
Managerial Incentives, Financial Innovation,
and Risk-Management Policies*

Son Ku Kim† Seung Joo Lee‡ Sheridan Titman§

October 31, 2023

Abstract
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lae Gârleanu, Yuriy Gorodnichenko, Thomas Hellmann, Shachar Kariv, Thomas Noe, Chris Shannon, Joel
Shapiro, Kathy Yuan, and seminar participants at Berkeley and Oxford for helpful discussions.

†Seoul National University (sonkukim@snu.ac.kr)
‡Saı̈d Business School, Oxford University (seung.lee@sbs.ox.ac.uk)
§McCombs School of Business, University of Texas at Austin (titman@mail.utexas.edu)



1 Introduction

Corporations spend substantial resources assessing and managing their exposures to var-
ious sources of risk. In a setting with complete information and frictionless markets, the
Modigliani and Miller theorem holds, and these expenditures do not create value. However,
the finance literature identifies a number of market imperfections that provide a rationale for
these risk management activities.1 Most of this literature focuses on the role of financial
constraints and implicitly assumes that the risk management choices are made by value-
maximizing rather than self-interested executives.2 In contrast, the focus of this paper is
on the risk management choices of large public firms, which are financially unconstrained,
but managed by self-interested agents.

The manager (i.e., the agent) in our model is both risk and effort averse and makes two
choices that influence the firm’s risk. The manager selects from a menu of risky positive net
present value real investments and chooses derivatives positions that we assume have zero
net present values. Depending on the direction of these positions, the derivatives can either
increase or decrease the volatility of the firm’s profits. The shareholders (i.e., the principal)
in this model are risk neutral, and design a compensation contract with the manager that is
a function of the firm’s observed profits, (net of the profits or losses from the derivatives
transactions), and the realization of the hedgeable risk. For example, one can view this
as a model of an oil company whose profits are determined by the efforts of its CEO, oil
prices, hedging and investment choices, and random noise. To motivate the CEO to exert
effort and make appropriate investments, the CEO receives a bonus that is a function of
both profits and the price of oil.

The introduction of derivatives in this model can potentially create value by improving
the compensation contract in two ways. The first is that by hedging, the correlation between
reported earnings and managerial effort can be increased, allowing for compensation con-
tracts that more efficiently induce managerial effort. The second is that by eliminating
extraneous risk, hedging allows for contracts that more efficiently induce the manager to

1For previous works, see Smith and Stulz (1985), Campbell and Kracaw (1990), and DeMarzo and Duffie
(1991, 1995), Froot et al. (1993), Geczy et al. (1997), Leland (1998) among others.

2For the role of financial (e.g., collateral) constraints in risk management activities, see Rampini and
Viswanathan (2010, 2013), Rampini et al. (2014) among others. As both financing and risk management
need collateral, more financially constrained firms engage in less risk management, and sometimes do not
hedge at all. Our model in contrast abstracts from external financing constraints and focus on managerial
incentive issues, noting that risk management policies of a firm are chosen by self-interested managers, not
shareholders of the firm.
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take risky real investments with higher expected payouts. Whether a self-interested man-
ager can in fact be induced to eliminate hedgeable risks depends on the manager’s risk
preferences and the real investment opportunity set. As we show, in some settings it is too
costly to induce the manager to take derivative positions that hedge rather than speculate. In
these settings, the introduction of derivatives may not create value and their use is restricted
in optimal contracts.

We start by considering a setting where the firm’s real investment choice is observable
and contractible. However, the principal, in this setting, does not observe the firm’s ex-
posure to an element of risk that can be hedged. This information, which is observed by
the agent, cannot be credibly disclosed to the principal, and in addition, we will initially
assume that there is no communication between the principal and the agent.3 Specifically,
we examine the optimal compensation contract between the agent and the principal that
can be characterized as a salary that is contingent on the realizations of the firm’s profits,
as well as an observable state variable that represents the hedgeable element of risk. For
example, the profits of an oil firm is determined by oil prices, the effort of the executive
and the amount hedged, and its executive’s compensation is determined by the observed
profits and oil prices. The principal in this setting can either allow or prohibit hedging, but
if hedging is allowed, the principal cannot dictate the amount hedged.

If the firm’s risk exposure cannot be communicated and cannot be hedged the efficiency
of the optimal compensation contract is reduced. However, as we show, when hedging is
allowed, asymmetric information about risk exposure needs not create costs. In particular,
when the optimal compensation contract, conditioned on full hedging, makes the agent’s
indirect utility concave in hedged output, an agent given such a contract will in fact fully
hedge and exerts the same effort as in the case with symmetric information.

The agent’s indirect utility, conditioned on full hedging, is not, however, necessarily
concave. For example, the indirect utility function is convex if the agent is not too risk
averse. When this is the case, the principal optimally imposes more risk on the agent’s
compensation to induce higher efforts.4 In the power utility case, for instance, decreasing

3In Appendix B, we consider an alternative setting, where there can be contractible communication
between the principal and the agent, i.e., the compensation contract can include the risk exposure disclosed
by the agent, as well as the profits and the realization of the hedgeable source of uncertainty. As we show,
the problem with hedging and no communication is equivalent to a problem with communication but without
hedging. Specifically, the optimal allocations achieved in our setting, with hedging and no communication,
is identical to those achieved in a mechanism design setting where the optimal contract induces the agent to
truthfully reveal the firm’s risk exposure.

4Hirshleifer and Suh (1992) characterize special cases of the agent’s utility and the output distribution
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absolute risk aversion implies that as output increases, the agent becomes more risk tol-
erant, which implies that the slope of the contract is steeper at higher output levels. This
convex contract, combined with the agent’s utility, results in convex indirect utility if the
agent’s utility function is not too concave.

If the compensation contract, with contractible hedging, generates a convex indirect
utility function, then this contract will not be optimal when the hedging choice and risk ex-
posure is not contractible. This is because an agent offered such a contract has an incentive
to speculate rather than hedge. As we show, when this is the case, the agent’s derivative
choices may be restricted, however, if it is not restricted, the optimal compensation contract
will depend on both profits and the realization of the firm’s hedgeable risk. Specifically,
the optimal contract penalizes the agent when both profits and hedgeable risk have extreme
realizations.5 Such a contract can induce the agent to hedge rather than speculate, even
when the indirect utility function under the contract conditioned on full hedging is convex
in profits.

We next consider the case where the agent selects from among several possible invest-
ments that are exposed to different risks and have different expected rates of return. In
this setting, in addition to incentive issues that affect the derivative choice and the effort
choice, there is a natural conflict between the investment preferred by the risk averse agent
and the risk neutral principal who prefers the investment with the highest expected return.
One question we ask is whether the introduction of derivatives mitigates or amplifies this
conflict.

As we show, to induce the risk averse agent to select riskier projects, the compensation
contract will tend to be convex in profits. This additional channel can generate a convex
indirect utility function, that can induce the agent to take derivative positions that speculate
rather than hedge. In contrast to the earlier case where the real investment is given, in
this case it is the more risk averse agent rather than the less risk averse agent that ends up
with a convex indirect utility function. In any event, we again obtain the result that the
optimal contract is either altered to penalize extreme output realizations that arise when
extreme hedgeable risk outcomes, or alternatively, derivative transactions are restricted, or
even banned. We also show that when derivatives are used for hedging, the agent is induced
to choose efforts and investments with higher expected returns more efficiently.

function that leads to the agent’s indirect utility function being convex.
5Intuitively, to induce hedging, the principal penalizes the agent for any covariance (positive or negative)

between profits and the hedgeable element of profits.
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Intuitively, hedging creates value in the settings we examine because it allows contracts
to be designed that are contingent on a measure of output that is more highly correlated with
the agent’s effort. In this sense, our analysis is closely related to the seminal Holmström
(1979) paper, which shows that the optimal contract is a function of various state variables
that can provide information about the agent’s effort. Our contribution is that we extend
the analysis to the case where the exposure of profits to these state variables is unknown
to the principal. Specifically, we consider a setting with asymmetric information about an
element of risk that can be affected by the agent‘s choice.

We also contribute to the literature that explores how firms make risk management
choices. Our paper is most closely related to papers by DeMarzo and Duffie (1991, 1995),
who also point out that with hedging, the profits of a firm may provide more precise in-
formation about managerial inputs. In DeMarzo and Duffie (1991, 1995), hedging allows
the owners of the firm to more precisely learn about managerial ability, which increases
the value of the option to either continuing or abandoning firm projects. In contrast, in our
model the owners are learning about effort, and with hedging, the contract more efficiently
elicits better effort. It should be noted, however, that DeMarzo and Duffie (1991, 1995)
ignore the incentive issues with the hedging choice, which is the focus of this paper.

It should also be noted that others have examined the optimal contract between a risk
neutral principal and a risk averse agent that makes both risk and effort choices, e.g., Hir-
shleifer and Suh (1992), Sung (1995), Palomino and Prat (2003), DeMarzo et al. (2011),
Barron et al. (2020).6 The main difference between our paper and these previous papers
is that we explicitly consider derivative contracts that can be distinguished from real in-
vestments considered in earlier work in two important ways. The first is that the outcome
of these contracts are observable, they are not affected by the agent‘s effort and are con-
tractible, and can thus be included in the optimal contract. The second is that exposure to
this element of risk is a zero net present value bet, which means that to the extent possible,
the agent’s exposure to this element of risk should be minimized.

In summary, our model builds on the prior literature that highlights the importance of
including state variables as well as output in optimal agency contracts. However, we are
the first to provide a solution to this problem when, in addition to effort, the agent takes
a hidden action that influences the relation between the state variable, i.e., hedgeable risk,

6Hébert (2018) assumes that the agent picks his effort and risk-shifting by choosing the distribution of
state in a non-parametric way. Under special cost functions (e.g., Kullback-Leibler divergence), debt becomes
optimal.
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and the output.7

While we believe that we are the first to model the derivative choices of self-interested
managers under moral hazard, the idea that these choices may not be made in the interests
of shareholders is not new. For example, in Tufano (1996) study of the gold mining indus-
try, he found that managerial incentives were the most important determinant of corporate
derivatives choices. Policymakers are also aware of potential incentive problems. For ex-
ample, during the global financial crisis, Ben Bernanke stated that “compensation practices
at some banking organizations have led to misaligned incentives and excessive risk-taking,
contributing to bank losses and financial instability.”8 While poorly written incentive con-
tracts are clearly inconsistent with our model, it is possible that contract changes that should
have been introduced along with the introduction and growth of derivative contracts were
in fact slow to be enacted.

The paper is organized as follows: In Section 2, we provide a simple model with fixed
real investments (i.e., project choices). In Section 3, we formulate our model with hidden
and flexible real investment choices. Concluding remarks are provided in Section 4, and
the proofs of the Lemmas and Propositions as well as omitted derivations are all given in
the Appendix A. We consider cases where the free communication between the principal
and the agent is possible, and discuss the optimal truth-telling mechanism in Appendix B.
Finally, Appendix C provides the detailed analysis of Section 3 when the agent speculates
in derivative markets under the benchmark contract.

2 A Model without Project Choice

This section presents a two-person single-period agency model in which a risk averse agent
works for a risk neutral principal. The principal can be thought of as the firm’s shareholders,
and the agent can be regarded as the firm’s top manager or CEO. Alternatively, we can
think of the principal as the CEO and the agent as the head of one of the firm’s divisions.
Hereafter, we use the terms ‘agent’ and ‘manager’ interchangeably.

7Replacing the agent’s original incentive compatibility constraint with its first-order condition, which is
called the first-order approach, has been typically adopted in the literature. Deriving optimal contracts in
our environment turns out to be tricky, as we cannot use the so-called first-order approach, and we make a
novel methodological contribution to the literature by deriving optimal contracts based on a methodology
that circumvents the first-order approach. For the first-order approach in the canonical agency model, see
Grossman and Hart (1983), Rogerson (1985), Jewitt (1988), Sinclair-Desgagné (1994), Conlon (2009), Jung
and Kim (2015), Jung et al. (2022) among others.

8Fed press release (2009): https://www.federalreserve.gov/newsevents/pressreleases/bcreg20091022a.htm
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After his wage contract is finalized, the agent chooses two actions, a1 ∈ [0,∞) and
ad ∈ (−∞,+∞). The first action a1 is a productive effort that increases expected output,
that is, a high effort generates an output level that first-order stochastically dominates the
output level generated by a low effort. The agent’s second action, ad, is his derivative
choice. We can think of ad as forward contract that has zero upfront cost and pays η per
unit at the end of the period, where η can for example, be the difference between the price
of oil and its risk neutral expectation.

After the agent chooses a1 and ad, the firm’s output, x, is realized and publicly observ-
able without cost. Thus, output x can be used in the manager’s wage contract denoted by
w. The output is determined not only by the agent’s choice of (a1, ad) but also by the state
of nature, (η, θ). For simplicity, we assume that the output function exhibits the following
additively separable form:

x = ϕ(a1) + σθ + (R− ad)η. (1)

The first element, ϕ(a1), is the firm’s expected output, which is a function of a1 and is
not affected by the agent’s derivatives choice, ad. The firm’s risk consists of two compo-
nents, η and θ, where η ∼ N(0, 1) represents one unit of the firm’s hedgeable risks, and
θ ∼ N(0, 1) represents one unit of the firm’s non-hedgeable risks. For simplicity, we as-
sume that η and θ are uncorrelated. As denoted by (1), the firm’s total non-hedgeable risk
is fixed at σ, whereas the firm’s hedgeable risks are determined by market variables such
as commodity prices, interest rates, and exchange rates, which become publicly observable
after the agent chooses both a1 and ad.9 Accordingly, we assume η is observable at the end
of the period, and thus can also be used in the manager’s wage contract if necessary. In (1),
R ∼ N(Rm, σ

2
R) denotes the firm’s innate exposure to the hedgeable risks (e.g., the amount

of oil underground for a drilling company). We assume that the manager can observe the
true value of R after the contract is signed but before he chooses a1 and ad. In contrast,
the principal knows only its distribution. We assume that the management effort a1 does
not affect R, the firm’s innate exposure to the hedgeable risks. However, the firm’s final
risk exposure is determined by the manager’s transaction ad in the derivative market. The
manager hedges, i.e., reduces risk, as long as |R− ad| < |R| and minimizes risk by setting
ad = R. On the other hand, if |R − ad| > |R|, the manager speculates in the derivative

9In fact, if the relevant derivative market observable is denoted as p, then η = p − p where p is the
expected value of p.
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market, and ad = 0 implies that the manager does not trade derivatives. Finally, we as-
sume that the manager‘s only risk exposure comes from the compensation contract, i.e., he
cannot hedge or speculate on his own account.

In addition, we make the following assumptions:

Assumption 1 The agent’s preferences on wealth and productive effort are additively sep-
arable:

U(w, a1, ad) = u(w)− v(a1), u
′ > 0, u′′ < 0,

where v, the agent’s disutility of exerting productive effort, has the properties v′ > 0, v′′ >

0, ∀a1.

Assumption 2
∂ϕ

∂a1
(a1) ≡ ϕ1(a1) > 0,

∂2ϕ

∂a21
(a1) ≡ ϕ11(a1) < 0.

