and l(·) denotes the
density function of η ∼ N(0, 1). Now, suppose the agent takes (ao1,−b) under w∗(x|ao1).
Then,∫
u(w∗(x|ao1))g(x, η|ao1,−b)dzdη−v(ao1) =

∫
u(w∗(x|ao1))q(x|ao1,−b, η)l(η)dzdη−v(ao1).

(A6)
Since

q(x|ao1, b, η) =
1√
2πσ

exp

(
−(x− ϕ(ao1)− bη)2

2σ2

)
, (A7)

we have
q(x|ao1, b, η) = q(x|a1,−b,−η). (A8)

Since η ∼ N(0, 1) is symmetrically distributed around 0 and l(η) = l(−η), ∀η, and since
w∗(x|ao1) in (23) is independent of b, we finally have∫

u(w∗(x|ao1))g(x, η|ao1, b)dxdη − v(ao1) =

∫
u(w∗(x|ao1))g(x, η|ao1,−b)dxdη − v(ao1),

(A9)
implying that, given w∗(x|ao1) in (23), the agent is indifferent between taking b and taking
−b, ∀b.

Proof of Proposition 3: To prove this proposition, we start with the following Lemma 3.

Lemma 3. If the agent’s indirect utility V (x) = u(w∗(x|ao1)) in (24) is convex in output

x, then the optimal contract wo(x, η) guaranteeing that the agent takes ao1, a
o
d = R (i.e.,

bo = 0), i.e., wo(x, η) in equation (34), must satisfy

Property (1) µo
b(b) ̸= 0 (> 0) for a positive Borel-measure of b.2

1The output x is given by x = ϕ(ao1) + σθ + bη given ao1 and b = R− ad.
2We already know µo

4(b) ≥ 0 for every b (almost surely), since it is derived from the inequality constraint
at each b.
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Property (2) wo(x, η) = wo(x,−η) for all x, η and µo
b(b) = µo

b(−b) for all b.

Proof of Lemma 3.
Property (1): µo

b(b) ̸= 0 for a positive Borel-measure of b.
Assume µo

b(b) = 0, a.s. Then the optimal contract wo(x, η) in (34) can be written as

1

u′(wo(x, η))
= λ+ µo

1

x− ϕ(ao1)

σ2
ϕ1(a

o
1), (A10)

for (x, η) satisfying wo(x, η) ≥ k in (A10) and wo(x, η) = k, otherwise.
This indicates that (wo(x, η), µo

1, a
o
1) becomes (w∗(x|ao1), µ∗

1(a
o
1), a

o
1) in this case. How-

ever, since V (x) ≡ u(w∗(x|ao1)) is convex in x by assumption, the agent will take b = ±∞
instead of b = 0, which contradicts with the constraint (ii) in (30).

Property (2): wo(x, η) = wo(x,−η) for all x, η and µo
4(b) = µo

4(−b) for all b.
We first see that given ao1:

3

g(x, η|b) = 1

2πσ
exp

(
−1

2

(x− ϕ(ao1)− bη)2

σ2
− 1

2
η2
)
, (A11)

where
g(x, η|b)

g(x, η|b = 0)
= exp

(
bη(x− ϕ(ao1))

σ2

)
exp

(
−b

2η2

2σ2

)
. (A12)

From (A11), we obtain that (i) g(x,−η|b = 0) = g(x, η|b = 0), and (ii) g1(x,−η|b = 0) =

g1(x, η|b = 0). Also, from (A11), we see that

g(x, η|b) = g(x,−η| − b), ∀(x, η, b). (A13)

Our strategy is to prove that: (i) if wo(x, η) is an optimal contract, then wo(x,−η) sat-
isfies all the constraints in (30), (ii) based on (i), if wo(x, η) is an optimal contract, then
wo(x,−η) also becomes an optimal contract, and (iii) µo

b(−b) = µo
b(b) for ∀b at the opti-

mum.

3We suppress ao1 in g(x, η|ao1, b) in (31). Note that g(x, η|a1, b) yields the following likelihood ratios:

g1
g
(x, η|a1, b) =

x− bη − ϕ(a1)

σ2
ϕ1(a1),

gb
g
(x, η|a1, b) =

(x− bη − ϕ(a1))η

σ2
.
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Claim 1. If wo(x, η) is an optimal contract, then wo(x,−η) satisfies all the constraints in
(30).

As wo(x, η) is optimal, it satisfies the constraints in (30). We start from the incentive
constraint for a1. Since g1(x, η|b = 0) = g1(x,−η|b = 0), we have∫
u(wo(x,−η))g1(x, η|b = 0)dxdη − v′(ao1) =

∫
u(wo(x,−η))g1(x,−η|b = 0)dxdη − v′(ao1)

=

∫
u(wo(x, η))g1(x, η|b = 0)dxdη − v′(ao1) = 0,

where we use the change of variable (i.e., −η to η) in the second equality.
Also, as wo(x, η) is optimal,∫

u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη ≥ 0. (A14)

Thus, we obtain for any given b∫
u(wo(x,−η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

=

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η| − b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη ≥ 0,

where the first equality is from g(x, η|b = 0) = g(x,−η|b = 0) and (A13) and the second
equality is from the change of variable (i.e., −η to η). Thus, we proved that if wo(x, η) is
an optimal contract, then wo(x,−η) satisfies all the constraints in (30).

Claim 2: If wo(x, η) is an optimal contract, then wo(x,−η) also is an optimal contract.

From Claim 1, wo(x,−η) satisfies all the constraints in (30) at (ao1, b = 0). Thus, it
is sufficient to show that wo(x,−η) achieves the same efficiency as wo(x, η). This follows
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from:∫
(x− wo(x,−η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x, η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x,−η))g(x,−η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x,−η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x, η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
,

where the first equality is from that g(x, η|b = 0) = (x,−η|b = 0), and the second equality
is from the change of variable (i.e., −η to η). Also, note that the firm’s expected bankruptcy
cost, Pr[x ≤ xb|ao1, b = 0]·D does not change because bothwo(x, η) andwo(x,−η) induce
the agent to take the same (ao1, b = 0). Therefore, if wo(x, η) is an optimal contract, then
wo(x,−η) becomes an optimal contract and we obtain wo(x,−η) = wo(x, η).4

Claim 3. µo
b(−b) = µo

b(b), ∀b.

Note from the Lagrange duality theorem (see e.g., Luenberger (1969)) that the optimal
solution (µo

1, {µo
b(b)}, wo(·)) is the one that solves minµ1,{µb(·)}maxw(·) L where L is given

by

L ≡
∫

(x− w(x, η))g(x, η|b = 0)dxdη − Pr[x ≤ xb|ao1, b = 0] ·D

+ λ

(∫
u(w(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
+ µ1

(∫
u(w(x, η))g1(x, η|b = 0)dxdη − v′(ao1)

)
+

∫
b

µb(b)

(∫
u(w(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db,

while satisfying µo
b(b) ≥ 0, ∀b, and the following complementary slackness at the optimum:

µo
b(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
= 0, ∀b. (A15)

The last term in the above Lagrangian L given the optimal contract,wo(x, η), can be written

4We implicitly assume that the optimal contract is unique in this environment, following the literature
(e.g., Jewitt et al. (2008)).
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as ∫
b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη

)
db,

(A16)

where we use a change of variable (i.e., b to −b) and wo(x,−η) = wo(x, η). Now with
(A13) and that g(x, η|b = 0) is symmetric in η around η = 0, we know:∫

u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη

=

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η|b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη,

(A17)

where we use the change of variable (i.e., −η to η) for the second equality. With (A16) and
(A17), the last term in Lagrangian L can be therefore written as∫

b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη
)
db.

(A18)

Plugging in (A18) into the original Lagrangian L yields µo
4(−b) = µo

4(b), ∀b.

Claim 4. In addition, we have:∫
u(wo(x, η))g(x, η|b)dxdη =

∫
u(wo(x, η))g(x, η| − b)dxdη, (A19)

which implies that the agent’s indirect utility givenwo(x, η) is symmetric in b around b = 0.
Equation (A19) follows from:∫

u(wo(x, η))g(x, η| − b)dxdη =

∫
u(wo(x, η))g(x,−η|b)dxdη

=

∫
u(wo(x,−η))g(x,−η|b)dxdη

=

∫
u(wo(x, η))g(x, η|b)dxdη,
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where we use (A13) in the first equality, wo(x,−η) = wo(x, η) in the second, and and the
change of variable (i.e., −η to η) in the third equality.

Proof of Proposition 2: Given the optimal action ao1, we define Ĉov ≡ (x − ϕ(ao1))η.5

Since

exp

(
bη(x− ϕ(ao1))

σ2

)
= exp

(
b

σ2
Ĉov

)
=

∞∑
k=0

1

k!

bk

σ2k
Ĉov

k
, (A20)

we obtain from equation (A12)

g(x, η|b)
g(x, η|b = 0)

=

(
∞∑
k=0

1

k!

bk

σ2k
Ĉov

k

)
exp

(
−b

2η2

2σ2

)
. (A21)

Therefore, we have∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db =

∫
µo
4(b)db−

∫
µo
4(b)

(
∞∑
k=0

1

k!

bk

σ2k
Ĉov

k

)
exp

(
−b

2η2

2σ2

)
db

=

∫
µo
4(b)db−

∞∑
k=0

 1

k!