Assumption 1 implies that the agent is risk-averse and effort-averse, and the agent’s
derivatives choices have no direct effect on his utility.10 Assumption 2 indicate that the
effort a1 affects the expected output with a usual property of decreasing marginal increase
in output.

2.1 Benchmark Case

Throughout Section 2.1, we consider a benchmark case where both the risk exposureR and
the agent’s derivative choice ad are observed by the principal.11 In this case, the optimal
contracts are written based on y ≡ x− (R− ad)η, and we have the following result:

Lemma 1 If the principal observes the firm’s innate risk exposure R, and the level of

derivative transaction ad, then the compensation of the agent will be independent of the

realization of the hedgable risk.

Lemma 1 can be understood as follows: when R and ad can be observed by the princi-
pal, (R−ad)η provides no information about effort, and thus, following Holmström (1979),
does not affect compensation in the optimal contract. It should be noted that the optimal
contract will undo the effect of derivative transactions, i.e., the contract offsets the effect of

10For the derivative choice ad, we assume that a direct hedging cost (e.g., option premium) is negligible
compared with the nominal amounts of a firm’s cash flows. Therefore, we assume away costs for derivative
choice ad.

11This includes cases where there is no derivative market, i.e., ad = 0.
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(R−ad)η by compensating the agent based on a new signal y = x−(R−ad)η = ϕ(a1)+σθ,
which is independent of η. In this sense, the actual derivative choice is a matter of indiffer-
ence.

The optimal wage contract w(y), in this case, is found by solving for the contract that
maximizes the combined utilities of the principal and agent subject to the restriction that
the agent’s effort a1 is chosen to maximize the agent’s utility given the contract. The
optimization is given by12

max
a1,w(·)

ϕ(a1)−
∫
w(y)f(y|a1)dy + λ

(∫
u(w(y))f(y|a1)dy − v(a1)

)
s.t.

(i) a1 ∈ argmax
a′1

∫
u(w(y))f(y|a′1)dy − v(a′1), ∀a′1,

(ii) w(y) ≥ k, ∀y,

(2)

where f(y|a1) denotes a probability distribution function of y ∼ N (ϕ(a1), σ
2) given the

agent’s action a1, and λ is a welfare weight placed on the agent’s utility in the joint op-
timization (2). As shown, the combined utilities of the principal and the agent are max-
imized subject to the agent’s incentive compatibility constraint which specifies that the
agent chooses his effort for his own optimization, and his limited liability constraint which
specifies that the agent receives at least k, the subsistence level of utility.13 Based on the
first-order approach, instead of the optimization (2), we solve the following alternative:

max
a1,w(·)≥k

ϕ(a1)−
∫
w(y)f(y|a1)dy + λ

(∫
u(w(y))f(y|a1)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a′1)dy − v′(a′1) = 0,

(3)

where we replace the agent’s incentive compatibility constraint with his first-order condi-
tion.14

12The optimization in (2) yields a mathematically equivalent solution to an agency model where a prin-
cipal maximizes her utility subject to an optimizing agent receiving his reservation utility level: see e.g.,
Holmström (1979). Our purpose here is to analyze the overall efficiency implication of financial market in-
novations and thus we choose to fix λ, which is usually an endogenous Lagrange multiplier in the literature.

13The limited liability constraint is introduced to guarantee the existence of optimal solution for w(y).
This condition is needed because we assume that the signal is normally distributed. For details about this
‘unpleasantness’, see Mirrlees (1974) and Jewitt et al. (2008).

14We assume that the first-order approach is valid. Grossman and Hart (1983) and Rogerson (1985) show
that MLRP and CDFC are sufficient for the validity of the first-order approach when the signal space is of one
dimension. Jewitt (1988) finds less restrictive conditions for the validity of the first-order approach, based on
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Following the literature (see e.g., Kim (1995)), to find the optimal solution (a∗1, w
∗(y|a∗1))

for the optimization in (2), we first derive an optimal contract for an arbitrarily given action
a1. Let w∗(y|a1) be a contract that optimally motivates the agent to choose a particular
level of a1. Subject to some technical assumptions, by solving the Euler equation of the
above program (2) after fixing a1, we derive that w∗(y|a1) must satisfy

1

u′(w∗(y|a1))
= λ+ µ1(a1)

f1
f
(y|a1), (4)

for almost every y for which the solution in (4) satisfies w∗(y|a1) ≥ k, and otherwise
w∗(y|a1) = k. In (4), µ1(a1) denotes the optimized Lagrange multiplier for the agent’s
incentive compatibility constraint associated with a1. Since y ∼ N (ϕ(a1), σ

2), (4) is
reduced to:

1

u′(w∗(y|a1))
= λ+ µ1(a1)

y − ϕ(a1)

σ2
ϕ1(a1). (5)

Before analyzing the optimal contract w∗(·), we first define social welfare SW ∗ as a
function of a1 as follows:

SW ∗(a1) ≡ ϕ(a1)− C∗(a1)− λv(a1), (6)

which denotes the joint benefits when w∗(y|a1) is designed where

C∗(a1) ≡
∫

(w∗(y|a1)− λu(w∗(y|a1))) f(y|a1)dy (7)

represents the efficiency loss in this case compared with the full information case, given the
optimal contract w∗(·|a1). In other words, C∗(a1) measures the agency cost arising from
motivating the agent to take a particular action a1. Finally, the optimal action a∗1 can be
found by

a∗1 ∈ argmax
a′1

SW ∗(a1), (8)

and we simplify notation, thus w∗(y) ≡ w∗(y|a∗1). The optimal surplus in this case will be
given by SW ∗ ≡ SW ∗(a∗1).

the agent’s risk preferences as well as the distribution function of the signal. Sinclair-Desgagné (1994) shows
that more general versions of MLRP and CDFC in a multi-dimensional space are sufficient for the validity of
the first-order approach when the signal space is of multiple dimensions. For more recent treatments along
this line, see Conlon (2009) and Jung and Kim (2015) among others. Recently, Jung et al. (2022) justifies the
first-order approach when the technology follows normal distributions, which corresponds to our problem in
(2).
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Given the optimal contract w∗(·), we define the agent’s indirect utility function V (·) as

V (y) ≡ u(w∗(y)). (9)

We know from Rothschild and Stiglitz (1970) that if V (·) is convex (concave), then the
agent wants to raise (reduce) the level of overall risk to the output x if possible. In gen-
eral, the curvature of the agent’s indirect utility function V (·) depends on the distribution
of random state variables and the utility function u(·) itself. To see how different utility
functions affect this curvature differently, we consider the case where the agent has con-
stant relative risk aversion with degree 1− t, where t < 1 (u(w) = 1

t
wt, t < 1). We obtain

from equation (5) that

w∗(y) =

(
λ+ µ1(a

∗
1)

(
y − ϕ(a∗1)

σ2

)
ϕ1(a

∗
1)

) 1
1−t

, (10)

and the agent’s indirect utility under this wage contract is

V (y) ≡ u(w∗(y)) =
1

t

(
λ+ µ1(a

∗
1)

(
y − ϕ(a∗1)

σ2

)
ϕ1(a

∗
1)

) t
1−t

. (11)

The above equation shows that the agent’s indirect utility V (·) becomes strictly concave
in y15 if t < 1

2
, linear if t = 1

2
, and convex if t > 1

2
for y satisfying w∗(y) ≥ k. If we

assume w∗(y) = k for sufficiently low y, as far as the agent’s induced risk preferences are
concerned, the agent acts as if he is risk-loving if and only if t ≥ 1

2
, i.e., the agent’s risk

aversion is lower than 1
2
.

2.2 The Model with Derivative Markets

Now, we go back to the model’s original specification, where the hedgeable risk, η ∼
N(0, 1), is contractible, but the firm’s inherent risk-exposure, R, is observed only by the
agent. With access to the derivative market, the agent can choose any level of ad. However,
because of the asymmetry of information between the two parties (i.e., principal and agent)
about the value of risk-exposure R, the efficiency of the agency relationship can be hurt,
even if η can be used in contracts. In this section, we study this issue in depth.

15It is widely known in the literature that µ1(a
∗
1) > 0 at the optimum. For the proof, see Holmström

(1979), Jewitt (1988), Jung and Kim (2015), Jung et al. (2022) among others.
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Since the principal does not observe R or ad, contracts can depend only on the output
x and the hedgeable risk η. We start our analysis by assuming the same contract w∗(x),16

given in (5), which is optimal in the benchmark case, is given to the agent, and analyze
cases where the agent’s indirect utility function, V (x) = u(w∗(x)), given this contract
w∗(x), is either convex or concave in output x.

2.2.1 When the agent’s indirect utility V (x) is concave in output x

As we discussed in the last subsection, With a concave indirect utility function V (x), the
agent has an incentive to minimize the risk of x, which implies that his optimal strategy is
to eliminate the risk-exposure R by choosing ad = R.17 In this case there is no efficiency
loss from the information asymmetry between shareholders and the manager. Specifically,
the hedging choice of the agent eliminates the risk-exposure, and thus no longer affects the
output x. In this case, the optimal contract as well as the optimal action remains the same
at w∗(x) and a∗1 in (5) and (8) and social welfare is the same as in equation (6) of Section
2.1.

This result is summarized by the following Proposition 1.

Proposition 1 When the agent’s indirect utility V (x) = u(w∗(x)), under the benchmark

optimal contract w∗(x) defined in (9), is concave in output x, the agent always chooses

ad = R (i.e., complete hedging) in derivative markets, eliminating the welfare loss arising

from asymmetric information about the risk-exposure R. The surplus remains at SW ∗.

For the case of constant relative risk aversion with degree 1 − t (i.e., u(w) = 1
t
wt,

t < 1), for example, the manager whose preference shows a higher risk aversion than
t = 1

2
case (i.e., t < 1

2
) features a concave V (·), thereby belonging to the case of the above

Proposition 1.

2.2.2 When the agent’s indirect utility V (x) is convex in output x

If the agent’s indirect utility V (x) is convex in output x when the risk exposure is observ-
able, then there is a cost associated with the risk exposure being unobserved. To show
this, we first consider the case where the principal offers the agent the same contract w∗(·)

16Note that the contract w∗(·) is now a function of the output x, not the constructed signal y of Section
2.1.

17Since x = ϕ(a1) + σθ + (R− ad)η, the agent can minimize the risk by choosing ad = R.
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described in Section 2.1. As we show in the following Lemma 2, when this is the case,
the agent has an incentive to increase the risk of output x as much as possible, choosing
ad = ∞.

Lemma 2 If the agent’s indirect utility V (x) = u(w∗(x)), under the benchmark contract

w∗(x) defined in (9), is convex in output x, the agent chooses ad = ∞ (i.e., infinite specu-

lation) given w∗(x).

Note that Lemma 2 implies that the agent’s indirect utility function V (·) cannot be convex
if the agent is allowed to trade, without constraints, in the derivative market. In other words,
the contract w∗(·) in (5) is not optimal in this setting.

To examine how the contract can be designed to motivate the agent to choose ‘finite’
risk we consider two cases: In the first case, we consider a contract that motivates the agent
to engage in complete hedging (i.e., ad = R). Alternatively, shareholders can restrict access
to derivative markets, so that the manager can only choose ad = 0. Both cases result in
welfare losses relative to the efficient contract in Section 2.1 where there is no information
asymmetry.

Our analysis starts with the case where the use of derivatives is banned.

Case 1: Banning the use of derivatives In this case, ad = 0, regardless of the level of
R that the agent observes before taking effort a1. Due to the asymmetric information about
R between shareholders and manager, the optimized joint welfare in this case, which we
denote by SWN , is lower than SW ∗ in Section 2.1. Since shareholders do not observe R,
the compensation contract must be based on (x, η), i.e., w = w(x, η).

The principal’s maximization program is thus:

SWN ≡ max
a1(·)

w(·)≥k

∫
R

(∫
x,η

(x− w(x, η) + λu(w(x, η)) g(x, η|a1(R), R)h(R)dxdη − λv(a1(R))

)
dR

s.t. (i) a1(R) ∈ argmax
a1

∫
x,η

u(w(x, η))g(x, η|a1, R)dxdη − v(a1),∀R,

(12)
where

g(x, η|a1, R) =
1

2πσ
exp

(
−1

2

(
(x− ϕ(a1)−Rη)2

σ2
+ η2

))
(13)

denotes the probability density function of (x, η) given (a1, a2, R) when ad = 0, and h(R)
denotes the probability density function of R. SWN is defined as the optimized surplus in
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this case. Note that as the agent is the only one seeing the realized value of R, his action a1
would depend on observed R, given the contract w(x, η).

For each R, let
{
aN1 (R), w

N(x, η)
}

be the solution of the above optimization program
in (12). If we let µ1(R) be the optimized Lagrange multiplier attached to the incentive
constraint in a1(R), the optimal contract wN(x, η) can be written as18

1

u′(wN(x, η))
= λ+

∫
R

µ1(R)

 g1(x, η|aN1 (R), R)∫
R′
g(x, η|aN1 (R′), R′)h(R′)dR′

h(R)dR (14)

when w(x, η) ≥ k and otherwise w(x, η) = k.
SWN in this case is lower than SW ∗ of Section 2.1, since the principal can no longer

use R, which is an informative signal about the agent’s effort, in the design of the compen-
sation contract. This is summarized in the following Proposition 2.

Proposition 2 When the principal bans derivative contracts and any communication be-

tween the principal and the agent is not possible, the principal’s inability to observe the

firm’s risk exposure reduces welfare, i.e.,

SWN < SW ∗.

Intuitively, when the principal observes the firm’s risk exposure, R, this information
can be used to design a compensation contract that eliminates the influence of the hedge-
able risks, i.e., w = w∗(y ≡ x − Rη).19 However, if R is not observable and cannot be
communicated this is impossible. We can clearly see the benefit of hedging that reduces
R here: hedging mitigates this concern where you cannot use an informative signal R in a
contract, and achieves the better welfare.

Case 2: Designing an optimal contract that allows derivative trading As we discussed
above, the contract w∗(·) in (5) induces infinite speculation, i.e., ad = ∞. In this subsec-
tion, we consider compensation contracts that induce the manager to make finite derivative
choices. We will show that there is a menu of optimal contracts that achieve identical effort

18We provide the derivation for equation (17) in Appendix.
19As we explained in Section 2.1, this is related to the ‘informativeness’ principle in Holmström (1979),

who argues a signal has a positive value (i.e., should be used in contracts) if it affects the local likelihood
ratio.
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and utilities for both the agent and the principal. The indeterminacy of the optimal contract
arises because any change in risk exposure specified in a contract can be costlessly offset
by the derivative positions chosen by the agent.

To understand this indeterminacy, note that since the agent observes R before choosing
the actions a1 and ad, his choice of ad can be characterized as his choice of b ≡ R − ad.
Suppose that the principal wants to induce the action ao1 and b̂ = R−aod with some contract
wo(x, η), i.e., given contract wo(x, η), the agent will choose ao1 and aod such that b = R −
aod = b̂, satisfying

b̂ ∈ argmax
b

E

u
wo

ϕ (ao1) + σθ + bη︸ ︷︷ ︸
≡x

, η

− v(ao1), (15)

which can be translated into

0 ∈ argmax
b

E

u
wo

ϕ (ao1) + σθ + b̂η + bη︸ ︷︷ ︸
≡x+b̂η

, η



− v(ao1), (16)

which implies, if the principal induces b = b̂ with contract wo(x, η), then she can always
motivate b = 0 with another contract woo(x, η) ≡ wo(x + b̂η, η). As the principal is risk
neutral, in this case without loss of generality, we can assume the principal induces b = 0

(i.e., perfect hedging).
Given that the agent choosing ad given his private information R is equivalent to his

choosing b = R− ad, a new optimal contract, wo(x, η), inducing the agent to take (ao1, b =

0) must solve the following optimization problem:20

max
w(·)≥k

∫
(x− w(x, η))g(x, η|ao1, b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|ao1, b = 0)dxdη − v(ao1)

)
s.t. (i)

∫
u(w(x, η))g1(x, η|ao1, b = 0)dxdη − v′(ao1) = 0,

(ii) b = 0 ∈ argmax
b′

∫
u(w(x, η))g(x, η|ao1, b′)dxdη, ∀b.

(17)

20Here the distribution g(x, η|a1, b) is of the joint normal distribution of (x, η) implied by equation (1).
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First-order approach with b = 0. Note that the optimization problem (17) takes the
optimal ao1 as given, and relies on the first-order approach for the incentive constraint asso-
ciated with the effort a1, as we do in optimization (3).21 However, we do not use the same
first-order approach for the incentive compatibility constraint associated with the hedging
choice b. The following Lemma 3 demonstrates the reason we cannot use the first-order
approach for the incentive compatibility around b.

Lemma 3 If w∗(x) in (5) is designed, the agent will be indifferent between taking b and

taking −b, ∀b.

Lemma 3 shows that if w∗(x), the optimal contract in the benchmark case, is offered, the
manager’s expected utility is symmetric around b = 0 (i.e., ad = R) in the space of b (i.e.,
in the space of ad). As we know:∫

u(w∗(x))g(x, η|ao1, b)dzdη (18)

is continuous and differentiable in b, that Lemma 3 implies:∫
u(w∗(x))gb(x, η|ao1, b = 0)dzdη = 0. (19)

Since (w∗(x), a∗1) is the solution to the optimization in (2), where there is no incentive
constraint of b,22 if we use the first-order approach for the incentive constraint associated
with b in the above program (17), we always end up with w∗(x) in (5) as the optimal
contract. However, we can see from Lemma 2 that this contract incentivizes the agent to
take b = ±∞ instead of taking the stipulated b = 0. Therefore, the first-order approach
cannot be used in this setting. In particular, we cannot rely only on the first-order condition
at b = 0, but must instead explicitly include the incentive constraint that must hold for all
b.

Without relying on the first-order approach, we follow Grossman and Hart (1983), re-

21g1(x, η|a1, b) is defined as a partial derivative of g(x, η|a1, b) with respect to a1. Likewise, we define
gb(x, η|a1, b) as g(x, η|a1, b)’s partial derivative with respect to b.

22Since for b = 0, the likelihood ratios can be represented as

g1
g
(x, η|a1, b = 0) =

x− ϕ(a1)

σ2
ϕ1(a1),

gb
g
(x, η|a1, b = 0) =

(x− ϕ(a1))η

σ2
, (20)

we see that w∗(x) becomes the solution of the (2) without the incentive constraint of b.
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placing the incentive constraint for b (i.e., (ii) in (17)) with:∫
u(w(x, η)) (g(x, η|ao1, b = 0)− g(x, η|ao1, b)) dxdη ≥ 0, ∀b, (21)

which implies that the manager’s indirect utility is maximized when he takes b = 0 (i.e.,
ad = R).

Now we state formally the optimization problem of choosing the optimal contract wo(·)
given ao1 as:

SW o ≡ max
w(·)≥k

∫
(x−w(x, η))g(x, η|ao1, b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|ao1, b = 0)dxdη − v(ao1)

)
s.t. (i)

∫
u(w(x, η))g1(x, η|ao1, b = 0)dxdη − v′(ao1) = 0,

(ii)

∫
u(w(x, η)) (g(x, η|ao1, b = 0)− g(x, η|ao1, b)) dxdη ≥ 0, ∀b,

(22)
where we define SW o as the optimized surplus in this case. The first-order condition of the
above program (22) yields the optimal contract, wo(x, η), that satisfies

1

u′(wo(x, η))
=λ+ µo

1

x− ϕ(ao1)

σ2
ϕ1(a

o
1) +

∫
µo
b(b)

(
1− g(x, η|ao1, b)

g(x, η|ao1, b = 0)

)
db︸ ︷︷ ︸

Additional term to (5)

,
(23)

for (x, η) satisfying wo(x, η) ≥ k and wo(x, η) = k otherwise. In (23), µo
1 and µo

b(b) are the
optimized Lagrange multipliers associated with the first constraint (i.e., (i)) and the second
constraint for a particular b (i.e., (ii)) in the above optimization program (22), respectively.23

As we formally prove in the Appendix A, equation (23) implies the following proposi-
tion:

Proposition 3 Suppose that the agent’s indirect utility V (x) in (9) is convex in output x.

The agent can be motivated to hedge completely with a new contract, wo(x, η) in (23),

which (i) satisfies wo(x, η) = wo(x,−η) for all x, η; (ii) penalizes the manager for having

a higher realized (x − ϕ(ao1))
2η2. Specifically, given the realized (x, η), in the optimal

contract, a higher (x − ϕ(ao1))
2η2 reduces wo(x, η), and for any given output x and (x −

ϕ(ao1))
2η2, the wage wo(x, η) increases in η.

23For general reference about the variational approach to the optimization (22), see e.g., Luenberger
(1969).
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Proposition 3 can be understood as follows: with the output x = ϕ(ao1) + σθ + bη, b
can be expressed as Cov(x, η) ≡ E((x − ϕ(ao1))η). If the agent fully hedges (i.e., b = 0),
the covariance between output x and hedgeable risk η becomes zero, whereas any other
b ̸= 0 generates non-zero expected covariance. Since the manager voluntarily chooses
b = 0 given wo(x, η), x = ϕ(ao1) + σθ is generated, which is independent of η, wo(x, η) =

wo(x,−η) for all x. At the optimum η is thus insured to minimize the amount of risk
imposed on the agent, as η is now irrelevant in inducing ao1 (as x does not depend on η
under b = 0) and has a symmetric distribution around 0.

Ideally, by penalizing the covariance between x and η, shareholders can effectively in-
duce full hedging (i.e., b = 0) from the manager. The problem is that the principal does
not observe the population covariance between x and η. Therefore, as our model is static,
any positive or negative realized sample covariance Ĉov = (x − ϕ(ao1))η = bη2 + σθη,
instead of a population covariance, is punished by the principal through a lower com-
pensation wo(x, η). Since the optimization (22) is symmetric around b = 0, the op-
timal contract wo(x, η) punishes positive and negative sample covariance (x − ϕ(ao1))η

in a symmetric way, i.e., penalizes higher ((x − ϕ(ao1)η)
2. If the realized covariance

Ĉov = (x − ϕ(ao1))η = bη2 + σθη is large, not because of the manager’s speculation
(i.e., b ̸= 0) but from a high level of realized market observable, |η|, then the principal
takes it into account and raises wo(x, η). In contrast, given realized output and market ob-
servables (x, η), a bigger realization of Ĉov is likely to be generated by b ̸= 0 with a bigger
|b|, thus the agent is penalized and her compensation wo(x, η) falls.

Note that social welfare in this case SW o is lower than the benchmark level SW ∗, as
we impose an additional incentive compatibility constraint in (17) compared with (2). This
is summarized by the following Proposition.

Proposition 4 When the agent’s indirect utility V (x) given in (9) is convex in output x,

the introduction of a derivative market will reduce the firm’s welfare to SW o from SW ∗ in

Section 2.1. Therefore,

SW o < SW ∗.

Comparing SWN and SW o From Propositions 2 and 4, we observe that in cases where
the agent infinitely speculates given the optimal w∗(x) from Section 2.1, i.e., when V (x) is
convex in output x, the social welfare (i.e., SWN or SW o) is reduced from SW ∗ as either
(i) the principal does not allow the manager to transact in derivative markets; or (ii) alter
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the optimal contract in a way that the manager voluntarily hedges, which distorts from the
original risk-sharing in (5) and hurts the efficiency.

The following Proposition 5 compares social welfare levels SWN and SW o in some
cases.

Proposition 5 When the agent’s indirect utility V (x) given in (9) is convex in output x,

then SW o, the level of welfare when the agent‘s derivative choices are unrestricted, can be

lower than SWN in (22), the level of welfare when derivative use is banned. This will be

the case when uncertainty about the firm’s risk exposure, σ2
R, is small.24

As we illustrated in Proposition 3, if the agent can transact in derivative markets and
choose ad, the optimal contract must be altered from wN(x, η) in equation (14) to wo(x, η)

in equation (23). In the cases where the manager chooses to hedge when the derivative
market is introduced, given his original optimal contract w∗(·) (i.e., V (x) is concave in
x), the compensation contract remains unchanged from w∗(x), and welfare unambiguously
increases because of the informational gain SW ∗ − SWN generated by using derivatives
to eliminate R.25 However, when a convex V (x) given w∗(x) induces the manager to
speculate in the derivative market, shareholders must revise the manager’s contract from
w∗(x) to wo(x, η) to provide an incentive to hedge. This is costly because it imposes
additional risk on the risk-averse manager, so welfare declines.

Note that we do not require expectation with respect to the firm’s initial risk exposure
R to calculate joint benefits SW ∗ and SW o, since they are both independent of R. When
there is no hedgeable risk, i.e., η ≡ 0, then joint benefits, SW ∗, become obviously inde-
pendent of the R’s realization because the optimal action a∗1 is independent of R. Similarly,
when wo(x, η) is designed in the presence of derivative markets, the joint benefits SW o are
independent of R as agent is always induced to take b = R − ad = 0 no matter what R
is realized. However, in calculating joint benefits SWN , the expectation with respect to
R is taken, implying that the distribution of R affects the level of SWN . Generally, as σ2

R

decreases, the degree of asymmetric information between two parties falls, reducing SWN .
When σ2

R → 0 especially, it would be SWN → SW ∗.
The above discussion implies that informational gains from the manager’s hedging de-

cline as the amount of uncertainty (i.e., σ2
R) in the firm’s risk exposure R falls. On the other

24Or the principal can put some restriction on derivative transactions, which might weakly dominate the
complete banning.

25In cases where V (x) is concave, the social welfare is improved to SW ∗ from SWN by Proposition 2.
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hand, the cost of controlling the additional incentive problem associated with ad (or equiv-
alently b = R−ad) is independent of the firm’s risk exposure R, and thus σ2

R. For instance,
even ifR is known to the principal (i.e., σ2

R = 0), the moral hazard problem associated with
inducing b = 0 still remains to the same degree. Therefore, σ2

R is indeed a matter of indif-
ference in incentivizing the agent’s choice of b, and we can conclude that as σ2

R → 0, we
definitely would have SW o < SWN , as SW o is unaffected while SWN → SW ∗ which is
greater than SW o.

Remark We conclude Section 2 by noting that sometimes, it is better for shareholders to
shut down the manager’s access to derivative markets, due to the agency problem around
his hedging choices. In Appendix B, we consider possible communication between share-
holders and manager about the value of R that the manager observes. As we show, the
conditions under which welfare is improved by inducing the agent to truthfully reveal the
firm’s risk exposure are identical to the conditions under which welfare is improved by
inducing the agent to fully hedge. This result illustrates our claim that hedging effectively
improves efficacy of the agency relationship through its informational provision.

3 A Model with Discretionary Project Choice

This section extends the model to include the agent‘s real investment choices. Specifically,
after his wage contract is finalized, the agent takes three kinds of actions, a1 ∈ [0,∞), a2 ∈
[a2, a2], and a3 ∈ (−∞,+∞). The agent’s first action, a1 is the productive effort choice,
which increases expected output as before, that is, high effort generates an output level that
first-order stochastically dominates the output level generated by low effort. The agent’s
second action a2 is his (real) project choice. We assume there exists projects with different
risks with more risky projects having higher expected output. The agent’s preference is still
the same as in Assumption 1. The third action a3 is his choice in the derivatives market.26

We assume that although the set of projects available to the agent is bounded, i.e., a2 ∈
[a2, a2], the agent can choose any position in the derivatives market, i.e., a3 ∈ (−∞,+∞)

as in Section 2.
After the agent chooses a1, a2, and a3, the firm’s output, x, is realized and publicly

observable without cost. Thereby, an output x can be used in the manager’s wage contract
that is denoted by w. The output is determined not only by the agent’s choice of (a1, a2, a3)

26We use the notation a3 instead of ad of Section 2.
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but also by the state of nature, (η, θ). For simplicity, we assume that the output function
exhibits the following additively separable form:

x = ϕ(a1, a2) + a2θ + (R− a3)η. (24)

Equation (24) looks like equation (1), except that (i) the agent’s project choice a2 affects
the expected output level ϕ(a1, a2); and (ii) the firm’s level of non-hedgeable risk is not
fixed a priori, but determined by the agent’s project choice a2. Now, an expected output,
ϕ(a1, a2), is a function of both a1 and a2, whereas the agent’s derivatives choice, a3, does
not directly affect it. As in (1), we assume that (i) η ∼ N(0, 1) and θ ∼ N(0, 1) are
uncorrelated; and (ii) η is observable at the end of the contracting period, and thereby can
be used in the manager’s wage contract if necessary. As in Section 2, the manager observes
R after the contract is signed but before choosing a1, a2, and a3. Again, shareholders do not
observe R, but know its distribution R ∼ N(Rm, σ

2
R). Management effort a1 and project

choice a2 do not affect R, the firm’s innate exposure to the hedgeable risks.27 However, the
firm’s final risk exposure is determined by the manager’s transaction a3 in the derivative
market. If a3 = 0, the manager does not trade derivatives. The manager hedges, i.e.,
reduces risk, as long as |R− a3| < |R| and minimizes risk by setting a3 = R. On the other
hand, if |R− a3| > |R|, the manager speculates in the derivative market.

In addition to assumptions in Section 2, we make the following additional assumptions:

Assumption 3
∂ϕ

∂a1
(a1, a2) ≡ ϕ1(a1, a2) > 0,

∂2ϕ

∂a21
(a1, a2) ≡ ϕ11(a1, a2) < 0.

Assumption 4
∂ϕ

∂a2
(a1, a2) ≡ ϕ2(a1, a2) > 0, ϕ22(a1, a2) < 0, ϕ2(a1, a2) = ∞, and

ϕ2(a1, a2) = 0.

Assumption 5 0 < a2 < a2 <∞.

Assumption 6 ϕ12(a1, a2) · a2 < ϕ1(a1, a2) for ∀(a1, a2).

Assumptions 3 and 4 specify that a1 affects expected output with a usual property of
decreasing marginal increase in output, while a higher a2 increases expected output as well

27In general, a firm’s risk exposure can depend on the real investment undertaken and if we allow the
firm’s risk exposure to be affected by the manager’s project choice a2, most results in this paper do not
change qualitatively.
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as output variability, i.e., there is a trade-off between return and risk.28. Assumption 5 states
that there is neither a completely safe project nor a project with unbounded risk.