1

σ2k

(∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

)
︸ ︷︷ ︸

≡Ck(η)

 Ĉov
k
.

(A22)
When k is odd, the coefficient, Ck(η), becomes 0 for ∀η, since the fact that µo

4(b) = µo
4(−b)

for all b from Lemma 3 implies

Ck:odd(η) =

∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db =

∫
b≥0

µo
4(b)− µo

4(−b)︸ ︷︷ ︸
=0

 bk exp

(
−b

2η2

2σ2

)
db = 0.

(A23)
When k is even, however, the coefficient, Ck(η), becomes strictly positive for ∀η, since the
fact that µo

4(b) ̸= 0 for the non-zero measure of b from Lemma 3 implies

Ck:even(η) =

∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

=

∫
b≥0

(µo
4(b) + µo

4(−b))bk exp
(
−b

2η2

2σ2

)
db

= 2

∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db > 0.

(A24)

5This is a sample covariance between x and η, as our framework is a single-period setting.
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Therefore, (A22) can be written as∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db

=

∫
µo
4(b)db− 2

∞∑
k:even

(
1

k!

1

σ2k

(∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

))
Ĉov

k
.

(A25)

Consequently, by plugging (A25) into the optimal contact,wo(x, η), in (34) whenwo(x, η) ≥
k, we obtain

1

u′(wo(x, η))
=λ+ µo

1

x− ϕ(ao1)

σ2
ϕ1(a

o
1) +

∫
µo
4(b)db︸ ︷︷ ︸
>0

− 2
∞∑

k:even

1

k!

1

σ2k

(∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

)
︸ ︷︷ ︸

≡Ck:even(η)>0︸ ︷︷ ︸
≡Dk:even(η)>0

Ĉov
k
. (A26)

Since Dk:even(η) > 0 for all even numbers of k, given (x, η) a higher |Ĉov| results in a
lower compensation wo(x, η). Also, as Dk:even(η) > 0 decreases in η2, given (x, Ĉov), a
higher η2 results in a higher wo(x, η). In sum, the principal punishes a sample covariance
|Ĉov| but becomes lenient when a high |Ĉov| comes from the high |η| realization, not from
the agent’s speculation activity (b ̸= 0).

39



Appendix B The Truth-Telling Mechanism

We have previously assumed that there is no communication between the principal and the
agent about the firm’s initial exposure to hedgeable risks, R, after the contract is written.
We now relax this assumption and consider the case where the agent can costlessly report
the firm’s risk exposure R to the principal, and receive a payoff that is contingent on the
communicated risk exposure as well as on the output and hedgeable risks.

As we will show below, when V (x) ≡ u(w∗(x|a∗1)) for w∗(x|a∗1) in (23) is concave in
x,1 a contract that is similar to w∗(x|a∗1) can be designed to induce the agent to truthfully
reveal the firm’s risk initial exposure, R. Therefore, in this case, there is no loss associ-
ated with the firm’s initial risk exposure being unobservable to the principal and thus the
same informational gain can be obtained by designing a truth-telling mechanism as the
one from the introduction of a derivative market. The intuition is also the same as the one
for the case where the manager would voluntarily hedge under w∗(x|a∗1) in the derivative
market when V (x) = u(w∗(x|a∗1)) is concave in x. Essentially, the truth-telling contract
will allow the agent to make a side bet with the principal. If the agent hedges with the
contract w∗(x|a∗1) after the derivative market is introduced, he would truthfully reveal what
he observes (i.e., true R) to minimize the additional risk associated with this side bet even
without the derivative market.

However, when V (x) = u(w∗(x|a∗1)) is convex in x, any contract similar to w∗(x|a∗1)
does not induce truth-telling since the agent wants to add more risks, as he would do by
engaging in speculation with the derivative market. Again, a new contract must be designed
to induce him to reveal the truth.

Equivalence between derivative market games and communication games Suppose
the principal does not observe the firm’s initial risk exposure, R, and there is no derivative
market (i.e., ad is again fixed at 0 as in Section 2). Since the agent observes R before he
chooses a1 and the communication regarding R is freely allowed, the principal can design
a truth-telling mechanism, w(x, r, η), where r represents the value of R reported by the
agent. Let aT1 (R) be the agent’s optimal action after observing R and wT (x, r, η) be the
wage contract that optimally induces aT1 (R) with the agent telling the truth. Knowing that

1Note that, in this case, optimal a1 is a∗1 which is defined in (10), but not ao1 defined in (23) because still
there is no derivative market.
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r = R, ∀R, under wT (x, r, η), we denote optimized joint benefits in this case as

SW T ≡
∫ (

ϕ(aT1 (R))− CT (aT1 (R))− λv(aT1 (R))− Pr[x ≤ xb|aT1 (R), ad = 0]D
)
h(R)dR,

(B1)
where

CT (aT1 (R)) ≡
∫ (

wT (x,R, η)− λu(wT (x,R, η))
)
g(x, η|aT1 (R), ad = 0)dxdη (B2)

represents the agency cost arising from inducing aT1 (R) through wT (x, r, η) when R is
realized. In the above equation, g(x, η|aT1 (R), ad = 0) denotes the joint density function of
(x, η) given that aT1 (R) is chosen by the agent when ad is fixed at 0.

As in Section 3 we first consider the case in which principal designs a wage contract,
w∗(yr|a∗1), that is the same as w∗(x|a∗1) in (23) except that it is based on yr ≡ x−rη instead
of x. That is, w∗(yr|a∗1) satisfies

1

u′(w∗(yr|a∗1))
= λ+ µ∗

1(a
∗
1)
yr − ϕ(a∗1)

σ2
ϕ1(a

∗
1), (B3)

for yr such that w∗(yr|a∗1) ≥ k and w∗(yr|a∗1) = k otherwise.
Note that since, without a derivative market,

x = ϕ(a1) +Rη + σθ, (B4)

we obtain
yr ≡ x− rη = ϕ(a1) + (R− r)η + σθ. (B5)

Thus, the principal’s problem of designing a truth-telling mechanism in this case is similar
to her problem of designing an incentive scheme based on x to induce b = 0 (i.e., ad =

R) when derivative transactions are allowed. Therefore, the optimal truth-telling contract
should be based on yr ≡ x − rη and have the same contractual form as w∗(x|a∗1) in (23)
as long as the agent’s truth-telling can be guaranteed by that contract. As a result, as is the
case for w∗(x|a∗1) in Section 3, we directly obtain following results for w∗(yr|a∗1).

Lemma 4. [Hedging and Speculation with w∗(yr|a∗1)]
(1) If V (yr) ≡ u(w∗(yr|a∗1)) for the wage contract, w∗(yr|a∗1), in (B3) is concave in yr, then

the manager will always report truthfully, i.e., r = R, ∀R, when w∗(yr|a∗1) is offered.

(2) If V (yr) ≡ u(w∗(yr|a∗1)) for the wage contract, w∗(yr|a∗1), in (B3) is convex in yr, then

41



the manager will report r such that |R− r| = ∞ when w∗(yr|a∗1) is offered.

From Lemma 4, we obtain the following propositions.

Proposition 5. When there is no derivative market and communication between the prin-

cipal and the agent is costless, then w∗(yr|a∗1) described in (B3) is the optimal truth-telling

contract for the firm’s hidden risk exposure, R, if V (yr) ≡ u(w∗(yr|a∗1)) is concave in yr.

In this case,

(1) the principal’s inability to observeR does not reduce the firm’s welfare (i.e., no adverse

selection). That is, SW T = SW ∗,

(2) and the introduction of a derivative market, although it cannot provide the informational

gain for the agency relation, still improves welfare by reducing the firm’s its expected cost

of financial stress through hedging. That is, SW T < SW o.

Proposition 5 reaffirms that one important benefit from the derivative market is actually
the principal’s informational gain in the agency relation, as it allows the agent to engage
in complete hedging in the derivative market. If the principal and the agent can only com-
municate with each other by paying huge communication costs, this benefit of having the
derivative market is actually associated with saving such communication costs. In reality,
the costs associated with communicating this information and updating the compensation
contract based on the reavealed R may be greater than the hedging cost. As shown in (B5),
in this case, allowing the manager to choose ad in derivative transactions is observationally
equivalent to allowing him to freely report the firm’s realized risk exposure R. Thus, one
important benefit from the derivative market in this case is obtaining the same result as the
one with a truth-telling contract in a cheaper way.

On the other hand, if V (yr) ≡ u(w∗(yr|a∗1)) is convex in yr, the manager will not report
the true R under w∗(yr|a∗1), and shareholders have to redesign a truth-telling mechanism,
wT (x, r, η) different from w∗(yr|a∗1).

Proposition 6. When there is no derivative market and communication between the prin-

cipal and the agent is costless, if V (yr) ≡ u(w∗(yr|a∗1)) is convex in yr, for w∗(yr|a∗1)
described in (B3), a new contract, wT (x, r, η), should be designed to optimally induce the

agent to reveal R truthfully. In this case,

(1) the principal’s inability to observe R reduces the firm’s welfare, that is, SW T < SW ∗,

(2) and the introduction of a derivative market may not improve on the firm’s welfare in

this case. Especially, if both R itself and σ2
R are small enough, the firm’s welfare will be

lowered by the introduction of a derivative market.
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As shown in Proposition 4, given that free communication between the principal and
the agent about R is not available, if V (x) ≡ u(w∗(x|ao1)) in (24) is convex in x, the
introduction of a derivative market may lower the firm’s welfare, especially when both R
and σ2

R are very small. A similar result is obtained in the truth-telling environment as shown
in Proposition 6.