If ϕ12(a1, a2) is positive and decreasing in a2, and ϕ1(a1, a2) ≃ 0, a2 is close to 0, then
Assumption 6 holds as we see in Figure 1. As the manager raises a project risk level a2, an
increase in effort a1 results in a higher increase in expected output ϕ(a1, a2), i.e., ϕ12(a1, a2)

is positive.29 We assume this complementarity between a1 and a2 become weaker as the
project becomes riskier, i.e., a2 increases.

a2

ϕ1(a1, a2)

a2a2

A
ϕ1(a1, a2)

Figure 1: Illustration of the Assumption 6

3.1 When There Is No Derivative Market

3.1.1 The Principal Knows the Firm’s Exposure to the Hedgeable Risks

In this section, we consider a benchmark case where there is no derivatives market and the
principal knows the firm’s innate risk exposure, R. We thus specify a3 = 0 so that the
production function in equation (24) reduces to

x = ϕ(a1, a2) +Rη + a2θ. (25)

Since there is no derivative market, the manager’s incentive problem arises only in in-

28As noted from equation (24), reducing the firm’s non-hedgeable risks requires the firm to sacrifice a part
of an expected output. This trade-off guarantees the existence of an optimal project choice a2 in our agency
setting.

29For example, if we regard the action a1 as managing the project on a day-to-day basis, it is natural to
assume that when the manager takes additional project risk a2, the role of action a1 in generating output
becomes more important, i.e., ϕ1(a1, a2) rises.
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ducing (a1, a2). As R and η are observable and thus contractible, y ≡ x−Rη is a sufficient
statistic for (x, η) in assessing (a1, a2). Therefore, the principal uses y as a contractual
variable to induce (a1, a2), and the above equation can be expressed as

y = ϕ(a1, a2) + a2θ. (26)

Benchmark: without incentive problem in a2 In general, designing a contract to op-
timally induce project choice a2 as well as effort choice a1 is different than designing a
contract that only induces the agent’s effort choice (a1). To illustrate this distinction, we
first consider the case in which the agent’s project choice, a2, is observable, or equivalently,
selected by the principal. The optimal compensation contract w(·), in this case, maximizes
the combined utilities of the principal and agent subject to the restriction that the agent’s
effort a1 is chosen to maximize his utility given the contract.

max
a1,a2,w(·)

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i) a1 ∈ argmax
a′1

∫
u(w(y))f(y|a′1, a2)dy − v(a′1), ∀a′1,

(ii) w(y) ≥ k, ∀y,
(27)

where f(y|a1, a2) denotes a probability density function of y given the agent’s three actions,
and λ denotes the weight placed on the agent’s utility in the joint optimization. As shown,
the combined utilities of the principal and the agent are maximized subject to the agent’s
incentive compatibility constraint, which specifies that the agent optimally chooses his
effort, and his limited liability constraint, which specifies that the agent receives at least
k, the subsistence level of utility.

Based on the first-order approach as in Section 2, the above maximization problem (27)
reduces to:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(28)
where f1 denotes the first derivative of f taken with respect to a1.

To find the solution (aP1 , a
P
2 , w

P (y|aP1 , aP2 )) for the above program, we first derive an
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optimal contract for an arbitrarily given (a1, a2). Let wP (y|a1, a2) be a contract which
optimally motivates the agent to take a particular level of a1 when an arbitrary level of a2
is chosen by the principal. By solving the Euler equation of the above program after fixing
(a1, a2), we derive that wP (y|a1, a2) must satisfy

1

u′(wP (y|a1, a2))
= λ+ µ1(a1, a2)

f1
f
(y|a1, a2), (29)

for almost every y for which (29) has a solutionwP (y|a1, a2) ≥ k, and otherwisewP (y|a1, a2) =
k. In (29), µ1(a1, a2) denotes the optimized Lagrange multiplier for the agent’s incentive
constraint associated with effort a1 when the project choice is pinned down at a2. Since
f(y|a1, a2) is a normal density function with mean ϕ(a1, a2) and variance a22, (29) is re-
duced to:

1

u′(wP (y|a1, a2))
= λ+ µ1(a1, a2)

y − ϕ(a1, a2)

a22
ϕ1(a1, a2). (30)

Before analyzing the optimal contract, we first define given (a1, a2):

SW P (a1, a2) ≡ ϕ(a1, a2)− CP (a1, a2)− λv(a1), (31)

which denotes the joint benefits when wP (y|a1, a2) is designed and a2 is instructed by the
principal where

CP (a1, a2) ≡
∫ (

wP (y|a1, a2)− λu(wP (y|a1, a2))
)
f(y|a1, a2)dy (32)

represents the efficiency loss of this case compared with the full information case. In other
words, C(a1, a2) measures the agency cost arising from inducing the agent to take that
particular a1 when a2 is chosen by the principal.

We start our analysis with the following Lemma 4, which is analogous to Kim (1995).

Lemma 4 CP (a1, a
0
2) < CP (a1, a

1
2) for any given a1 if a02 < a12.

Since the principal dictates the agent’s project choice a2 here, an agency problem arises
only in inducing a1. Lemma 4 implies that under Assumption 6, when the project choice
a2 is selected by the principal, the agency cost associated with motivating the agent to take
any given action a1, i.e., CP (a1, a2), is reduced if the principal chooses a less risky project.
A lowered risk a2 improves the efficiency of the agency relationship by providing a more
precise signal y about the agent’s effort, a1, which enables the principal to design a con-
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tract inducing a particular a1 in a less costly way. If ϕ12(a1, a2) is large enough to break
Assumption 6, then lower a2 might lower ϕ1(a1, a2) a lot, which in turn makes harder
for the principal to give the proper incentive for the action a1 and raise the incentive cost
CP (a1, a2). Assumption 6 guarantees that this incentive drawback is lower than the infor-
mational rent from lower a2, so that a lower level of a2 reduces the agency cost CP (a1, a2).

Value of hedging Lemma 4 indicates that firms should take all zero net present value
projects that reduce output risk, if possible. For example, when the agent can be induced
to hedge in the derivative market, the principal can generically induce the agent to choose
higher efforts and investments with higher expected returns, given any initial risk exposure
level R.

Risk-return trade-off in project choice However, given the trade-off between return
and risk, i.e., ϕ2 > 0, the exact level of a2 that the principal prefers will be determined
by the loss in expected return as well as the benefit from achieving a more precise signal
of effort. Let aP2 be the project that is most preferred by the principal, and aP1 the agent’s
optimal effort choice for the above program when aP2 is chosen by the principal. Then,
as we prove in Appendix A, from the above optimization we obtain that (aP1 , a

P
2 , w

P (·))
should satisfy∫ (

y − wP (y) + λu(wP (y))
)
f2(y|aP1 , aP2 )dy+µ1(a

P
1 , a

P
2 )

∫
u(wP (y))f12(y|aP1 , aP2 )dy = 0,

(33)
where wP (·) = wP (·|aP1 , aP2 ), f2 denotes the first derivative of f with respect to a2 and
f12 is the second derivative with respect to a1 and a2. The optimal contract wP (y|aP1 , aP2 )
satisfies,

1

u′(wP (y|aP1 , aP2 ))
= λ+ µ1(a

P
1 , a

P
2 )
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

ϕ1(a
P
1 , a

P
2 ), (34)

for y satisfying wP (y|aP1 , aP2 ) ≥ k and wP (y|aP1 , aP2 ) = k otherwise.

The manager’s incentive to select a2 under contractwP (·) The above analysis assumes
that shareholders essentially select the projects. In this subsection we ask whether the
manager will voluntarily choose the project that would be chosen by informed shareholders,
i.e., aP2 . If the answer to this question is no, then the moral-hazard problem arises not only
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in motivating a1 but also in incentivizing a2, which implies that the optimal wage contract
must be modified from the contract, wP (y|aP1 , aP2 ), in (34).

To formally analyze this issue, we denote aA2 (a
P
2 ) as a solution to

aA2 (a
P
2 ) ∈ argmax

a2

∫
u(wP (y|aP1 , aP2 ))f(y|aP1 , a2)dy. (35)

Thus, aA2 (a
P
2 ) represents the project choice that the agent would take under wP (y|aP1 , aP2 )

described in (34) when a2 is not enforceable. Thus, our previous question, “Will the agent
voluntarily choose aP2 when wP (y|aP1 , aP2 ) is designed?”, is equivalent to the question,
“Will aA2 (a

P
2 ) be equal to aP2 ?”

As previously shown, the principal balances two considerations when he directs the
agent to take a certain project: the informational benefits from risk reduction and the lower
mean return associated with lower risk. However, the risk level chosen by the agent depends
on his indirect risk preferences induced by contract wP (y|aP1 , aP2 ), i.e., the curvature of
u(wP (y|aP1 , aP2 )) with respect to y, and the effect that a trade-off between return and risk
would have on his utility via wP (y|aP1 , aP2 ).

In general, the curvature of the agent’s indirect utility function depends on the distri-
bution of the random state variable and his utility function. To see how different utility
functions affect this curvature differently, we again consider the case where the agent has
constant relative risk aversion with degree 1− t as we did in Section 2.1, where t < 1 (i.e.,
u(w) = 1

t
wt, t < 1). We obtain from equation (34) that

wP (y|aP1 , aP2 ) =
(
λ+ µ1(a

P
1 , a

P
2 )

(
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

)
ϕ1(a

P
1 , a

P
2 )

) 1
1−t

, (36)

and the agent’s indirect utility under this wage contract is

u(wP (y|aP1 , aP2 )) =
1

t

(
λ+ µ1(a

P
1 , a

P
2 )

(
y − ϕ(aP1 , a

P
2 )

(aP2 )
2

)
ϕ1(a

P
1 , a

P
2 )

) t
1−t

. (37)

The above equation shows that the agent’s indirect utility becomes strictly concave
in y if t < 1

2
, linear if t = 1

2
, and convex if t > 1

2
for y satisfying wP (y|aP1 , aP2 ) ≥

k. If we assume wP (y|aP1 , aP2 ) = k for sufficiently low y, as far as the agent’s induced
risk preferences are concerned, u(wP (y|aP1 , aP2 )) makes the agent risk-loving if t ≥ 1

2
.

Furthermore, since the compensation contract wP (y|aP1 , aP2 ) is positively related to the
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absolute output level (i.e., µ1(a
P
1 , a

P
2 ) > 0),30 if t ≥ 1

2
, the agent is induced to take the most

risky project, i.e., aA2 (a
P
2 ) = a2 when wP (y|aP1 , aP2 ) is designed even if ϕ2(a1, a2) = 0 by

Assumption 4. However, in this case, principal prefers to have a firm’s risk level a2 lower
than a2. This is because, from his standpoint, the informational benefits from risk reduction
are still substantial, while the costs of risk reduction are zero at a2 (i.e., ϕ2(a2) = 0). Thus,
aP2 < aA2 (a

P
2 ) in this case. In other words, the principal prefers less risk than the agent

under wP (y|aP1 , aP2 ).
On the other hand, if t is close to −∞ (i.e., the agent is extremely risk-averse), the

agent’s indirect utility function induces him to choose a lower level of risk than what the
principal prefers (i.e., aA2 (a

P
2 ) < aP2 ) even if a lower a2 yields on average lower output.

Incentive problems associated with project choice a2, in general, exist in all cases ex-
cept for those where both of the following conditions are satisfied: (i) the agent’s indirect
utility is sufficiently concave and (ii) there is no trade-off between return and risk, i.e.,
ϕ2 = 0, ∀a2. Under these conditions, both the principal and the agent agree that the firm
should choose the least risky project, i.e., a2 = a2, and there is no efficiency loss due
to the existence of the manager’s unobservable project choice. However, when either the
agent’s induced risk preferences are convex, or the trade-off between return and risk exists
as assumed in Assumption 4, the principal and the agent will not generally agree on the
firm’s optimal project choice, and the compensation contract, wP (y|aP1 , aP2 ), described in
equation (34) will no longer be optimal.

Optimal contracts with moral hazard in a2 In this situation, the principal must deter-
mine the optimal compensation contract by solving the following optimization problem:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i) (a1, a2) ∈ argmax
a′1,a

′
2

∫
u(w(y))f(y|a′1, a′2)dy − v(a′1), ∀a′1, a′2.

(38)
The optimization problem (38) accounts for the fact that the agent selects a2 to maximize
his own expected utility. If an interior solution for (a1, a2) exists and the first-order ap-

30For the proof of µ1(a
P
1 , a

P
2 ) > 0, see e.g., Holmström (1979), Jewitt (1988), Jung and Kim (2015).
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proach is valid, the above maximization problem can be expressed as:

max
a1,a2
w(·)≥k

ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(39)
Let (a∗1, a

∗
2) be the optimal action combination for the above program. Then, by solving the

Euler equation, we obtain that the optimal wage contract, w∗(y), which satisfies,

1

u′(w∗(y))
= λ+ µ∗

1

f1
f
(y|a∗1, a∗2) + µ∗

2

f2
f
(y|a∗1, a∗2), (40)

for almost every y for which equation (40) has a solution w∗(y) ≥ k, and otherwise
w∗(y) = k. µ∗

1 and µ∗
2 are the optimized Lagrange multipliers for both incentive con-

straints, respectively.
Since f(y|a∗1, a∗2) is a normal distribution with mean ϕ(a∗1, a

∗
2) and variance (a∗2)

2, from
(40),

1

u′(w∗(y))
= λ+µ∗

1

y − ϕ(a∗1, a
∗
2)

(a∗2)
2

ϕ∗
1︸ ︷︷ ︸

≡SS1

+µ∗
2

y − ϕ(a∗1, a
∗
2)

(a∗2)
2

ϕ∗
2︸ ︷︷ ︸

≡SS1
2

+
1

a∗2

(
(y − ϕ(a∗1, a

∗
2))

2

(a∗2)
2

− 1

)
︸ ︷︷ ︸

≡SS2
2

 ,
(41)

where we define SS1, SS2 ≡ SS1
2 + SS2

2 as sufficient statistics for unobservbable action
a1 and project choice a2, respectively. Compared with (34), (41) shows that when both
a1 and a2 are not observable, the optimal wage contract is based not only on the absolute

output y, but also on its (standardized) deviation from the expected level, (y−ϕ(a∗1,a
∗
2))

2

(a∗2)
2 .

Since (y − ϕ(a∗1, a
∗
2))

2 is a sample (i.e., realized) variance of a single observation with

mean zero and variance (a∗2)
2, the term (y−ϕ(a∗1,a

∗
2))

2

(a∗2)
2 in (41) can be regarded a standardized

output deviation. Note that SS2, the sufficient statistic for the project choice a2, can be
now decomposed into two parts: SS1

2 and SS2
2 . SS1

2 takes account of the effects that an
increase in a2 has on the mean cash flow ϕ(a1, a2),31 while SS2

2 is about how an increase

31This term is present since we assume the risk-return trade-off in a2, i.e., ϕ(a1, a2) is increasing in a2.
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in a2 affects the signal y’s volatility. By including the sample variance as a contractual
parameter, the principal effectively motivates the agent to take the appropriate level of a2,
i.e., a∗2. (41) can be written in a simpler way as

1

u′(w∗(y))
= λ+ (µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
y − ϕ(a∗1, a

∗
2)

(a∗2)
2

+ µ∗
2

1

a∗2

(
(y − ϕ(a∗1, a

∗
2))

2

(a∗2)
2

− 1

)
, (42)

for y satisfying w∗(y) ≥ k and w∗(y) = k otherwise. Here, ϕ∗
i ≡ ϕi(a

∗
1, a

∗
2), i = 1, 2. We

call w∗(y) as an optimal dual-agency contract à la Hirshleifer and Suh (1992).
The optimal dual agency contract is characterized in the following propositions.

Proposition 6 µ∗
1ϕ

∗
1 + µ∗

2ϕ
∗
2 > 0.

Proposition 6 implies that holding the cash flow variance constant, the manager’s payout
increases when the firm’s output increases, which implies that the manager is rewarded for
a higher effort. However, this does not necessarily mean that the contracted payout is
monotonically increasing in output. For example, if µ∗

2 < 0 in equation (42), the agent can
be paid less when the output is very high.

Thus, a more interesting question has to do with the relation between the agent’s re-
wards and the output deviation, i.e., the sign of µ∗

2.

Proposition 7 If the principal prefers a less risky project than the agent underwP (y|aP1 , aP2 )
in equation (34), i.e., aP2 < aA2 (a

P
2 ), then the optimal dual agency contract will penalize the

agent if output differs substantially from the expected level, i.e., µ∗
2 < 0 for w∗(y) in equa-

tion (42). If the principal prefers a more risky project than the agent under wP (y|aP1 , aP2 ),
i.e., aP2 > aA2 (a

P
2 ), then the optimal dual agency contract will reward the agent for having

unusual output deviation, i.e., µ∗
2 > 0 for w∗(y) in equation (42).

If the principal prefers a lower level of project risk than the agent under the contract
wP (y|aP1 , aP2 ), the contract will be revised in a way that motivates the agent to reduce
risk. This can be done by setting µ∗

2 < 0 in equation (42) which penalizes the agent for
the unusual output deviation and makes the agent act as if he is more risk-averse. On
the other hand, if the principal prefers a higher risk than the agent when wP (y|aP1 , aP2 ) is
designed, the contract is revised to motivate the agent to increase risk. This can be done by
setting µ∗

2 > 0 in equation (42) which rewards the agent for unusual output deviation and
makes the agent act as though he is less risk-averse. As discussed earlier, the later case is
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more likely to occur when the manager is more risk averse and when the firm’s investment
opportunities offer a non-trivial trade-off between return and risk.32

We denote the optimized joint benefits in this case as

SW ∗(a∗1, a
∗
2) ≡ ϕ(a∗1, a

∗
2)− C∗(a∗1, a

∗
2)− λv(a∗1), (43)

where
C∗(a∗1, a

∗
2) ≡

∫
(w∗(y)− λu(w∗(y))) f(y|a∗1, a∗2)dy (44)

denotes the agency cost arising from inducing (a∗1, a
∗
2) when a3 is fixed at 0 and R is ob-

servable.

3.1.2 The Principal Does Not Know the Firm’s Risk Exposure

We now consider the case of asymmetric information, where the firm’s innate exposure to
hedgeable risks, R, is observed only by the agent. In this case, the wage contract cannot
explicitly include y ≡ x − Rη as a contractual variable. Furthermore, we rule out the
possibility of any communication between principal and the agent that allows the agent to
reveal R.33

If principal does not observeR, the compensation contract must be based on (x, η), i.e.,
w = w(x, η). The principal’s maximization program in this case is thus:34

max
a1(·),a2(·)
w(·)≥k

∫
R

∫
x,η

(x− w(x, η)) g(x, η|a1(R), a2(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x, η))g(x, η|a1(R), a2(R), R)dxdη − v(a1(R))

)
h(R)dR s.t.

(i) (a1(R), a2(R)) ∈ argmax
a1,a2

∫
x,η

u(w(x, η))g(x, η|a1, a2, R)dxdη − v(a1),∀R,

(45)

32For example, in cases of constant relative risk aversion with degree 1 − t, it is more likely that µ∗
2 > 0

when 1− t is higher (i.e., t is lower).
33In general, communication between principals and agents are likely to be very costly, especially when

actually the principal stands for multiple shareholders. For a more detailed discussion of communication
costs, see Laffont and Martimort (1997). We study issues of potential communication in Appendix B.

34In this case, since the agent is the only one that observes R, his actions a1, a2 both depend on R, given
the contract w(x, η).
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where

g(x, η|a1, a2, R) =
1

2πa2
exp

(
−1

2

(
(x− ϕ(a1, a2)−Rη)2

a22
+ η2

))
(46)

denotes a joint probability density function of (x, η) given (a1, a2, R) and h(R) denotes the
probability density function of R.

For each R, let (aN1 (R), a
N
2 (R), w

N(x, η)) be the solution for the above optimization
program in (45). If we let µ1(R), µ2(R) be Lagrange multipliers attached to incentive
constraints in a1(R) and a2(R), respectively, the optimal contract wN(x, η) can be written
as35

1

u′(wN(x, η))
=λ+

∫
R

µ1(R)

 g1(x, η|aN1 (R), aN2 (R), R)∫
R′
g(x, η|aN1 (R′), aN2 (R

′), R′)h(R′)dR′

h(R)dR

+

∫
R

µ2(R)

 g2(x, η|aN1 (R), aN2 (R), R)∫
R′
g(x, η|aN1 (R′), aN2 (R

′), R′)h(R′)dR′

h(R)dR,
(47)

when w(x, η) ≥ k and otherwise w(x, η) = k. The optimized joint benefit in this case is
denoted as:

SWN ≡
∫
R

(
ϕ(aN1 (R), a

N
2 (R))− CN(aN1 (R), a

N
2 (R))− λv(aN1 (R))

)
h(R)dR, (48)

where

CN(aN1 (R), a
N
2 (R)) ≡

∫
x,η

(
wN(x, η)− λu(wN(x, η))

)
g(x, η|aN1 (R), aN2 (R), R)dxdη

(49)
denotes the agency cost arising from inducing (aN1 (R), a

N
2 (R)) given a realized value of

R. In this case, we obtain the following comparison between two welfare measures: SWN

and SW ∗(a∗1, a
∗
2) as in Proposition 2.

Proposition 8 When there is no derivative market and no communication between the

principal and the agent, the principal’s inability to observe the firm’s risk exposure reduces

35We provide the derivation for equation (47) in Appendix A.
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welfare, i.e.,

SWN < SW ∗(a∗1, a
∗
2).

Intuitively, when the principal observes the firm’s risk exposure, R, this information
can be used to design a wage contract that eliminates the influence of hedgeable risk, i.e.,
w = w∗(y ≡ x− Rη). However, if R is not observable and cannot be communicated, this
is impossible.

3.2 When Managers Can Trade Derivatives

In this subsection we consider how the introduction of an opportunity to trade derivatives
(i.e., when a3 is not fixed at 0) affects the optimal contract and the firm’s efficiency. Contin-
uing from Section 3.1.2, we assume that a manager’s project choice, a2, is not observable,
and in addition, we assume that the derivatives choice, a3 and the firm’s risk exposure, R,
cannot be observed by or communicated to the principal.

Following the logic of Section 2.2.2: since the firm’s exposure to hedgeable risks, R, is
observed by the agent before he takes actions (a1, a2, a3), the agent’s choice of a3 can be
characterized as his choice of b ≡ R−a3. Then given a compensation contract, the principal
can rationally anticipate the agent’s choice of b = R − a3. We denote the principal’s
anticipation of the agent’s choice of R − a3 by b̂, and define z(b̂) ≡ x − b̂η as a variable
that can potentially be in the wage contract, i.e., w(z(b̂)) is a potential contract. If the
principal’s beliefs are consistent,36 it must be the case that the agent chooses a3 satisfying
b ≡ R− a3 = b̂ given this contract.

Thus, since
z(b̂) ≡ x− b̂η = ϕ(a1, a2) + (b− b̂)η + a2θ, (50)

if the principal offers the contractw(z(b̂)) and the agent chooses a3 satisfying b = R−a3 =
b̂, then

z(b̂) = ϕ(a1, a2) + a2θ = y. (51)

Note that the maximum level of joint benefits that can be obtained in this case is SW (a∗1, a
∗
2, a3 =

0) in equation (43).37 Therefore, we first consider the case in which the principal designs

36As the principal predicts the agent with risk-exposure R to choose b̂ = R− a3, a contract that relies on
b̂ induces the agent to take b = b̂.

37Given the contract w(z(b̂)), if there is no incentive problem associated with b = R − a3, i.e., the agent
voluntarily chooses a3 such that R − a3 = b̂, then we obtain the maximal joint benefit SW (a∗1, a

∗
2, a3 = 0).

The issue is whether the agent would voluntarily choose a3 such that R− a3 = b̂ given w(z(b̂)).
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the contract the same as w∗(y) in the benchmark case (i.e., equation (42)) but based on z(b̂)
instead of y ≡ x − Rη, and examine whether the agent chooses b ≡ R − a3 = b̂ under
w∗(z(b̂)). If this is indeed the case, there is no welfare loss associated with R (and a3)
being unobservable when the agent is able to transact in the derivatives market.

The optimal contract in the benchmark case (i.e., (42)) as a potential contract Sup-
pose that the principal designs a contract w∗(z(b̂) ≡ x− b̂η) satisfying

1

u′(w∗(z(b̂)))
= λ+(µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
z(b̂)− ϕ(a∗1, a

∗
2)

(a∗2)
2

+µ∗
2

1

a∗2


(
z(b̂)− ϕ(a∗1, a

∗
2)
)2

(a∗2)
2

− 1

 ,

(52)
for z(b̂) satisfying w∗(z(b̂)) ≥ k and w∗(z(b̂)) = k otherwise. Because w∗(z(b̂)) in (52) is
of the same functional form as w∗(y) in (42),38, we easily see the agent will take (a∗1, a

∗
2)

under w∗(z(b̂)) if he chooses a3 satisfying b ≡ R− a3 = b̂. But, the real question is: “Will
the agent always choose a3 satisfying b = b̂ when w∗(z(b̂)) is designed and offered?”.

The following Lemma 5 provides an answer to the above question.

Lemma 5 [Speculation and Hedging with w∗(z(b̂))]
(1) If µ∗

2 < 0 for the contract, w∗(z(b̂)), described in equation (52) for any given b̂,39 then

the manager will choose a3 such that b = b̂ when the contract w∗(z(b̂)) is offered.

(2) If µ∗
2 > 0 for w∗(z(b̂)) in equation (52) for any given b̂, then the manager will take a3

such that |R− a3| = ∞ when w∗(z(b̂)) is offered.

From Lemma 5, we directly obtain the following proposition:

Proposition 9 If µ∗
2 < 0 for w∗(z(b̂)) described in (52) for any given b̂, then the level of

b ≡ R−a3 that is induced is a matter of indifference as long as it is bounded, i.e., |b| <∞.

For example, If µ∗
2 < 0 for w∗(z(0)) in (52), then the manager will choose a∗1, a

∗
2, a3 = R

(i.e., b = 0) whenw∗(z(0)) is offered. Therefore, the optimized joint benefits in this case are

the same as SW ∗(a∗1, a
∗
2) in (43), implying that the firm’s welfare with a derivative market

will be the same as it is in the case where the risk exposure is observed by the principal.40

38Note that µ∗
1, µ

∗
1, a

∗
1, a

∗
2 in (42) and (52) are endogenous variables characterized by solving the opti-

mization in (38).
39One can easily see that if µ∗

2 < 0 in w∗(z(b̂)) for any given b̂, then µ∗
2 < 0 in w∗(z(b̂)) for all b̂. This is

because the principal’s anticipating different b̂ does not change the functional form of w∗(·).
40Therefore, the introduction of derivative markets in this case improves the welfare compared with the
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Proposition 9 is quite intuitive. If µ∗
2 < 0 for w∗(z(b̂)) in (52), the agent is induced

to engage in perfect hedging to minimize the variance of z(b̂). Intuitively, the contract
w∗(z(b̂)) with µ∗

2 < 0 induces the agent to sacrifice expected payoffs to lower risk.41 If
the risk can be reduced through a channel that does not decrease the expected payoff (e.g.,
here a3 does not have risk-return trade-off.), then agent will clearly do so. In addition,
µ∗
1ϕ

∗
1 + µ∗

2ϕ
∗
2 > 0 means a higher z(b̂) yields the higher compensation w∗(z(b̂)) given its

squared deviation from the average of z(b̂).
In this case, the optimal contract can be designed as if R − a3 is observable to the

principal, and it allows the principal and the agent to achieve the welfare SW ∗(a∗1, a
∗
2) that

can be achieved when the risk-exposure R is observable. We will discuss more thoroughly
about this informational gain from the manager’s derivative transaction later.42

However, this is not possible if µ∗
2 > 0 for w∗(z(b̂)) in (52), since the agent speculates

infinitely, i.e., choose a3 such that |R − a3| = ∞. This is because, as shown from equa-
tion (52), the manager will be paid an infinite amount when z(b̂) = x− b̂η is either positive
or negative infinity if µ∗

2 > 0 for w∗(z(b̂)). Given that it is impossible to design a wage
contract w∗(z(b̂)) based on the belief b̂ = ∞, the principal has to either alter the wage
contract to ensure |R− a3| <∞ or retain the optimal contract without a derivative market,
wN(x, η) and prohibit the manager from engaging in derivative transactions.

Comparison with Section 2: different implications? It is useful to compare the re-
sults in this section to the Section 2 analysis that takes the real investment choice as given
(i.e., we only consider action a1 and derivative transactions ad). Recall, we start from
the benchmark case without hedgeable risk η, which reduces the problem to the canonical
principal-agent model (e.g., Holmström (1979)). The optimal contract w∗(x) in this bench-
mark scenario generates the agent’s indirect utility function V (x). As we show, (i) if V (x)

is concave (convex) in x, then the manager will choose to perfectly hedge (infinitely specu-

case where the principal does not observe the firm’s risk-exposure R and the communication between the
principal and the agent is prohibitively costly (i.e., SW ∗(a∗1, a

∗
2) > SWN in Proposition 8). In practice,

benefits derivative markets provide to firms are multi-dimensional (e.g., firms can prevent themselves from
going bankrupt through proper hedging. In this paper, we focus on the new channel, in which derivative mar-
kets can eliminate the informational asymmetry between shareholders and the manager about firms’ innate
risk-exposure, only if the manager properly hedges in the derivative market.

41Since the optimal contract w∗(z(b̂)) features µ∗
2 < 0 when aP2 < aA2 (a

P
2 ) holds.

42Derivative markets exists for many reasons (e.g., allowing market participants to hedge against various
risks, thereby preventing bankruptcies). We focus on the new channel through which the derivative market
affects the efficiency: it eliminates informational asymmetry about the firm’s risk-exposure, thereby making
shareholders less vulnerable to adverse selection issues around the risk exposure.
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late) when there is a derivatives market and (ii) V (x) is more likely to be concave (convex)
when the agent’s utility function features higher (lower) risk-aversion. Therefore, a less
risk-averse manager is more likely to speculate in derivative markets given the contract
w∗(·).