Proposition 6 illustrates that, when free communication between the principal and the
agent about R is available, if V (yr) ≡ u(w∗(yr|a∗1)) for w∗(yr|a∗1) in (B3), is convex in yr,
the introduction of a derivative market may lower the firm’s welfare especially when bothR
and σ2

R are very small. This is mainly because the obtained contract in this case,wT (x, r, η),
is designed to induce the agent’s truth-telling about R without taking the agent’s possible
transactions in the derivative market into consideration. But, with the derivative market be-
ing introduced, the principal should worry about inducing not only the agent’s truth-telling
but also his hedging when designing a compensation contract, and the optimal contract
satisfying both requirements is wo(x, η) in (34).

In sum, in the truth-telling environment in which free communication between the prin-
cipal and the agent is available, the agent’s access to derivative market transactions always
improves on the firm’s welfare if V (yr) ≡ u(w∗(yr|a∗1)) is concave in yr. But, it may lower
the firm’s welfare if V (yr) ≡ u(w∗(yr|a∗1)) is convex in yr, and the principal’s imposing
restriction on the agent’s derivative trading can be desirable.

In summary, when the communication between shareholders and the manager becomes
free, the manager’s access to derivative market transactions does not change the firm’s wel-
fare if V (yr) ≡ u(w∗(yr|a∗1)) is concave in yr, and might lower it if V (yr) ≡ u(w∗(yr|a∗1))
is convex in yr and no restriction on the derivative trading can be imposed by the principal.

B.1 Proofs of Appendix B

Proof of Proposition 5: From Lemma 4, we see that w∗(yr|a∗1) is a truth-telling mecha-
nism for the initial risk exposure, R, if V (yr) ≡ u(w∗(yr|a∗1)) is concave in yr because the
agent’s truth-telling is automatically guaranteed under w∗(yr|a∗1). Since r = R, ∀R, under
w∗(yr|a∗1), we have

y ≡ x−Rη = ϕ(a1) + σθ = yr, (B6)

and the optimal truth-telling contract w∗(yr|a∗1) in equation (B3), which has the same con-
tractual form as w∗(x|a∗1) in (23) except that the optimal action to be chosen by the agent
is a∗1, i.e., aT1 (R) = a∗1,∀R which is defined in (10) but not ao1 defined in (23) because still
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there is no derivative market. Therefore, we derive

SW T = SW ∗, (B7)

and we also derive that SW T is lower than the joint benefits SW o that will be obtained
under w∗(x|ao1) when there is a derivative market.

Proof of Proposition 6:
(1) As shown in Lemma 4, if V (yr) ≡ u(w∗(yr|a∗1)) is convex in yr,w∗(yr|a∗1) cannot be the
optimal truth-telling contract, and a new optimal truth-telling contract wT (x, r, η), which
is different from w∗(yr|a∗1), should be designed. Thus, it is obvious that SWT < SW ∗.

(2) We decompose the changes in welfare in the truth-telling environment due to the intro-
duction of a derivative market such as:

SW o − SW T = (SW o − SW ∗) +
(
SW ∗ − SW T

)
. (B8)

The second term on the right-hand side of (B8), which is always positive according
to (B.1), represents saving the extra agency cost which incurs when revising the optimal
contract from w∗(yr|a∗1) to wT (x, r, η) is needed to induce the agent’s truth-telling about R
in this case. Note that this extra agency cost gets small as σ2

R becomes small. In a limit
case where σ2

R → 0, we obtain SW ∗ − SW T → 0.
As already explained in Proposition 4, however, the positive effect in the first term

on the right-hand side of (B8) (i.e., reducing the firm’s expected cost of financial stress
by hedging) also becomes small as R is small, whereas its negative effect (i.e., the extra
agency cost which incurs when revising the optimal contract from w∗(yr|a∗1) to wo(x, η) in
(34) is needed to induce the agent’s complete hedging in this case2 remains unchanged by
the changes in R and/or σ2

R.
Therefore, the introduction of a derivative market to the truth-telling environment may

lower the firm’s welfare if both R and σ2
R are small enough (i.e., SW o < SW T ).

2Note that wo(x, η) is also a truth-telling contract.
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Appendix C A Model with Discretionary Project Choice

This section extends the model in Section 2 to include the agent‘s real investment choices.
Specifically, after his wage contract w(·) is finalized, the agent takes three kinds of actions,
a1 ∈ [0,∞), a2 ∈ [a2, a2], and a3 ∈ (−∞,+∞). The first action, a1 is the productive effort
choice, which increases expected output as before, that is, high effort generates an output
level that first-order stochastically dominates the output level generated by low effort. The
agent’s second action a2 is his (real) project choice. We assume there exists projects with
different risks with more risky projects having higher expected output. The agent’s prefer-
ence is still the same as in Assumption 1. The third action a3 is his choice in the derivatives
market.1 Although the set of projects available to the agent is bounded, i.e., a2 ∈ [a2, a2],
the agent can choose any position in the derivatives market, i.e., a3 ∈ (−∞,+∞) as in the
main text. In contrast to Section 2, we assume D = 0 in Assumption 3 for simplicity, i.e.,
we ignore the negative feedback effect that amplifies negative cash flows.

After the agent chooses a1, a2, and a3, the firm’s output, x, is realized and publicly
observable without cost. Thereby, an output x can be used in the manager’s wage contract
that is denoted by w. The output is determined not only by the agent’s choice of (a1, a2, a3)
but also by the state of nature, (η, θ). For simplicity, we assume that the output function
exhibits the following additively separable form:

x = ϕ(a1, a2) + a2θ + (R− a3)η. (C1)

Equation (C1) looks like equation (1), except that (i) the agent’s project choice a2 affects
the expected output level ϕ(a1, a2); and (ii) the firm’s level of non-hedgeable risk is not
fixed a priori, but determined by the agent’s project choice a2. Now, an expected output,
ϕ(a1, a2), is a function of both a1 and a2, whereas the agent’s derivatives choice, a3, does
not directly affect it. As in (1), we assume that (i) η ∼ N(0, 1) and θ ∼ N(0, 1) are
uncorrelated; and (ii) η is observable at the end of the contracting period, and thereby can be
used in the manager’s wage contract if necessary. As in the main text, the manager observes
R after the contract is signed but before choosing a1, a2, and a3. Again, shareholders do not
observe R, but know its distribution R ∼ h(R). Management effort a1 and project choice
a2 do not affect R, the firm’s innate exposure to the hedgeable risks.2 However, the firm’s

1We use the notation a3 instead of ad of Section 2 for notational convenience.
2In general, a firm’s risk exposure might depend on the real investment undertaken. Even if we allow the

firm’s risk exposure to be affected by the project choice a2, most results do not change qualitatively.
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final risk exposure is determined by the manager’s transaction a3 in the derivative market.
If a3 = 0, the manager does not trade derivatives. He hedges, i.e., reduces risk, as long as
|R − a3| < |R| and minimizes hedgeable risks by setting a3 = R. If |R − a3| > |R|, the
manager speculates in the derivative market.

In addition to the assumptions in Section 2, we make the following additional assump-
tions:

Assumption 4.
∂ϕ

∂a1
(a1, a2) ≡ ϕ1(a1, a2) > 0,

∂2ϕ

∂a21
(a1, a2) ≡ ϕ11(a1, a2) < 0.

Assumption 5.
∂ϕ

∂a2
(a1, a2) ≡ ϕ2(a1, a2) > 0, ϕ22(a1, a2) < 0, ϕ2(a1, a2) = ∞, and

ϕ2(a1, a2) = 0.

Assumption 6. 0 < a2 < a2 <∞.

Assumption 7. ϕ12(a1, a2) · a2 < ϕ1(a1, a2), ∀(a1, a2).

Assumptions 4 and 5 specify that a1 affects expected output with the usual property of
decreasing marginal product of effort, while a higher a2 increases expected output as well
as output variability, i.e., there is a trade-off between return and risk.3 Assumption 6 states
that there is neither a completely safe project nor a project with unbounded risk.

If ϕ12(a1, a2) is positive and decreasing in a2, and ϕ1(a1, a2) ≃ 0, a2 is close to 0, then
Assumption 7 holds as we can see in Figure C.1. For example, with positive ϕ12(a1, a2),4 a1
and a2 are complementary in generating output. We assume this complementarity between
a1 and a2 become weaker as the project becomes riskier, i.e., a2 increases.