In cases with a flexible project choice a2, we obtain the opposite result: (i) the agent
with µ∗

2 > 0 speculates infinitely when derivative markets open; (ii) under the benchmark
case, i.e., neither asymmetric information nor derivative market, the principal initially of-
fers a contract with µ∗

2 > 0 since she prefers a higher level of project risk a2 than the agent,
implying generically that the agent’s risk aversion is very high. To be specific, when the
manager’s risk aversion is sufficiently high, shareholders will design a contract to induce
the manager to choose a higher project risk level a2, to benefit from the positive risk-return
tradeoff. Such a contract will reward a higher level of output variance (i.e., µ∗

2 > 0), which
can in turn induce the manager to speculate infinitely, choosing a3 = ±∞ due to the addi-
tional incentive effect from µ∗

2 > 0.
It can be understood as a side effect of inducing the project risk-taking which is produc-

tive (i.e., ϕ2(a1, a2) > 0) through incentive contracts. A contract that induces risk-taking
in the real investment choice makes the manager speculate infinitely when derivative trans-
action is possible, as he acts as effectively risk-loving under the contract (52) with µ∗

2 > 0.

Optimal contracts when µ∗
2 > 0 When the agent takes infinite speculation in derivative

markets under the contract w∗(z(b̂)) in (52) with µ∗
2 > 0, our analysis becomes close to

Section 2.2.2. First, the principal might design a new optimal contract, wo(x, η) to induce
the agent’s perfect hedging. This new optimal contract satisfies conditions in Proposition
3, and thus penalizes the agent for having both positive and negative realization of (x −
ϕ(ao1, a

o
2))η, which we regard as sample covariance between output and hedgeable risks. As

the new optimal contract wo(x, η) imposes additional risks on the agent, it incurs efficiency
costs, thereby lowering the social welfare from SW ∗ to SW o, i.e., SW o < SW ∗.

Instead, the principal might just ban the derivative trading, in which case we go back to
Section 3.1.2 and achieve SWN as welfare. When the degree of asymmetric information is
small enough, i.e., the principal’s prior distribution h(R) on risk exposure R is tight with
σR → 0, then hedging benefits shrink, and therefore, the principal is better off banning the
derivative trading, as summarized in Proposition 5.

We provide a detailed analysis of this case in Appendix C.
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4 Conclusion

As we stated in the introduction, large public firms take the management of risk quite
seriously. However, to a large extent, the academic literature on this topic ignores the
issues that are most relevant to large public firms. In particular, a large part of the literature
focuses on financially constrained firms, and ignore the fact that risk management choices
are made by self-interested managers rather than by value-maximizing equity holders.

An important result in the paper is that in some situations asymmetric information about
the firm’s risk exposure does not result in a loss in welfare. In these situations, the manager
chooses the same hedging choice as would be chosen if the derivative choice was directed
by shareholders that are fully informed about the firm’s risk exposure. If that is the case,
derivatives markets contribute to welfare because they effectively allow the manager to
communicate the firm’s risk exposure to the shareholders at no cost.

However, this is not always the case. In some situations, the manager’s compensa-
tion contract must be altered to motivate him to hedge appropriately. In these situations,
derivatives markets can still contribute to welfare, but if the required alteration in the com-
pensation contract is too costly, the firm is better off banning the use of derivatives.

While our model most closely resembles the relationship between the top executives of
a corporation and its shareholders, one can also apply the model to describe the relationship
between the top executives of a firm and the individuals managing the firm’s divisions. In
such a setting, the division heads can be interpreted as agents, who report to the firm’s
CEO, who may not observe the risk exposure of the individual divisions. The CEO thus
has an incentive to design a contract with its division heads that elicits information about
the divisions’ risk exposure and simultaneously induces effort.

There are three reasons why information about risk exposure can be useful for the
CEO. The first reason, which we emphasize in our model, is that by taking out the effect
of hedgeable risk exposure, the contract can be designed to more efficiently induce effort.
The second reason, which is similar to the motivation in DeMarzo and Duffie (1991, 1995),
is that a better-informed CEO may be able to better allocate resources to the different
divisions. The third, is that by aggregating information from the divisions, the CEO can
reveal a more accurate estimate of the firm’s total risk exposure to the firm’s board of
directors, who can use this information to better evaluate and compensate the CEO.

This description of incentives and risk choices of multi-divisional firms can potentially
be applied to the financial sector, and can, perhaps, provide insights about what may have
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gone wrong in the financial crisis. As our model illustrates, designing optimal compen-
sation contracts that optimally elicit both effort and risk choices can potentially be quite
complicated, and in some situations, the firm is better off banning the use of derivatives.
Perhaps, it is not surprising that in the 1990s and 2000s, when the use of derivatives was
somewhat novel, that individuals in this industry were inadvertently compensated in ways
that induced speculation rather than hedging. If such speculation generates spillover costs,
as observed in the 2008/2009 global financial crisis, then there are likely policy implica-
tions associated with these incentive contracts.43

Although the model is already quite complex, there are a number of possible extensions
that may be considered in future work. The first is to consider this problem in a dynamic
setting. We have shown that the optimal compensation contract sometimes penalizes the
agent for realizing unusually high or low output when the payoff from the derivative con-
tract is either unusually high or low, respectively. We interpret this as penalizing covariance
between hedgeable risk and output. Since our model is static, this interpretation is a bit
loose. In a dynamic model, we can consider explicitly penalizing estimates of the covari-
ance, which can be more or less precise depending on the number of observations and the
other sources of noise effecting the firm’s output. We conjecture that as the estimate of the
covariance becomes more precise, contracting becomes more efficient and the gains from
hedging increases.

A second potential extension has to do with uncertainty about the risk aversion of the
agent. In our model, the agent’s risk aversion plays an important role, because it affects the
convexity of the indirect utility function. When the agent’s risk aversion is unknown to the
principal, it might be difficult to induce all the agents with different levels of risk aversion
to take the appropriate project and hedge, and therefore optimal for the principal to restrict
the use of derivatives. This extension will be relevant to the financial industry as it attracts
individuals who may not be risk averse. Given this, we expect the optimal contracts will
include limits on the use of derivatives.

43https://www.nytimes.com/2009/10/23/business/23pay.html says that “The Federal Reserve is working
to ensure that compensation packages appropriately tie rewards to longer-term performance and do not create
undue risk for the firm or the financial system.”
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Appendix A. Derivations and Proofs

Derivation of equation (14): With Lagrange multiplier µ1(R) attached to the incentive
constraint for action a1(R) for any given R, we set up the Lagrangian for the optimization
in (12) as follows:

L =

∫
R

[∫
x,η

(x− w(x, η) + λu(w(x, η))) g(x, η|a1(R), R)dxdη − v(a1(R))

]
h(R)dR

+

∫
R

µ1(R)

[∫
x,η

u(w(x, η))g1(x, η|a1(R), R)dxdη − v′(a1(R))

]
h(R)dR

(A1)
from which we obtain the following first-order condition about w(·, ·):

(−1 + λu′(w(x, η)))

∫
R

g(x, η|a1(R), R)h(R)dR+u′(w(x, η))
[∫

R

µ1(R)g1(x, η|a1(R), R)h(R)dR
]
= 0,

which derives the optimal contract wN(x, η) in (14).

Proof of Proposition 2: Consider the principal’s following alternative maximization pro-
gram:

max
a1(·),w(·)≥k

∫
R

∫
x,η

(x− w(x,R, η)) g(x, η|a1(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x,R, η))g(x, η|a1(R), R)dxdη − v(a1(R))

)
h(R)dR s.t.

(i)

∫
x,η

u(w(x,R, η))g1(x, η|a1(R), R)dxdη − v′(a1(R)) = 0, ∀R.

(A2)
Note that the program in (A2) is different from the original program (12) in that here
contract can be written on the realized value of R. If we let the Lagrange multipliers to
the constraint be µ1(R)h(R), we get the following optimal contractual form:

1

u′(w(x,R, η))
= λ+ µ1(R)

x−Rη︸ ︷︷ ︸
≡y

−ϕ(a1(R))

σ2
ϕ1(a1(R)), (A3)

when w(x,R, η) ≥ k. The above (A3) implies that the optimal contract only depends on
y ≡ x − Rη and the solution {a1(R), w(x,R, η)} becomes {a∗1, w∗(y) ≡ w∗(x−Rη)} in
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equation (5) in Section 2.1. By comparing (A3) with the program in (12) where the prin-
cipal does not observe R, one can easily see that the set of wage contracts, {w(x,R, η)},
satisfying the incentive constraints for a given action a1(R) in the above program (A2)
always contains the set of wage contracts available when the principal does not know R,
{w(x, η)}, satisfying the incentive constraints for the same action. Therefore, we have

SWN ≤ SW ∗. (A4)

However, we easily observe that w∗(y) = w∗(x − Rη), which is a unique solution for the
above program (A2), is not in the set of {w(x, η)}. As a result, we finally derive

SWN < SW ∗. (A5)

Proof of Lemma 3: Given w∗(x) described in equation (5) is designed,1 if the agent takes
(ao1, b) under w∗(x), then his expected utility becomes:∫

u(w∗(x))g(x, η|ao1, b)dzdη− v(ao1) =

∫
u(w∗(x))q(x|ao1, b, η)l(η)dzdη− v(ao1), (A6)

where q(·) denotes the conditional density of x given (ao1, b, η) and l(·) denotes the density
function of η ∼ N(0, 1). Now, suppose the agent takes (ao1,−b) under w∗(x). Then,∫

u(w∗(x))g(x, η|ao1,−b)dzdη − v(ao1) =

∫
u(w∗(x))q(x|ao1,−b, η)l(η)dzdη − v(ao1).

(A7)
Since

q(x|ao1, b, η) =
1√
2πσ

exp

(
−(x− ϕ(ao1)− bη)2

2σ2

)
, (A8)

we have
q(x|ao1, b, η) = q(x|a1,−b,−η). (A9)

Since η ∼ N(0, 1) is symmetrically distributed around 0 and l(η) = l(−η), ∀η, we finally
have∫

u(w∗(x))g(x, η|ao1, b)dzdη − v(ao1) =

∫
u(w∗(x))g(x, η|ao1,−b)dzdη − v(ao1). (A10)

1The output x is given by x = ϕ(ao1) + σθ + bη given ao1 and b = R− ad.
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Proof of Proposition 3: To prove this proposition, we start with the following Lemma 6.

Lemma 6 When the agent’s indirect utility V (x) in (9) in the absence of the hedgeable

risk η is convex in output x, then the optimal contract wo(x, η) guaranteeing that the agent

takes ao1, a
o
d = R (i.e., b = 0), i.e., wo(x, η) in equation (23), must satisfy

(1) µo
b(b) ̸= 0 (> 0) for a positive Borel-measure of b.2

(2) wo(x, η) = wo(x,−η) for all x, η and µo
b(b) = µo

b(−b) for all b.

Proof. (1) µo
b(b) ̸= 0 for a positive Borel-measure of b: Assume µo

b(b) = 0, a.s. Then the
optimal contract wo(x, η) in (23) can be written as

1

u′(wo(x, η))
= λ+ µo

1

x− ϕ(ao1)

σ2
ϕ1(a

o
1), (A11)

for (x, η) satisfying wo(x, η) ≥ k and wo(x, η) = k.
Because we already know (wo(x, η), µo

1, a
o
1) becomes (w∗(x), µ∗

1, a
∗
1) in this case and

V (x) (i.e., the agent’s indirect utility givenw∗(x)) is convex in x by assumption, (wo(x, η), µo
1)

will induce b = ±∞ instead of b = 0 from the agent, a contradiction to the constraint (ii)
in the optimization (17).

(3) wo(x, η) = wo(x,−η) for all x, η and µo
4(b) = µo

4(−b) for all b: We first see:3

g(x, η|b) = 1

2πσ
exp

(
−1

2

(x− ϕ(ao1)− bη)2

σ2
− 1

2
η2
)
, (A13)

where
g(x, η|b)

g(x, η|b = 0)
= exp

(
bη(x− ϕ(ao1))

σ2

)
exp

(
−b

2η2

2σ2

)
. (A14)

2We already know µo
4(b) ≥ 0 for every b (almost surely), since it is derived from the inequality constraint

at each b.
3We suppress ao1 in g(x, η|ao1, b) in (17). Note that g(x, η|a1, b) yields the following likelihood ratios:

g1
g
(x, η|a1, b) =

x− bη − ϕ(a1)

σ2
ϕ1(a1),

gb
g
(x, η|a1, b) =

(x− bη − ϕ(a1))η

σ2
. (A12)
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From (A12), (A13), and (A14), we observe that g(x, η|b = 0) and g1(x, η|b = 0) are both
even with η where g1 is a partial derivative of g with respect to a1: i.e., (i) g(x,−η|b = 0) =

g(x, η|b = 0); (ii) g1(x,−η|b = 0) = g1(x, η|b = 0). Also from (A13), we acknowledge:

g(x,−η|b) = g(x, η| − b), ∀(x, η, b). (A15)

Our strategy is to prove that: (i) if wo(x, η) is an optimal contract, then wo(x,−η) sat-
isfies all the constraints in (17); (ii) Related to (i), if wo(x, η) is an optimal contract, then
wo(x,−η) also becomes an optimal contract; and (iii) µo

b(−b) = µo
b(b) for ∀b at the opti-

mum.

Step 1. If wo(x, η) is an optimal contract, then wo(x,−η) satisfies all the constraints in
(17).
(i) As wo(x, η) is optimal, it satisfies constraints in (17). We start from the incentive com-
patibility in action a1: based on that g1(x, η|b = 0) is even in η,∫
u(wo(x,−η))g1(x, η|b = 0)dxdη − v′(ao1) =

∫
u(wo(x,−η))g1(x,−η|b = 0)dxdη − v′(ao1)

=

∫
u(wo(x, η))g1(x, η|b = 0)dxdη − v′(ao1) = 0,

where we use the change of variable (i.e., −η to η) in the second equality.

(ii) Incentive compatibility in after-hedging risk exposure b: as wo(x, η) is optimal,∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη ≥ 0, ∀b. (A16)

From (A15) and that g(x, η|b = 0) is even in η, we obtain for ∀b,∫
u(wo(x,−η)) (g(x, η|b = 0)− g(x, η|b)) dxdη =

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η| − b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη ≥ 0,

where the first equality is from (A15) and the second equality is from the change of vari-
able (i.e., −η to η). Thus, we proved that if wo(x, η) is an optimal contract, then wo(x,−η)
satisfies all the constraints in (17).

43



Step 2. If wo(x, η) is an optimal contract, then wo(x,−η) also becomes an optimal
contract.
From the above Step 1, wo(x,−η) satisfies all the constraints in (17). It is sufficient to
show that wo(x,−η) achieves the same efficiency as wo(x, η). It follows from:∫

(x− wo(x,−η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x, η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x,−η))g(x,−η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x,−η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x, η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
,

(A17)
where the first equality is from that g(x, η|b = 0) is symmetric in η, and the second equality
is from the change of variable (i.e., −η to η). Therefore, if wo(x, η) is an optimal contract,
then wo(x,−η) becomes an optimal contract and we obtain wo(x,−η) = wo(x, η).4

Step 3. µo
b(−b) = µo

b(b) for ∀b.
Note from the Lagrange duality theorem (see e.g., Luenberger (1969)) that the optimal
solution (µo

1, {µo
b(b)}, wo(·)) is the one that solves minµ1,{µb(·)}maxw(·) L where L is given

by

L ≡
∫

(x− w(x, η))g(x, η|b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
+ µ1

(∫
u(w(x, η))g1(x, η|b = 0)dxdη − v′(ao1)

)
+

∫
b

µb(b)

(∫
u(w(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db,

while satisfying µo
b(b) ≥ 0 for ∀b and the following complementary slackness at the opti-

mum:

µo
b(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
= 0, ∀b. (A18)

The last term in the above Lagrangian L given the optimal contract wo(x, η) can be written

4We implicitly assume that the optimal contract is unique in this environment, following the literature
(e.g., Jewitt et al. (2008)).
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as ∫
b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη

)
db,

(A19)

where we use a change of variable (i.e., b to −b) and wo(x,−η) = wo(x, η). Now with
(A15) and that g(x, η|b = 0) is even in η, we know:∫
u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη =

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η|b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη,

(A20)
where we use the change of variable (i.e., −η to η) for the second equality. With (A19) and
(A20), the last term in Lagrangian L can be therefore written as∫

b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη
)
db.

(A21)

Plugging in (A21) to the original Lagrangian L yields µo
4(−b) = µo

4(b).

Step 4. We have:∫
u(wo(x, η))g(x, η|b)dxdη =

∫
u(wo(x, η))g(x, η| − b)dxdη, (A22)

which implies that the agent’s indirect utility is symmetric in b around b = 0.

It follows from:∫
u(wo(x, η))g(x, η| − b)dxdη =

∫
u(wo(x, η))g(x,−η|b)dxdη =

∫
u(wo(x,−η))g(x,−η|b)dxdη

=

∫
u(wo(x, η))g(x, η|b)dxdη,

where we use (A15) in the first equality, wo(x,−η) = wo(x, η) in the second, and and the
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change of variable (i.e., −η to η) in the third equality.

Proof of Proposition 3: Given the optimal action ao1, we define Ĉov ≡ (x − ϕ(ao1))η.5

Since

exp

(
bη(x− ϕ(ao1))

σ2

)
= exp

(
b

σ2
Ĉov

)
=

∞∑
k=0

1

k!

bk

σ2k
Ĉov

k
, (A23)

From equation (A14), we obtain

g(x, η|b)
g(x, η|b = 0)

=

(
∞∑
k=0

1

k!

bk

σ2k
Ĉov

k

)
exp

(
−b

2η2

2σ2

)
, (A24)

and therefore, we attain∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db =

∫
µo
4(b)db−

∫
µo
4(b)

(
∞∑
k=0

1

k!

bk

σ2k
Ĉov

k

)
exp

(
−b

2η2

2σ2

)
db

=

∫
µo
4(b)db−

∞∑
k=0

 1

k!

1

σ2k

(∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

)
︸ ︷︷ ︸

≡Ck(η)

 Ĉov
k
.

(A25)
When k is odd, the coefficient Ck(η) becomes 0 for ∀η, since µo

4(b) = µo
4(−b) for all b from

Lemma 6 implies

Ck:odd(η) =

∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db =

∫
b≥0

µo
4(b)− µo

4(−b)︸ ︷︷ ︸
=0

 bk exp

(
−b

2η2

2σ2

)
db = 0.

(A26)
When k is even, the coefficient Ck(η) becomes strictly positive for ∀η, since µo

4(b) ̸= 0 for
the non-zero measure of b from Lemma 6 implies

Ck:even(η) =

∫
µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db =

∫
b≥0

(µo
4(b) + µo

4(−b))bk exp
(
−b

2η2

2σ2

)
db

= 2

∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db > 0.

(A27)

5This is a realized value of sample covariance between x and η, as our framework is in single-period
setting.
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Therefore, (A25) can be written as∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db =

∫
µo
4(b)db− 2

∞∑
k:even

(
1

k!

1

σ2k

(∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

))
Ĉov

k
.

(A28)
Finally, we can plug the expression (A28) into our optimal contact wo(x, η) in (23) when
wo(x, η) ≥ k and obtain

1

u′(wo(x, η))
=λ+ µo

1

x− ϕ(ao1)

σ2
ϕ1(a

o
1) +

∫
µo
4(b)db︸ ︷︷ ︸
>0

− 2
∞∑

k:even

1

k!

1

σ2k

(∫
b≥0

µo
4(b)b

k exp

(
−b

2η2

2σ2

)
db

)
︸ ︷︷ ︸

≡Ck:even(η)>0︸ ︷︷ ︸
≡Dk:even(η)>0

Ĉov
k
. (A29)

Since Dk:even(η) > 0 for all even numbers k, given (x, η) a higher Ĉov results in a lower
compensation wo(x, η). Also as Dk:even(η) > 0 decreases in η2, given (x, Ĉov), a higher η2

results in a higher wo(x, η). In sum the principal punishes a sample covariance |Ĉov| but
becomes lenient when a high |Ĉov| comes from the high η realization, not from the agent’s
speculation activity (b ̸= 0).

Proof of Lemma 4: We know from y ∼ N(ϕ(a1, a2), a
2
2) that

y − ϕ(a1, a2)

a2
∼ N(0, 1),

f1
f
(y|a1, a2) =

y − ϕ(a1, a2)

a22
ϕ1(a1, a2) ∼ N

(
0,
ϕ1(a1, a2)

2

a22

)
.

(A30)
Therefore, we observe that if ϕ1(a1,a2)

a2
is decreasing in a2, for any pair a02 < a12,

f1
f
(y|a1, a02)’s

distribution is mean-preserving spread (MPS) of that of f1
f
(y|a1, a12). Assumption 6 guar-

antees that this condition holds, and the following Lemma 7, a slightly changed form of
Kim (1995), proves C(a1, a02) < C(a1, a

1
2) for ∀a1.

Lemma 7 For given action a1 and technology h(·|a1), let the solution of the following
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optimization problem be wh(·):

max
w(·)

∫
(y−w(y))h(y|a1)dy + λ

(∫
u(w(y))h(y|a1)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))h1(y|a1)dy − v′(a1) = 0,

(ii) w(y) ≥ k, ∀y.

(A31)

For two different technologies h = f, g such that f1
f
(y|a1) is a mean-preserving spread of

g1
g
(y|a1), we have:

Cf (a1) ≡
∫

(wf (y)− λu(wf (y))) f(y|a1)dy <
∫

(wg(y)− λu(wg(y))) g(y|a1)dy ≡ Cg(a1).

(A32)
Proof. We know that the solution of (A31) would be given as

1

u′(wh(y))
= max

{
λ+ µh

h1
h
(y|a1),

1

u′(k)

}
, (A33)

where µh is the Lagrange multiplier attached to the incentive constraint for the given a1.
If we define qh ≡ λ + µh

h1

h
(y|a1), we can rewrite the optimal contract wh(·) as a function

of qh so that wh(y) = r(qh) where r(·) = ( 1
u′ )

−1(·) is increasing and does not rely on the
technology h. Therefore, (A33) can be written as

u′(r(qh))qh = 1, (A34)

if qh ≥ u(k)−1 and otherwise r(qh) = k. Now, we obtain

Eh (u(r(qh))qh) =

∫
u(r(qh)) · qh · h(y|a1)dy =

∫
u(r(qh))

[
λ+ µh

h1
h
(y|a1)

]
h(y|a1)dy

= λ

∫
u(r(qh))h(y|a1)dy︸ ︷︷ ︸

≡Bh

+µh

∫
u(r(qh))h1(y|a1)dy︸ ︷︷ ︸

=v′(a1)

= λBh + µhv
′(a1),

(A35)
where we used the fact that r(qh) satisfies the agent’s incentive constraint in a1. Following
Kim (1995), we define

ψ(q) ≡ r(q)− u(r(q))q, (A36)

which is concave in ∀q, since: (i) with q ≥ u(k)−1, we obtainψ′(q) =���r′(q)−(((((((
u′(r(q))r′(q)q−
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u(r(q)) = −u(r(q)) as u′(r(q))q = 1 and ψ′′(q) = −u′(r(q))r′(q) < 0; (ii) with
q < u(k)−1, we have r(q) = k so ψ(q) becomes linear.6 Now we can introduce two
different technologies f(·|a1) and g(·|a1) such that f1

f
(y|a1) is a mean-preserving spread of

g1
g
(y|a1), and define

q̄ ≡ λ+ µf
g1
g
(y|a1), (A37)

which is possibly different from qg as µf is possibly different from µg. As ψ(q) is globally
concave, we obtain

Eg (ψ(q̄))− Eg (ψ(qg)) ≤ Eg (ψ
′(qg)(q̄ − qg)) = Eg

(
−u(r(qg))(µf − µg)

g1
g

)
= (µg − µf )

∫
u(r(qg))g1(y|a1)dy = (µg − µf )v

′(a1)

= (Eg (u(r(qg))qg)− λBg)− (Ef (u(r(qf ))qf )− λBf ) ,

(A38)

where we used (A35). Finally, it leads to the following agency cost comparison:

Cg(a1)− Cf (a1) = Eg (r(qg)− λBg)− Ef (r(qf )− λBf ) = Eg(r(qg))− Ef (r(qf ))− (λBg − λBf )

= Eg(ψ(qg)) + Eg(u(r(qg))qg)− Ef (ψ(qf ))− Ef (u(r(qf ))qf )− (λBg − λBf )

≥������Eg(ψ(qg))− Ef (ψ(qf )) + Eg(ψ(q̄))−������Eg(ψ(qg)) = Eg(ψ(q̄))− Ef (ψ(qf ))

=

∫
ψ

(
λ+ µf

g1
g
(y|a1)

)
g(y|a1)dy −

∫
ψ

(
λ+ µf

f1
f
(y|a1)

)
f(y|a1)dy

(A39)
where we used (A38) in the above (A39)’s inequality part. Finally, if f1

f
(y|a1) is a mean-

preserving spread of g1
g
(y|a1), then (A39) with Rothschild and Stiglitz (1970) implies

Cg(a1) ≥ Cf (a1), as µf > 0 and ψ(·) is globally concave.

Finally, with f(y|a1) ≡ f(y|a1, a02) and g(y|a1) ≡ f(y|a1, a12) in our specification, Lemma
7 proves Lemma 4.

Derivation of equation (33):
Given the fixed a1 = aP1 , ϕ2(a

P
1 , a

P
2 ) = C2(a

P
1 , a

P
2 ) holds at optimum. We writeC2(a

P
1 , a

P
2 )

6We see that ψ(q) is continuously differentiable at all points including q = u(k)−1.
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as follows:

ϕ2(a
P
1 , a

P
2 ) = C2(a

P
1 , a

P
2 ) =

∫ (
wP (y|aP1 , aP2 )− λu(wP (y|aP1 , aP2 ))

)
f2(y|aP1 , aP2 )dy

+

∫ (
∂wP

∂a2
(y|aP1 , aP2 )− λu′(wP (y|aP1 , aP2 ))

∂wP

∂a2
(y|aP1 , aP2 )

)
f(y|aP1 , aP2 )dy,

(A40)
where we know the following equation is satisfied:7

∂wP

∂a2
(y|aP1 , aP2 )− λu′(wP (y|aP1 , aP2 ))

∂wP

∂a2
(y|aP1 , aP2 ) =

∂wP

∂a2
(y|aP1 , aP2 )

(
1− λu′(wP (y|aP1 , aP2 ))

)
,

(A41)
which leads to

∂wP

∂a2
(y|aP1 , aP2 )− λu′(wP (y|aP1 , aP2 ))

∂wP

∂a2
(y|aP1 , aP2 )

=
∂wP

∂a2
(y|aP1 , aP2 ) · µ1(a

P
1 , a

P
2 )
f1
f
(y|aP1 , aP2 )u′(wP (y|aP1 , aP2 )).

(A42)

Thus by plugging equation (A41) into equation (A40), we obtain∫ (
∂wP

∂a2
(y|aP1 , aP2 )− λu′(wP (y|aP1 , aP2 ))

∂wP

∂a2
(y|aP1 , aP2 )

)
f(y|aP1 , aP2 )dy

= µ1(a
P
1 , a

P
2 )

∫
∂wP

∂a2
(y|aP1 , aP2 )f1(y|aP1 , aP2 )u′(wP (y|aP1 , aP2 ))dy.

(A43)

When wP (y|aP1 , a2) is designed for ∀a2, it should satisfy the such incentive constraint
(where wP (y|aP1 , a2 = aP2 ) ≡ wP (y|aP1 , aP2 )) as∫

u(wP (y|aP1 , a2))f1(y|aP1 , a2)dy = v′(aP1 ). (A44)

We get the following by differentiating both side of equation (A44) by a2 at a2 = aP2 :∫
u′(wP (y|aP1 , aP2 ))

∂wP

∂a2
(y|aP1 , aP2 )f1(y|aP1 , aP2 )dy = −

∫
u(wP (y|aP1 , aP2 )f12(y|aP1 , aP2 )dy.

(A45)

7The second equality below holds even in the region where the limited liability constraint binds and
wP (y|aP1 , aP2 ) = k as its derivative with respect to a2 is 0, except on measure 0. A small change in a2 leads
to only a small change in the region of a binding limited liability.
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Plugging equation (A45) into equation (A40), we get the following equation (33).8

ϕ2(a
P
1 , a

P
2 ) =

∫
yf2(y|aP1 , aP2 )dy =

∫ (
wP (y|aP1 , aP2 )− λu(wP (y|aP1 , aP2 ))

)
f2(y|aP1 , aP2 )dy

− µ1(a
P
1 , a

P
2 )

∫
u(wP (y|aP1 , aP2 )f12(y|aP1 , aP2 )dy.

(A48)

Proof of Proposition 6: Assume to the contrary that µ∗
1ϕ

∗
1 + µ∗

2ϕ
∗
2 ≤ 0. Then, pick up any

two levels of y: y1 and y2, such that

y1 < y2, and
y1 + y2

2
= ϕ(a∗1, a

∗
2). (A49)

That is, y1 and y2 are located at the same distance from the mean value ϕ(a∗1, a
∗
2). If µ∗

1ϕ
∗
1+

µ∗
2ϕ

∗
2 ≤ 0, we have from equation (42) that

w∗(y1) ≥ w∗(y2), and u(w∗(y1)) ≥ u(w∗(y2)). (A50)

Since f1(y1|a∗1, a∗2) = −f1(y2|a∗1, a∗2) < 0 for any y1 and y2 satisfying equation (A49), we
have:∫

u(w∗(y))f1(y|a∗1, a∗2)dy ≤ 0, and
∫
u(w∗(y))f1(y|a∗1, a∗2)dy − v′(a∗1) < 0. (A51)

Therefore, there is a contradiction.

8We can derive (33) based on the envelope theorem. If we regard the principal’s optimization as the one
in which, given a fixed a2, we find optimal {a1, w(·)} that maximizes joint utility of both principal and agent
under the incentive constraint for a1 and the limited liability constraint, the principal solves:

SW (a2) = min
µ1

max
w(·),a1

L(a2 ) ≡ϕ(a1, a2)−
∫
w(y)f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
+ µ1

(∫
u(w(y))f1(y|a1, a2)dy − v′(a1)

)
(A46)

As (aP1 , w
P (·|aP1 , aP2 )) are the solution of (A46) given aP2 , SW ′(aP2 ) = 0 must be satisfied at the optimum.