C.1 When There Is No Derivative Market

C.1.1 The Principal Knows the Firm’s Exposure to the Hedgeable Risks

In this section, we consider a benchmark case where there is no derivatives market and the
principal knows the firm’s innate risk exposure, R. We thus specify a3 = 0 so that the
production function in equation (C1) reduces to

x = ϕ(a1, a2) +Rη + a2θ. (C2)
3As noted from equation (C1), reducing the firm’s non-hedgeable risks requires the firm to sacrifice a part

of an expected output. This trade-off guarantees the existence of an optimal project choice a2 in our setting.
4For example, if we regard the action a1 as managing the project on a day-to-day basis, it is natural

to assume that when the manager takes additional project risk a2, the role of effort a1 in generating output
becomes more important, i.e., ϕ1(a1, a2) rises in a2.
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ϕ1(a1, a2)

Figure C.1: Illustration of the Assumption 7

Since there is no derivative market, the manager’s incentive problem arises only in in-
ducing (a1, a2). AsR and η are observable and thus contractable, y ≡ x−Rη is a sufficient
statistic for (x, η) in assessing (a1, a2). Therefore, the principal uses y as a contractual vari-
able to induce (a1, a2), and the above equation can be expressed as

y = ϕ(a1, a2) + a2θ. (C3)

Benchmark: without incentive problem in a2 In general, designing a contract to opti-
mally induce project choice a2 as well as effort choice a1 is quite different than designing
a contract that only induces the agent’s effort choice a1 in Section 2. To illustrate this dis-
tinction, we first consider the case in which the agent’s project choice, a2, is observable,
or equivalently, selected by the principal. The optimal compensation contract w(·), in this
case, maximizes the combined utilities of the principal and agent subject to the restriction
that the agent’s effort a1 is chosen to maximize his utility given the contract.

max
a1,a2,w(·)

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i) a1 ∈ argmax
a′1

∫
u(w(y))f(y|a′1, a2)dy − v(a′1), ∀a′1,

(ii) w(y) ≥ k, ∀y,
(C4)

where f(y|a1, a2) denotes a probability density function of y given the agent’s three actions,
and λ denotes the weight placed on the agent’s utility in the joint optimization. As shown,

47



the combined utilities of the principal and the agent are maximized subject to the agent’s
incentive compatibility constraint, which specifies that the agent optimally chooses his
effort, and his limited liability constraint, which specifies that the agent receives at least
k, the subsistence level of utility.

Based on the first-order approach as in Section 2, the above maximization problem (C4)
reduces to:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(C5)
where f1 denotes the first derivative of f taken with respect to a1.

To find the solution (aP1 , a
P
2 , w

P (y|aP1 , aP2 )) for the above program, we first derive an
optimal contract for an arbitrarily given (a1, a2). Let wP (y|a1, a2) be a contract which
optimally motivates the agent to take a particular level of a1 when an arbitrary level of a2
is chosen by the principal. By solving the Euler equation of the above program after fixing
(a1, a2), we derive that wP (y|a1, a2) must satisfy

1

u′(wP (y|a1, a2))
= λ+ µ1(a1, a2)

f1
f
(y|a1, a2), (C6)

for almost every y for which (C6) has a solutionwP (y|a1, a2) ≥ k, and otherwisewP (y|a1, a2) =
k. In (C6), µ1(a1, a2) denotes the optimized Lagrange multiplier for the agent’s incentive
constraint associated with effort a1 when the project choice is pinned down at a2. Since
f(y|a1, a2) is a normal density function with mean ϕ(a1, a2) and variance a22, (C6) is re-
duced to:

1

u′(wP (y|a1, a2))
= λ+ µ1(a1, a2)

y − ϕ(a1, a2)

a22
ϕ1(a1, a2). (C7)

Before analyzing the optimal contract, we first define given (a1, a2):

SW P (a1, a2) ≡ ϕ(a1, a2)− CP (a1, a2)− λv(a1), (C8)

which denotes the joint benefits when wP (y|a1, a2) is designed and a2 is instructed by the
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principal where

CP (a1, a2) ≡
∫ (

wP (y|a1, a2)− λu(wP (y|a1, a2))
)
f(y|a1, a2)dy (C9)

represents the efficiency loss of this case compared with the full information case. In other
words, C(a1, a2) measures the agency cost arising from inducing the agent to take that
particular a1 when a2 is chosen by the principal.

We start our analysis with the following Lemma 5, which is analogous to Kim (1995).

Lemma 5. CP (a1, a
0
2) < CP (a1, a

1
2) for any given a1 if a02 < a12.

Since the principal dictates the agent’s project choice a2 here, an agency problem arises
only in inducing a1. Lemma 5 implies that under Assumption 7, when the project choice
a2 is selected by the principal, the agency cost associated with motivating the agent to take
any given effort a1, i.e., CP (a1, a2), is reduced if the principal chooses a less risky project.
A lowered risk a2 improves the efficiency of the agency relationship by providing a more
precise signal y about the agent’s effort, a1, which enables the principal to design a con-
tract inducing a particular a1 in a less costly way. If ϕ12(a1, a2) is large enough to break
Assumption 7, then lower a2 might lower ϕ1(a1, a2) a lot, which in turn makes harder
for the principal to give the proper incentive for the effort a1 and raises the incentive cost
CP (a1, a2). Assumption 7 guarantees that this incentive drawback is lower than the infor-
mational rent from lower a2, so that a lower level of a2 reduces the agency cost CP (a1, a2).

Value of hedging Lemma 5 indicates that firms should eliminate all the zero net present
value risks, if possible. For example, when the agent can be induced to hedge in the deriva-
tive market, the principal can more efficiently induce the agent to expend efforts and choose
project choices, given any initial risk exposure level R.

Risk-return trade-off in project choice However, given the trade-off between return
and risk, i.e., ϕ2 > 0, the exact level of a2 that the principal prefers will be determined
by the loss in expected return as well as the benefit from achieving a more precise signal
of effort. Let aP2 be the project that is most preferred by the principal, and aP1 the agent’s
optimal effort choice for the above program when aP2 is chosen by the principal. Then,
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from the above optimization we obtain that (aP1 , a
P
2 , w

P (·)) should satisfy∫ (
y − wP (y) + λu(wP (y))

)
f2(y|aP1 , aP2 )dy+µ1(a

P
1 , a

P
2 )

∫
u(wP (y))f12(y|aP1 , aP2 )dy = 0,

(C10)
where wP (·) = wP (·|aP1 , aP2 ), f2 denotes the first derivative of f with respect to a2 and
f12 is the second derivative with respect to a1 and a2. The optimal contract wP (y|aP1 , aP2 )
satisfies,

1

u′(wP (y|aP1 , aP2 ))
= λ+ µ1(a

P
1 , a

P
2 )
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

ϕ1(a
P
1 , a

P
2 ), (C11)

for y satisfying wP (y|aP1 , aP2 ) ≥ k and wP (y|aP1 , aP2 ) = k otherwise.

The manager’s incentive to select a2 under contractwP (·) The above analysis assumes
that shareholders essentially select the projects. Now, we ask whether the manager will vol-
untarily choose the project that would be chosen by informed shareholders, i.e., aP2 . If the
answer to this question is no, then the moral-hazard problem arises not only in motivat-
ing a1 but also in incentivizing a2, which implies that the optimal wage contract must be
modified from the contract, wP (y|aP1 , aP2 ), in (C11).

To formally analyze this issue, we denote aA2 (a
P
2 ) as a solution to

aA2 (a
P
2 ) ∈ argmax

a2

∫
u(wP (y|aP1 , aP2 ))f(y|aP1 , a2)dy. (C12)

Thus, aA2 (a
P
2 ) represents the project choice that the agent would take under wP (y|aP1 , aP2 )

described in (C11) when a2 is not enforceable. Thus, our previous question, “Will the agent
voluntarily choose aP2 when wP (y|aP1 , aP2 ) is designed?”, is equivalent to the question,
“Will aA2 (a

P
2 ) be equal to aP2 ?”

As previously shown, the principal balances two considerations when he directs the
agent to take a certain project: the informational benefits from risk reduction and the lower
mean return associated with lower risk. However, the risk level chosen by the agent depends
on his indirect risk preferences induced by contract wP (y|aP1 , aP2 ), i.e., the curvature of
u(wP (y|aP1 , aP2 )) with respect to y, and the effect that a trade-off between return and risk
would have on his utility via wP (y|aP1 , aP2 ).

In general, the curvature of the agent’s indirect utility function depends on the distri-
bution of the random state variable and his utility function. To see how different utility
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functions affect this curvature differently, we again consider the case where the agent has
constant relative risk aversion with degree 1− t as we did in Section 2.1, where t < 1 (i.e.,
u(w) = 1

t
wt, t < 1). We obtain from equation (C11) that

wP (y|aP1 , aP2 ) =
(
λ+ µ1(a

P
1 , a

P
2 )

(
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

)
ϕ1(a

P
1 , a

P
2 )

) 1
1−t

, (C13)

and the agent’s indirect utility under this wage contract is

u(wP (y|aP1 , aP2 )) =
1

t

(
λ+ µ1(a

P
1 , a

P
2 )

(
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

)
ϕ1(a

P
1 , a

P
2 )

) t
1−t

. (C14)

The above equation shows that the agent’s indirect utility becomes strictly concave
in y if t < 1

2
, linear if t = 1

2
, and convex if t > 1

2
for y satisfying wP (y|aP1 , aP2 ) ≥

k. If we assume wP (y|aP1 , aP2 ) = k for sufficiently low y, as far as the agent’s induced
risk preferences are concerned, u(wP (y|aP1 , aP2 )) makes the agent risk-loving if t ≥ 1

2
.

Furthermore, since the compensation contract wP (y|aP1 , aP2 ) is positively related to the
absolute output level, i.e., µ1(a

P
1 , a

P
2 ) > 0,5 if t ≥ 1

2
, the agent is induced to take the most

risky project, i.e., aA2 (a
P
2 ) = a2 when wP (y|aP1 , aP2 ) is designed even if ϕ2(a1, a2) = 0 by

Assumption 5. However, in this case, principal prefers to have a firm’s risk level a2 lower
than a2. This is because, from his standpoint, the informational benefits from risk reduction
are still substantial, while the costs of risk reduction are zero at a2 (i.e., ϕ2(a2) = 0). Thus,
aP2 < aA2 (a

P
2 ) in this case. In other words, the principal prefers less risk than the agent

under wP (y|aP1 , aP2 ).
On the other hand, if t is close to −∞ (i.e., the agent is extremely risk-averse), the

agent’s indirect utility function induces him to choose a lower level of risk than what the
principal prefers (i.e., aA2 (a

P
2 ) < aP2 ) even if a lower a2 yields on average lower output.

Incentive problems associated with project choice a2, in general, exist in all cases ex-
cept for those where both of the following conditions are satisfied: (i) the agent’s indirect
utility is sufficiently concave and (ii) there is no trade-off between return and risk, i.e.,
ϕ2 = 0, ∀a2. Under these conditions, both the principal and the agent agree that the firm
should choose the least risky project, i.e., a2 = a2, and there is no efficiency loss due
to the existence of the manager’s unobservable project choice. However, when either the
agent’s induced risk preferences are convex, or the trade-off between return and risk exists

5For the proof of µ1(a
P
1 , a

P
2 ) > 0, see e.g., Holmström (1979), Jewitt (1988), Jung and Kim (2015).
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as assumed in Assumption 5, the principal and the agent will not generally agree on the
firm’s optimal project choice, and the compensation contract, wP (y|aP1 , aP2 ), described in
equation (C11) will no longer be optimal.

Optimal contracts with moral hazard in a2 In this situation, the principal must deter-
mine the optimal compensation contract by solving the following optimization problem:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i) (a1, a2) ∈ argmax
a′1,a

′
2

∫
u(w(y))f(y|a′1, a′2)dy − v(a′1), ∀a′1, a′2.

(C15)
The optimization problem (C15) accounts for the fact that the agent selects a2 to maxi-
mize his own expected utility. If an interior solution for (a1, a2) exists and the first-order
approach is valid, the above maximization problem can be expressed as:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(C16)
Let (a∗1, a

∗
2) be the optimal action combination for the above program. Then, by solving the

Euler equation, we obtain that the optimal wage contract, w∗(y), which satisfies,

1

u′(w∗(y))
= λ+ µ∗

1

f1
f
(y|a∗1, a∗2) + µ∗

2

f2
f
(y|a∗1, a∗2), (C17)

for almost every y for which equation (C17) has a solution w∗(y) ≥ k, and otherwise
w∗(y) = k. µ∗

1 and µ∗
2 are the optimized Lagrange multipliers for both incentive constraints,

respectively.
Since f(y|a∗1, a∗2) is a normal distribution with mean ϕ(a∗1, a

∗
2) and variance (a∗2)

2, from
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(C17), we have

1

u′(w∗(y))
= λ+µ∗

1

y − ϕ(a∗1, a
∗
2)

(a∗2)
2

ϕ∗
1︸ ︷︷ ︸

≡SS1

+µ∗
2

y − ϕ(a∗1, a
∗
2)

(a∗2)
2

ϕ∗
2︸ ︷︷ ︸

≡SS1
2

+
1

a∗2

(
(y − ϕ(a∗1, a

∗
2))

2

(a∗2)
2

− 1

)
︸ ︷︷ ︸

≡SS2
2

 ,
(C18)

where we define SS1, SS2 ≡ SS1
2 + SS2

2 as sufficient statistics for unobservable action
a1 and project choice a2, respectively. Compared with (C11), (C18) shows that when both
a1 and a2 are not observable, the optimal wage contract is based not only on the absolute

output y, but also on its (standardized) deviation from the expected level, (y−ϕ(a∗1,a
∗
2))

2

(a∗2)
2 .

Since (y − ϕ(a∗1, a
∗
2))

2 is a sample (i.e., realized) variance of a single observation with

mean zero and variance (a∗2)
2, the term (y−ϕ(a∗1,a

∗
2))

2

(a∗2)
2 in (C18) can be regarded a standardized

output deviation. Note that SS2, the sufficient statistic for the project choice a2, can be now
decomposed into two parts: SS1

2 and SS2
2 . SS1

2 takes account of the effects that an increase
in a2 has on the mean cash flow ϕ(a1, a2),6 while SS2

2 is about how an increase in a2 affects
the signal y’s volatility. By including the sample variance as a contractual parameter, the
principal effectively motivates the agent to take the appropriate level of a2, i.e., a∗2. (C18)
can be written in a simpler way as

1

u′(w∗(y))
= λ+ (µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
y − ϕ(a∗1, a

∗
2)

(a∗2)
2

+ µ∗
2

1

a∗2

(
(y − ϕ(a∗1, a

∗
2))

2

(a∗2)
2

− 1

)
, (C19)

for y satisfying w∗(y) ≥ k and w∗(y) = k otherwise. Here, ϕ∗
i ≡ ϕi(a

∗
1, a

∗
2), i = 1, 2. We

call w∗(y) as an optimal dual-agency contract à la Hirshleifer and Suh (1992).
The optimal dual agency contract is characterized in the following propositions.

Proposition 7. µ∗
1ϕ

∗
1 + µ∗

2ϕ
∗
2 > 0.

Proposition 7 implies that holding the cash flow variance constant, the manager’s pay-
out increases when output increases, implying that the agent is rewarded for a higher effort.
However, this does not necessarily mean that the contracted payout is monotonically in-
creasing in output. For example, if µ∗

2 < 0 in (C19), the agent can be paid less when the
output is very high.

Thus, a more interesting question has to do with the relation between the agent’s re-
wards and the output deviation, i.e., the sign of µ∗

2.
6This term is present since we assume the risk-return trade-off in a2, i.e., ϕ(a1, a2) is increasing in a2.
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Proposition 8. If the principal prefers a less risky project than the agent underwP (y|aP1 , aP2 )
in equation (C11), i.e., aP2 < aA2 (a

P
2 ), then the optimal dual agency contract will penalize

the agent if output differs substantially from the expected level, i.e., µ∗
2 < 0 for w∗(y) in

equation (C19). If the principal prefers a riskier project than the agent underwP (y|aP1 , aP2 ),
i.e., aP2 > aA2 (a

P
2 ), then the optimal dual agency contract will reward the agent for having

unusual output deviation, i.e., µ∗
2 > 0 for w∗(y) in equation (C19).

If the principal prefers a lower level of project risk than the agent under the contract
wP (y|aP1 , aP2 ), the contract will be revised in a way that motivates the agent to reduce risk.
This can be done by setting µ∗

2 < 0 in equation (C19) which penalizes the agent for the
unusual output deviation and effectively makes the agent act as if he is more risk-averse.
On the other hand, if the principal prefers a higher risk than the agent when wP (y|aP1 , aP2 )
is designed, the contract is revised to motivate the agent to increase risk. This can be done
by setting µ∗

2 > 0 in equation (C19) which rewards the agent for unusual output deviation
and effectively makes the agent act as though he is less risk-averse. As discussed earlier,
the later case is more likely to occur when the manager is more risk averse and when the
firm’s investment opportunities offer a non-trivial trade-off between return and risk.7

We denote the optimized joint benefits in this case as

SW ∗(a∗1, a
∗
2) ≡ ϕ(a∗1, a

∗
2)− C∗(a∗1, a

∗
2)− λv(a∗1), (C20)

where
C∗(a∗1, a

∗
2) ≡

∫
(w∗(y)− λu(w∗(y))) f(y|a∗1, a∗2)dy (C21)

denotes the agency cost arising from inducing (a∗1, a
∗
2) when a3 is fixed at 0 and R is ob-

servable.

C.1.2 The Principal Does Not Know the Firm’s Risk Exposure

Similar to Section 2.2, we consider the case of asymmetric information, where the firm’s
innate exposure to hedgeable risks, R, is observed only by the agent. In this case, the wage
contract cannot explicitly include y ≡ x − Rη as a contractual variable. Furthermore, we
rule out the possibility of any communication between principal and the agent that allows
the agent to reveal R.

7For example, in cases of constant relative risk aversion with degree 1 − t, it is more likely that µ∗
2 > 0

when 1− t is higher (i.e., t is lower).
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If principal does not observeR, the compensation contract must be based on (x, η), i.e.,
w = w(x, η). The principal’s maximization program in this case is thus:8

max
a1(·),a2(·)
w(·)≥k

∫
R

∫
x,η

(x− w(x, η)) g(x, η|a1(R), a2(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x, η))g(x, η|a1(R), a2(R), R)dxdη − v(a1(R))

)
h(R)dR s.t.

(i) (a1(R), a2(R)) ∈ argmax
a1,a2

∫
x,η

u(w(x, η))g(x, η|a1, a2, R)dxdη − v(a1),∀R,

(C22)
where

g(x, η|a1, a2, R) =
1

2πa2
exp

(
−1

2

(
(x− ϕ(a1, a2)−Rη)2

a22
+ η2

))
(C23)

denotes a joint probability density function of (x, η) given (a1, a2, R) and h(R) denotes the
probability density function of R.

For each R, let (aN1 (R), a
N
2 (R), w

N(x, η)) be the solution for the optimization program
(C22). If we let µ1(R), µ2(R) be Lagrange multipliers attached to incentive constraints in
a1(R) and a2(R), respectively, the optimal contract wN(x, η) can be written as

1

u′(wN(x, η))
=λ+

∫
R

µ1(R)

 g1(x, η|aN1 (R), aN2 (R), R)∫
R′
g(x, η|aN1 (R′), aN2 (R

′), R′)h(R′)dR′

h(R)dR

+

∫
R

µ2(R)

 g2(x, η|aN1 (R), aN2 (R), R)∫
R′
g(x, η|aN1 (R′), aN2 (R

′), R′)h(R′)dR′

h(R)dR,
(C24)

when w(x, η) ≥ k and otherwise w(x, η) = k. The optimized joint benefit in this case is
denoted as:

SWN ≡
∫
R

(
ϕ(aN1 (R), a

N
2 (R))− CN(aN1 (R), a

N
2 (R))− λv(aN1 (R))

)
h(R)dR, (C25)

8In this case, since the agent is the only one that observes R, his actions a1, a2 both depend on R, given
the contract w(x, η).
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where

CN(aN1 (R), a
N
2 (R)) ≡

∫
x,η

(
wN(x, η)− λu(wN(x, η))

)
g(x, η|aN1 (R), aN2 (R), R)dxdη

(C26)
denotes the agency cost arising from inducing (aN1 (R), a

N
2 (R)) given a realized value of R.

As in Proposition 2, in this case, we obtain the following comparison between two welfare
measures: SWN and SW ∗(a∗1, a

∗
2).

Proposition 9. When there is no derivative market and no communication is allowed be-

tween the principal and the agent, the principal’s inability to observe the firm’s risk expo-

sure reduces welfare, i.e.,

SWN < SW ∗(a∗1, a
∗
2).

Intuitively, when the principal observes the firm’s risk exposure, R, this information
can be used to design a wage contract that eliminates the influence of hedgeable risk, i.e.,
w = w∗(y ≡ x− Rη). However, if R is not observable and cannot be communicated, this
is impossible.

C.2 When Managers Can Trade Derivatives

In this subsection we consider how the introduction of an opportunity to trade derivatives
(i.e., when a3 is not fixed at 0) affects the optimal contract and the firm’s efficiency. Contin-
uing from Section C.1.2, we assume that a manager’s project choice, a2, is not observable,
and in addition, we assume that the derivatives choice, a3 and the firm’s risk initial expo-
sure, R, cannot be observed by or communicated to the principal.

We closely follow the logic of Section 3: since the firm’s exposure to hedgeable risks,
R, is observed by the agent before he takes actions (a1, a2, a3), the agent’s choice of a3
can be characterized as his choice of b ≡ R − a3. Then given a compensation contract,
the principal can rationally anticipate the agent’s choice of b = R − a3. We denote the
principal’s anticipation of the agent’s choice of R − a3 by b̂, and define z(b̂) ≡ x − b̂η as
a variable that can potentially be in the wage contract, i.e., w(z(b̂)) is a potential contract.
If the principal’s beliefs are to be consistent,9 it must be the case that the agent chooses a3
satisfying b ≡ R− a3 = b̂ given this contract.

9As the principal predicts the agent with risk-exposure R to choose b̂ = R− a3, a contract that relies on
b̂ induces the agent to take b = b̂.
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Thus, since
z(b̂) ≡ x− b̂η = ϕ(a1, a2) + (b− b̂)η + a2θ, (C27)

if the principal offers the contractw(z(b̂)) and the agent chooses a3 satisfying b = R−a3 =
b̂, then

z(b̂) = ϕ(a1, a2) + a2θ = y. (C28)

Note that the maximum level of joint benefits that can be obtained in this case is SW (a∗1, a
∗
2, a3 =

0) in equation (C20).10 Therefore, we first consider the case in which the principal designs
the contract the same as w∗(y) in the benchmark case (i.e., equation (C19)) but based on
z(b̂) instead of y ≡ x−Rη, and examine whether the agent actually chooses b ≡ R−a3 = b̂

under w∗(z(b̂)). If this is indeed the case, there is no welfare loss associated with R (and
a3) being unobservable when the agent is able to transact in the derivatives market.

The optimal contract in the benchmark case (i.e., (C19)) as a potential contract Sup-
pose that the principal designs a contract w∗(z(b̂) ≡ x− b̂η) satisfying

1

u′(w∗(z(b̂)))
= λ+(µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
z(b̂)− ϕ(a∗1, a

∗
2)

(a∗2)
2

+µ∗
2

1

a∗2


(
z(b̂)− ϕ(a∗1, a

∗
2)
)2

(a∗2)
2

− 1

 ,

(C29)
for z(b̂) satisfying w∗(z(b̂)) ≥ k and w∗(z(b̂)) = k otherwise. Because w∗(z(b̂)) in (C29)
is of the same functional form as w∗(y) in (C19),11 we easily see the agent will take (a∗1, a

∗
2)

under w∗(z(b̂)) if he chooses a3 satisfying b ≡ R− a3 = b̂. But, the real question is: “Will
the agent always choose a3 satisfying b = b̂ when w∗(z(b̂)) is designed and offered?”.

The following Lemma 6 provides an answer to the above question.

Lemma 6. [Speculation and Hedging with w∗(z(b̂))]
(1) If µ∗

2 < 0 for the contract, w∗(z(b̂)), described in equation (C29) for any given b̂,12 then

the manager will choose a3 such that b = b̂ when the contract w∗(z(b̂)) is offered.

(2) If µ∗
2 > 0 for w∗(z(b̂)) in equation (C29) for any given b̂, then the manager will take a3

10Given the contract w(z(b̂)), if there is no incentive problem associated with b = R − a3, i.e., the agent
voluntarily chooses a3 such that R − a3 = b̂, then we obtain the maximal joint benefit SW (a∗1, a

∗
2, a3 = 0).

The issue is whether the agent would voluntarily choose a3 such that R− a3 = b̂ given w(z(b̂)).
11Note that µ∗

1, µ
∗
1, a

∗
1, a

∗
2 in (C19) and (C29) are endogenous variables characterized by solving the opti-

mization in (C15).
12One can easily see that if µ∗

2 < 0 in w∗(z(b̂)) for any given b̂, then µ∗
2 < 0 in w∗(z(b̂)) for all b̂. This is

because the principal’s anticipating different b̂ does not change the functional form of w∗(·).
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such that |R− a3| = ∞ when w∗(z(b̂)) is offered.

From Lemma 6, we directly obtain the following proposition:

Proposition 10. If µ∗
2 < 0 forw∗(z(b̂)) in (C29) for any given b̂, then the level of b ≡ R−a3

induced is a matter of indifference as long as it is bounded, i.e., |b| < ∞. For example, If

µ∗
2 < 0 for w∗(z(0)) in (C29), the agent chooses a∗1, a

∗
2, a3 = R (i.e., b = 0) when w∗(z(0))

is offered. In this case, the optimized welfare is the same as SW ∗(a∗1, a
∗
2) in (C20), implying

that the firm’s welfare with a derivative market will be the same as it is in the case where

the risk exposure is observed by the principal.13

Proposition 10 is quite intuitive. If µ∗
2 < 0 for w∗(z(b̂)) in (C29), the agent is induced to

engage in full hedging to minimize the variance of z(b̂). Intuitively, the contract w∗(z(b̂))

with µ∗
2 < 0 induces the agent to sacrifice expected payoffs to lower risk.14 If the risk can

be reduced through a channel that does not decrease the expected payoff (e.g., here a3 does
not have risk-return trade-off.), then agent will clearly do so. In addition, µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2 > 0

means a higher z(b̂) yields the higher compensation w∗(z(b̂)) given its squared deviation
from the average of z(b̂).

In this case, the optimal contract can be designed as if b = R − a3 is observable to the
principal, and it allows the principal and the agent to achieve the welfare SW ∗(a∗1, a

∗
2) that

can be achieved when the risk exposure R is observable.
However, this is not possible if µ∗

2 > 0 for w∗(z(b̂)) in (C29), since the agent speculates
infinitely, i.e., the agent chooses a3 such that |R − a3| = ∞. This is because, as shown
from equation (C29), the agent will be paid an infinite amount when z(b̂) = x− b̂η is either
positive or negative infinity if µ∗

2 > 0 for w∗(z(b̂)). Given that it is impossible to design
a wage contract w∗(z(b̂)) based on the belief b̂ = ∞, the principal has to either alter the
wage contract to ensure |R − a3| < ∞ or retain the optimal contract without a derivative
market, wN(x, η) and prohibit the manager from engaging in derivative transactions.

Comparison with Section 3 It is interesting to compare the results in this section to the
analysis in Section 3 that takes the real investment choice as given. Recall that in Section

13The introduction of derivative markets improves the welfare compared with the case where the principal
does not observe the firm’s risk-exposure R and the communication between the principal and the agent is
prohibitively costly (i.e., SW ∗(a∗1, a

∗
2) > SWN in Proposition 9). In practice, with D > 0 in Assumption 3,

benefits a derivative market can provide to firms are multi-dimensional, e.g., hedging allows firms to prevent
themselves from experiencing some financial distress.

14The optimal contract w∗(z(b̂)) features µ∗
2 < 0 when aP2 < aA2 (a

P
2 ), as explained in Proposition 8.
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2, we start from the benchmark case where R is observed by the principal, which reduces
the problem to the canonical principal-agent model (e.g., Holmström (1979)). The optimal
contract w∗(x|ao1) in this benchmark scenario generates the agent’s indirect utility function
V (x). As we show, (i) if V (x) is concave (convex) in x, then the agent chooses to perfectly
hedge (infinitely speculate) when there is a derivatives market and (ii) V (x) is more likely to
be concave (convex) when the agent’s utility function features higher (lower) risk aversion.
Therefore, a less risk averse manager is more likely to speculate in derivative markets given
the contract w∗(·).

With flexible project choice a2, we obtain the opposite result: (i) the agent with µ∗
2 > 0

speculates infinitely when derivative markets open; (ii) under the benchmark case without
asymmetric information or a derivative market, the principal initially offers a contract with
µ∗
2 > 0 since she prefers a higher level of project risk a2 than the agent, implying gener-

ically that the agent’s risk aversion is very high. To be specific, when the manager’s risk
aversion is sufficiently high, shareholders will design a contract to induce the manager to
choose a higher project risk level a2, to benefit from the positive risk-return tradeoff. Such
a contract will reward a higher level of output variance (i.e., µ∗

2 > 0), which can in turn in-
duce the manager to speculate infinitely, choosing a3 = ±∞ due to the additional incentive
effect from µ∗

2 > 0.
It can be understood as a side effect of inducing the project risk taking which is produc-

tive (i.e., ϕ2(a1, a2) > 0) through incentive contracts. A contract that induces risk taking in
the real investment choice makes the manager speculate infinitely when derivative transac-
tion is possible, as he acts as effectively risk-loving under the contract (C29) with µ∗

2 > 0.

Optimal contracts when µ∗
2 > 0 When the agent takes infinite speculation in derivative

markets under the contract w∗(z(b̂)) in (C29) with µ∗
2 > 0, our analysis becomes close to

Section 3. First, the principal might design a new optimal contract, wo(x, η) to induce the
agent’s perfect hedging. This new optimal contract satisfies conditions in Proposition 3, and
thus penalizes the agent for having both positive and negative realization of (x−ϕ(ao1, ao2))η,
which we regard as sample covariance between output and hedgeable risks. As the new
optimal contract wo(x, η) imposes additional risks on the agent, it incurs efficiency costs,
thereby lowering the social welfare from SW ∗ to SW o, i.e., SW o < SW ∗.

Instead, the principal might just ban the derivative trading, in which case we go back to
Section C.1.2 and achieve SWN as welfare. When the degree of asymmetric information
is small enough, i.e., the principal’s prior distribution h(R) on risk exposure R is tight with
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σR → 0, then hedging benefits shrink, and therefore, the principal is better off banning the
derivative trading, as summarized in Proposition 4.

C.3 Proofs of Appendix C

Proof of Lemma 5: We know from y ∼ N(ϕ(a1, a2), a
2
2) that

y − ϕ(a1, a2)

a2
∼ N(0, 1),

f1
f
(y|a1, a2) =

y − ϕ(a1, a2)

a22
ϕ1(a1, a2) ∼ N

(
0,
ϕ1(a1, a2)

2

a22

)
.

(C30)
Therefore, we observe that if ϕ1(a1,a2)

a2
is decreasing in a2, for any pair a02 < a12,

f1
f
(y|a1, a02)’s

distribution is mean-preserving spread (MPS) of that of f1
f
(y|a1, a12). Assumption 7 guar-

antees that this condition holds, and the following Lemma 7, a slightly changed form of
Kim (1995), proves C(a1, a02) < C(a1, a

1
2) for ∀a1.

Lemma 7. For given action a1 and technology h(·|a1), let the solution of the following

optimization problem be wh(·):

max
w(·)

∫
(y−w(y))h(y|a1)dy + λ

(∫
u(w(y))h(y|a1)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))h1(y|a1)dy − v′(a1) = 0,

(ii) w(y) ≥ k,∀y.

(C31)

For two different technologies h = f, g such that f1
f
(y|a1) is a mean-preserving spread

of g1
g
(y|a1), we have:

Cf (a1) ≡
∫

(wf (y)− λu(wf (y))) f(y|a1)dy <
∫

(wg(y)− λu(wg(y))) g(y|a1)dy ≡ Cg(a1).

(C32)

Proof. We know that the solution of (C31) would be given as

1

u′(wh(y))
= max

{
λ+ µh

h1
h
(y|a1),

1

u′(k)

}
, (C33)

where µh is the Lagrange multiplier attached to the incentive constraint for the given a1.
If we define qh ≡ λ + µh

h1

h
(y|a1), we can rewrite the optimal contract wh(·) as a function
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of qh so that wh(y) = r(qh) where r(·) = ( 1
u′ )

−1(·) is increasing and does not rely on the
technology h. Therefore, (C33) can be written as

u′(r(qh))qh = 1, (C34)

if qh ≥ u(k)−1 and otherwise r(qh) = k. Now, we obtain

Eh (u(r(qh))qh) =

∫
u(r(qh)) · qh · h(y|a1)dy =

∫
u(r(qh))

[
λ+ µh

h1
h
(y|a1)

]
h(y|a1)dy

= λ

∫
u(r(qh))h(y|a1)dy︸ ︷︷ ︸

≡Bh

+µh

∫
u(r(qh))h1(y|a1)dy︸ ︷︷ ︸

=v′(a1)

= λBh + µhv
′(a1),

(C35)
where we used the fact that r(qh) satisfies the agent’s incentive constraint in a1. Following
Kim (1995), we define

ψ(q) ≡ r(q)− u(r(q))q, (C36)

which is concave in ∀q, since: (i) with q ≥ u(k)−1, we obtainψ′(q) =���r′(q)−(((((((
u′(r(q))r′(q)q−

u(r(q)) = −u(r(q)) as u′(r(q))q = 1 and ψ′′(q) = −u′(r(q))r′(q) < 0; (ii) with
q < u(k)−1, we have r(q) = k so ψ(q) becomes linear.15 Now we can introduce two
different technologies f(·|a1) and g(·|a1) such that f1

f
(y|a1) is a mean-preserving spread of

g1
g
(y|a1), and define

q̄ ≡ λ+ µf
g1
g
(y|a1), (C37)

which is possibly different from qg as µf is possibly different from µg. As ψ(q) is globally
concave, we obtain

Eg (ψ(q̄))− Eg (ψ(qg)) ≤ Eg (ψ
′(qg)(q̄ − qg)) = Eg

(
−u(r(qg))(µf − µg)

g1
g

)
= (µg − µf )

∫
u(r(qg))g1(y|a1)dy = (µg − µf )v

′(a1)

= (Eg (u(r(qg))qg)− λBg)− (Ef (u(r(qf ))qf )− λBf ) ,

(C38)

15We see that ψ(q) is continuously differentiable at all points including q = u(k)−1.
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where we used (C35). Finally, it leads to the following agency cost comparison:

Cg(a1)− Cf (a1) = Eg (r(qg)− λBg)− Ef (r(qf )− λBf ) = Eg(r(qg))− Ef (r(qf ))− (λBg − λBf )

= Eg(ψ(qg)) + Eg(u(r(qg))qg)− Ef (ψ(qf ))− Ef (u(r(qf ))qf )− (λBg − λBf )

≥������Eg(ψ(qg))− Ef (ψ(qf )) + Eg(ψ(q̄))−������Eg(ψ(qg)) = Eg(ψ(q̄))− Ef (ψ(qf ))

=

∫
ψ

(
λ+ µf

g1
g
(y|a1)

)
g(y|a1)dy −

∫
ψ

(
λ+ µf

f1
f
(y|a1)

)
f(y|a1)dy

(C39)
where we used (C38) in the above (C39)’s inequality part. Finally, if f1

f
(y|a1) is a mean-

preserving spread of g1
g
(y|a1), then (C39) with Rothschild and Stiglitz (1970) implies

Cg(a1) ≥ Cf (a1), as µf > 0 and ψ(·) is globally concave.

Finally, with f(y|a1) ≡ f(y|a1, a02) and g(y|a1) ≡ f(y|a1, a12) in our specification, Lemma
7 proves Lemma 5.

Proof of Proposition 7: Assume to the contrary that µ∗
1ϕ

∗
1 + µ∗

2ϕ
∗
2 ≤ 0. Then, pick up any

two levels of y: y1 and y2, such that

y1 < y2, and
y1 + y2

2
= ϕ(a∗1, a

∗
2). (C40)

That is, y1 and y2 are located at the same distance from the mean value ϕ(a∗1, a
∗
2). If µ∗

1ϕ
∗
1+

µ∗
2ϕ

∗
2 ≤ 0, we have from equation (C19) that

w∗(y1) ≥ w∗(y2), and u(w∗(y1)) ≥ u(w∗(y2)). (C41)

Since f1(y1|a∗1, a∗2) = −f1(y2|a∗1, a∗2) < 0 for any y1 and y2 satisfying equation (C40), we
have:∫

u(w∗(y))f1(y|a∗1, a∗2)dy ≤ 0, and
∫
u(w∗(y))f1(y|a∗1, a∗2)dy − v′(a∗1) < 0. (C42)

Therefore, there is a contradiction.

Proof of Proposition 8:
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1. µ∗
2 > 0 if aA2 (a

P
2 ) < aP2 . Let us compare the following two optimizations:16

max
a1,a2,w(·)≥k

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(C43)
and

max
a1,a2,w(·)≥k

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy ≥ 0,

(C44)
where the incentive constraint associated with the non-hedgeable risk choice a2 takes
the form of inequality in the latter program, instead of equality in the original opti-
mization program.

We know that (w∗(y), a∗1, a
∗
2, µ

∗
1, µ

∗
2) are the optimal solution for the first program.

Let (ŵ(y), â1, â2, µ̂1, µ̂2) be the optimal solution for the second program. We will
show that the above two programs are equivalent in that two solutions align perfectly
with each other when aA2 (a

P
2 ) < aP2 . Then, we can directly derive µ∗

2 ≥ 0 when
aA2 (a

P
2 ) < aP2 , since µ̂2 ≥ 0 by Kuhn-Tucker theorem.

Assume that the second constraint in the second program is not binding. Then, µ̂2 =

0, and ŵ(y) should satisfy:

1

u′(ŵ(y))
= λ+ µ̂1

y − ϕ(â1, â2)

(â2)2
ϕ1(â1, â2), (C45)

for y satisfying ŵ(y) ≥ k and ŵ(y) = k otherwise. As the second constraint is not
binding, â2 becomes the best (from the principal’s perspective) a2, i.e., â2 = aP2 .
Then we must have â1 = aP1 and ŵ(y) = wP (y|aP1 , aP2 ). Therefore, the fact that the

16Following Rogerson (1985), we replace the incentive constraint with the corresponding inequality con-
straint, and exploit the fact that a multiplier to the inequality constraint must be non-negative.
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second constraint in the second program is not binding implies∫
u(wP (y|aP1 , aP2 ))f2(y|aP1 , aP2 , a3 = 0)dy > 0. (C46)

However, equation (C46) implies aA2 (a
P
2 ) > aP2 , a contradiction.17 Thus, the second

constraint in the second program must be binding, and the above two programs are
equivalent so µ∗

2 = µ̂2 ≥ 0. And also, µ∗
2 ̸= 0, because µ∗

2 = 0 implies aA2 (a
P
2 ) = aP2 .

2. µ∗
2 < 0 if aA2 (a

P
2 ) > aP2 . By applying the same method as in the above case, we can

easily prove it. We compare following two optimizations similar to (C43) and (C44):

max
a1,a2,w(·)≥k

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(C47)
and

max
a1,a2,w(·)≥k

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy ≤ 0,

(C48)
Solutions of the above two optimization programs must be the same, and due to the
property that the multiplier attached to the incentive constraint associated with a2 in
the second program must be non-positive, we conclude µ∗

2 < 0 when aA2 (a
P
2 ) > aP2 .

Proof of Proposition 9: Now we have the project choice a2(R) that depends on the ob-
served R by the manager. Consider the principal’s following alternative maximization

17We assume that
∫
u(w(y|aP2 ))f(y|aP1 , a2, a3 = 0)dy is concave in a2, which is based on the first-order

approach associated with a2.
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program:

max
a1(·),a2(·),w(·)

∫
R

∫
x,η

(x− w(x,R, η)) g(x, η|a1(R), a2(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x,R, η))g(x, η|a1(R), a2(R), R)dxdη − v(a1(R))

)
h(R)dR s.t.

(i)

∫
x,η

u(w(x,R, η))g1(x, η|a1(R), a2(R), R)dxdη − v′(a1(R)) = 0,∀R,

(ii)

∫
x,η

u(w(x,R, η))g2(x, η|a1(R), a2(R), R)dxdη = 0,∀R,

(iii) w(x,R, η) ≥ k, ∀(x, η).
(C49)

Note that the above program is different from the original program (C22) in that here con-
tract can be written on the realized value of R. If we let the Lagrange multipliers to the
constraints (i) and (ii) be µ1(R)h(R) and µ2(R)h(R) respectively, we get the following
optimal contractual form:18

1

u′(w(x,R, η))
= λ+ µ1(R)

x−Rη − ϕR

a2(R)2
ϕ1,R

+ µ2(R)

[
− 1

a2(R)
+
x−Rη − ϕR

a2(R)2
ϕ2,R +

(x−Rη − ϕR)
2

a2(R)3

]

= λ+ (µ1(R)ϕ1,R + µ2(R)ϕ2,R)

x−Rη︸ ︷︷ ︸
≡y

−ϕR

a2(R)2
+
µ2(R)

a2(R)


(x−Rη︸ ︷︷ ︸

≡y

−ϕR)
2

a2(R)2
− 1

 ,
(C50)

when w(x,R, η) ≥ k. The above equation (C50) implies that optimal contract only de-
pends on y ≡ x−Rη and the solution (w(x,R, η), a1(R), a2(R)) becomes (a∗1, a

∗
2, w

∗(y) ≡
w∗(x−Rη)). By comparing the above (C49) with the program in (C22) where the principal
does not know R, one can easily see that the set of wage contracts, {w(x,R, η)}, satisfy-
ing the incentive constraints for a given action combination (a1(R), a2(R)) in the above
program always contains the set of wage contracts that would be available when the prin-
cipal does not know R, {w(x, η)}, satisfying the incentive constraints for the same action

18We define ϕR ≡ ϕ(a1(R), a2(R)), ϕi,R ≡ ϕi(a1(R), a2(R)) for ∀i = 1, 2, where {a1(R), a2(R)} are
optimal actions for each R.
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combination. Therefore, we have

SWN ≤ SW ∗(a∗1, a
∗
2). (C51)

However, one can easily see that w∗(y) = w∗(x − Rη) which is a unique solution for the
wage contract of the above program is not in the set of {w(x, η)}. As a result, we finally
derive

SWN < SW ∗(a∗1, a
∗
2). (C52)

Proof of Lemma 6:

(1) Suppose µ∗
2 < 0 in equation (C29) for any given b̂. Proposition 8 implies that if the

shareholders want their manager to reduce the risk through the project choice (i.e., if aP2 <
aA2 (a

P
2 )), the optimal contract in equation (C19) features µ∗

2 < 0. Note that risk reduction
through the real project choice (i.e., lowering a2) is costly to the manager in the sense that
a less risky project generates the lower expected return, and thereby reduces the agent’s
expected payoff (i.e., µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2 > 0). Thus, the fact that even costly risk reduction

is encouraged by w∗(z(b̂)) implies that any risk reduction (i.e., reducing the variance of
z((̂b))) in the absence of expected return reduction will be taken by the manager under
w∗(z(b̂)). Risk reduction through derivative transaction is costless to the agent because
there is no risk-return trade-off for derivative transaction (i.e., manipulating a3). Whenever
taking further risk reduction is encouraged, therefore, the manager would like to do it
through the derivative choices first.

Thus, the manager will choose a3 so that b ≡ R−a3 = b̂ which minimizes the variance
of z(b̂), when w∗(z(b̂)) with µ∗

2 < 0 is designed.

(2) Suppose µ∗
2 > 0 for w∗(z(b̂)) in equation (C29). Given (a∗1, a

∗
2), z(b̂) = x − b̂η =

ϕ(a∗1, a
∗
2)+(b− b̂)η+a∗2θ holds. Let w(η, θ, b|w∗) be the wage that the manager will receive

under w∗(z(b̂)) when he takes (a∗1, a
∗
2, b) and (η, θ) are realized. Then, by substituting

equation (C27) into equation (C29), we have

1

u′(w(η, θ, b|w∗))
= λ+(µ∗

1ϕ
∗
1+µ

∗
2ϕ

∗
2)
(b− b̂)η + a∗2θ

(a∗2)
2

+µ∗
2

1

a∗2

(
((b− b̂)η + a∗2θ)

2

(a∗2)
2

− 1

)
,

(C53)
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when w(η, θ, b|w∗) ≥ k and otherwise w(η, θ, b|w∗) = k. Therefore, for two different b,
say b0 and b1, given some realized (η, θ), we have

1

u′(w(η, θ, b1|w∗))
− 1

u′(w(η, θ, b0|w∗))
=(µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
(b1 − b0)η

(a∗2)
2

+ µ∗
2

1

a∗2


(
(b1 − b̂)2 − (b0 − b̂)2

)
η2 + 2a∗2(b

1 − b0)ηθ]

(a∗2)
2

 .

(C54)
Assume that b1 = +∞ or −∞, and −∞ < b0 < +∞. Since µ∗

2 > 0, we have

1

u′(w(η, θ, b1|w∗))
− 1

u′(w(η, θ, b0|w∗))
> 0, ∀(η, θ). (C55)

Therefore, we have
w(η, θ, b1|w∗) > w(η, θ, b0|w∗), ∀(η, θ). (C56)

which implies that the agent takes a3 satisfying b = +∞ or −∞ withw∗(z(b̂)) with µ∗
2 > 0.
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