Therefore, the envelope theorem applied to (A46) yields

SW ′(aP2 ) =

∫ (
y − wP (y) + λu(wP (y)

)
f2(y|aP1 , aP2 )dy+µ1(a

P
1 , a

P
2 )

∫
u(wP (y))f12(y|aP1 , aP2 )dy = 0,

(A47)
which is (33), where µ1(a

P
1 , a

P
2 ) are the endogenous Lagrange multiplier for incentive constraint for a1 at

aP1 given aP2 .
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Proof of Proposition 7:
Case 1: µ∗

2 > 0 if aA2 (aP2 ) < aP2 . Let us compare the following two optimizations:9

max
a1,a2,w(·)

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(iii) w(y) ≥ k, ∀y,
(A52)

and

max
a1,a2,w(·)

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy ≥ 0,

(iii) w(y) ≥ k, ∀y,
(A53)

where the incentive constraint associated with the non-hedgeable risk choice a2 takes the
form of inequality in the latter program, instead of equality in the original optimization
program.

We know that (w∗(y), a∗1, a
∗
2, µ

∗
1, µ

∗
2) are the optimal solution for the first program. Let

(ŵ(y), â1, â2, µ̂1, µ̂2) be the optimal solution for the second program. We will show that
the above two programs are equivalent in that two solutions align perfectly with each other
when aA2 (a

P
2 ) < aP2 . Then, we can directly derive µ∗

2 ≥ 0 when aA2 (a
P
2 ) < aP2 , since µ̂2 ≥ 0

by Kuhn-Tucker theorem.
Assume that the second constraint in the second program is not binding. Then, µ̂2 = 0,

and ŵ(y) should satisfy:

1

u′(ŵ(y))
= λ+ µ̂1

y − ϕ(â1, â2)

(â2)2
ϕ1(â1, â2), (A54)

9Following Rogerson (1985), we replace the incentive constraint with the corresponding inequality con-
straint, and exploit the fact that a multiplier to the inequality constraint must be non-negative.
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for y satisfying ŵ(y) ≥ k and ŵ(y) = k otherwise. As the second constraint is not binding,
â2 becomes the best (from the principal’s perspective) a2, i.e., â2 = aP2 . Then we must
have â1 = aP1 and ŵ(y) = wP (y|aP1 , aP2 ). Therefore, the fact that the second constraint in
the second program is not binding implies∫

u(wP (y|aP1 , aP2 ))f2(y|aP1 , aP2 , a3 = 0)dy > 0. (A55)

However, equation (A55) implies aA2 (a
P
2 ) > aP2 , a contradiction.10 Thus, the second con-

straint in the second program must be binding, and the above two programs are equivalent
so µ∗

2 = µ̂2 ≥ 0. And also, µ∗
2 ̸= 0, because µ∗

2 = 0 implies aA2 (a
P
2 ) = aP2 .

Case 2: µ∗
2 < 0 if aA2 (aP2 ) > aP2 . By applying the same method as in Case 1, we can easily

prove it. We compare following two optimizations similar to (A52) and (A53) in Case 1.

max
a1,a2,w(·)

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy = 0,

(iii) w(y) ≥ k, ∀y,
(A56)

and

max
a1,a2,w(·)

∫
(y − w(y))f(y|a1, a2)dy + λ

(∫
u(w(y))f(y|a1, a2)dy − v(a1)

)
s.t.

(i)

∫
u(w(y))f1(y|a1, a2)dy − v′(a1) = 0,

(ii)

∫
u(w(y))f2(y|a1, a2)dy ≤ 0,

(iii) w(y) ≥ k, ∀y,
(A57)

Solutions of the above two optimization programs must be the same, and due to the property
that the multiplier attached to the incentive constraint associated with a2 in the second
program must be non-positive, we conclude µ∗

2 < 0 when aA2 (a
P
2 ) > aP2 .

10We assume that
∫
u(w(y|aP2 ))f(y|aP1 , a2, a3 = 0)dy is concave in a2, which is based on the first-order

approach associated with a2.
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Derivation of equation (47): With the Lagrange multipliers µ1(R), µ2(R) attached to the
incentive constraints for action a1(R) and the project choice a2(R) given R, respectively,
we can set up the Lagrangian for the optimization in (45) as follows:

L =

∫
R

[∫
x,η

(x− w(x, η) + λu(w(x, η))) g(x, η|a1(R), a2(R), R)dxdη − v(a1(R))

]
h(R)dR

+

∫
R

µ1(R)

[∫
x,η

u(w(x, η))g1(x, η|a1(R), a2(R), R)dxdη − v′(a1(R))

]
h(R)dR

+

∫
R

µ2(R)

[∫
x,η

u(w(x, η))g2(x, η|a1(R), a2(R), R)dxdη
]
h(R)dR,

(A58)
from which we get the following first-order Euler equation about w(x, η):

(−1 + λu′(w(x, η)))

∫
R

g(x, η|a1(R), a2(R), R)h(R)dR

+u′(w(x, η))

[∫
R

{µ1(R)g1(x, η|a1(R), a2(R), R) + µ2(R)g2(x, η|a1(R), a2(R), R)} · h(R)dR
]
= 0,

which derives (47).

Proof of Proposition 8: Proof will be similar to Proposition 2, except that now we have
the project choice a2(R) that depends on the observed R by the manager. Consider the
principal’s following alternative maximization program:

max
a1(·),a2(·),w(·)

∫
R

∫
x,η

(x− w(x,R, η)) g(x, η|a1(R), a2(R), R)h(R)dxdηdR

+ λ

∫
R

(∫
x,η

u(w(x,R, η))g(x, η|a1(R), a2(R), R)dxdη − v(a1(R))

)
h(R)dR s.t.

(i)

∫
x,η

u(w(x,R, η))g1(x, η|a1(R), a2(R), R)dxdη − v′(a1(R)) = 0,∀R,

(ii)

∫
x,η

u(w(x,R, η))g2(x, η|a1(R), a2(R), R)dxdη = 0,∀R,

(iii) w(x,R, η) ≥ k, ∀(x, η).
(A59)

Note that the above program is different from the original program (45) in that here con-
tract can be written on the realized value of R. If we let the Lagrange multipliers to the
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constraints (i) and (ii) be µ1(R)h(R) and µ2(R)h(R) respectively, we get the following
optimal contractual form:11

1

u′(w(x,R, η))
= λ+ µ1(R)

x−Rη − ϕR

a2(R)2
ϕ1,R + µ2(R)

[
− 1

a2(R)
+
x−Rη − ϕR

a2(R)2
ϕ2,R +

(x−Rη − ϕR)
2

a2(R)3

]

= λ+ (µ1(R)ϕ1,R + µ2(R)ϕ2,R)

x−Rη︸ ︷︷ ︸
≡y

−ϕR

a2(R)2
+
µ2(R)

a2(R)

[(x−Rη︸ ︷︷ ︸
≡y

−ϕR)
2

a2(R)2
− 1
]
,

(A60)
when w(x,R, η) ≥ k. The above equation (A60) implies that optimal contract only de-
pends on y ≡ x−Rη and the solution (w(x,R, η), a1(R), a2(R)) becomes (a∗1, a

∗
2, w

∗(y) ≡
w∗(x−Rη)). By comparing the above (A59) with the program in (45) where the principal
does not know R, one can easily see that the set of wage contracts, {w(x,R, η)}, satisfy-
ing the incentive constraints for a given action combination (a1(R), a2(R)) in the above
program always contains the set of wage contracts that would be available when the prin-
cipal does not know R, {w(x, η)}, satisfying the incentive constraints for the same action
combination. Therefore, we have

SWN ≤ SW ∗(a∗1, a
∗
2). (A61)

However, one can easily see that w∗(y) = w∗(x − Rη) which is a unique solution for the
wage contract of the above program is not in the set of {w(x, η)}. As a result, we finally
derive

SWN < SW ∗(a∗1, a
∗
2). (A62)

Proof of Lemma 5:

(1) Suppose µ∗
2 < 0 in equation (52) for any given b̂. Proposition 7 implies that if the

shareholders want their manager to reduce the risk through the project choice (i.e., if aP2 <
aA2 (a

P
2 )), the optimal contract in equation (42) features µ∗

2 < 0. Note that risk reduction
through the real project choice (i.e., lowering a2) is costly to the manager in the sense that
a less risky project generates the lower expected return, and thereby reduces the agent’s
expected payoff (i.e., µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2 > 0). Thus, the fact that even costly risk reduction

11We define ϕR ≡ ϕ(a1(R), a2(R)), ϕi,R ≡ ϕi(a1(R), a2(R)) for ∀i = 1, 2, where {a1(R), a2(R)} are
optimal actions for each R.
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is encouraged by w∗(z(b̂)) implies that any risk reduction (i.e., reducing the variance of
z((̂b))) in the absence of expected return reduction will be taken by the manager under
w∗(z(b̂)). Risk reduction through derivative transaction is costless to the agent because
there is no risk-return trade-off for derivative transaction (i.e., manipulating a3). Whenever
taking further risk reduction is encouraged, therefore, the manager would like to do it
through the derivative choices first.

Thus, the manager will choose a3 so that b ≡ R−a3 = b̂ which minimizes the variance
of z(b̂), when w∗(z(b̂)) with µ∗

2 < 0 is designed.

(2) Suppose µ∗
2 > 0 for w∗(z(b̂)) in equation (52). Given (a∗1, a

∗
2), z(b̂) = x − b̂η =

ϕ(a∗1, a
∗
2) + (b − b̂)η + a∗2θ holds. Let w(η, θ, b|w∗) be the wage that the manager will

receive under w∗(z(b̂)) when he takes (a∗1, a
∗
2, b) and (η, θ) are realized. Then, by substitut-

ing equation (50) into equation (52), we have

1

u′(w(η, θ, b|w∗))
= λ+(µ∗

1ϕ
∗
1+µ

∗
2ϕ

∗
2)
(b− b̂)η + a∗2θ

(a∗2)
2

+µ∗
2

1

a∗2

(
((b− b̂)η + a∗2θ)

2

(a∗2)
2

− 1

)
,

(A63)
when w(η, θ, b|w∗) ≥ k and otherwise w(η, θ, b|w∗) = k. Therefore, for two different b,
say b0 and b1, given some realized (η, θ), we have

1

u′(w(η, θ, b1|w∗))
− 1

u′(w(η, θ, b0|w∗))
=(µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
(b1 − b0)η

(a∗2)
2

+ µ∗
2

1

a∗2


(
(b1 − b̂)2 − (b0 − b̂)2

)
η2 + 2a∗2(b

1 − b0)ηθ]

(a∗2)
2

 .

(A64)
Assume that b1 = +∞ or −∞, and −∞ < b0 < +∞. Since µ∗

2 > 0, we have

1

u′(w(η, θ, b1|w∗))
− 1

u′(w(η, θ, b0|w∗))
> 0, ∀(η, θ). (A65)

Therefore, we have
w(η, θ, b1|w∗) > w(η, θ, b0|w∗), ∀(η, θ). (A66)

which implies that the agent takes a3 satisfying b = +∞ or −∞ withw∗(z(b̂)) with µ∗
2 > 0.
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Appendix B. The Truth-Telling Mechanism

In Sections 2 and 3, we assume there is no communication between the principal and the
agent after the contract is written, or even if they can communicate, the contract cannot
be contingent on communication between the principal and the agent. We now relax this
assumption and consider the case where the agent can costlessly report the firm’s risk ex-
posure R to the principal, and receive a payoff that is contingent on the communicated risk
exposure as well as on the output and hedgeable risks. Note that the agent’s message about
his observed R might or might not be truthful.

We assume the flexible project choice setting as in Section 3. As we will show below,
for the case where µ∗

2 < 0 for w∗(z(0)) in (52), a contract that is similar to w∗(z(0)) can
be designed to induce the agent to truthfully reveal the firm’s risk exposure R. In other
words, there is no loss associated with the risk exposure being unobservable and thus no
gain from the introduction of derivative market. The intuition is the same as the one for
why the manager would voluntarily hedge under w∗(z(0)) with µ∗

2 < 0. Essentially, the
truth-telling contract will allow the agent to make a side bet with the principal. If the agent
hedges in the derivative market with the contract w∗(z(0)), he will truthfully reveal what
he observes (i.e., true R) to minimize the additional risk associated with this side bet.

However, when µ∗
2 > 0 for w∗(z(0)) in (52), any contract similar to w∗(z(0)) does not

induce truth-telling since the manager wants to add more risks, as he does by engaging in
speculation in derivative markets. Again, a new contract similar to the sample covariance
punishing contract in (C.8) must be designed to induce him to reveal the truth.

Equivalence between derivative market games and communication games Suppose
the principal does not know the firm’s innate risk exposure R and there is no derivative
market (i.e., a3 is again fixed at 0). Since the agent observes R before he takes (a1, a2)

and communication regarding R is freely allowed, the principal can design a truth-telling
mechanism, w(x, r, η), without incurring cost where r represents the value of R reported
by the agent. Let (aT1 (R), a

T
2 (R)) be agent’s optimal action combination after observing R

and wT (x, r, η) be the wage contract that optimally induces (aT1 (R), a
T
2 (R)) with the agent

telling the truth. Knowing that r = R, ∀R, under wT (x, r, η), we denote optimized joint
benefits in this case as
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SW T ≡
∫ (

ϕ(aT1 (R), a
T
2 (R))− CT (aT1 (R), a

T
2 (R))− λv(aT1 (R))

)
h(R)dR, (B1)

where

CT (aT1 (R), a
T
2 (R)) ≡

∫ (
wT (x,R, η)− λu(wT (x,R, η))

)
g(x, η|aT1 (R), aT2 (R))dxdη

(B2)
denotes the agency cost arising from inducing (aT1 (R), a

T
2 (R)) through wT (x, r, η) when R

is realized. In the above equation, g(x, η|aT1 (R), aT2 (R)) denotes the joint density function
of (x, η) given that (aT1 (R), a

T
2 (R)) is chosen by the manager when a3 is fixed at 0.

Since SW ∗(a∗1, a
∗
2) in (43) is the maximum level of joint benefits that SW T can attain,

we first consider the case in which principal designs a wage contract, w∗(yr), that is the
same as w∗(y) in (40) except that it is based on yr ≡ x− rη instead of y ≡ x− Rη. That
is, w∗(yr) satisfies

1

u′(w∗(yr))
= λ+ (µ∗

1ϕ
∗
1 + µ∗

2ϕ
∗
2)
yr − ϕ(a∗1, a

∗
2)

(a∗2)
2

+ µ∗
2

1

a∗2

(
(yr − ϕ(a∗1, a

∗
2))

2

(a∗2)
2

− 1

)
, (B3)

for yr satisfying w∗(yr) ≥ k and w∗(yr) = k otherwise. We call w∗(yr) the full-trust

contract as w∗(yr) simply is based on the agent’s report instead of the realized R in (B3).
Note that

yr ≡ x− rη = ϕ(a1, a2) + (R− r)η + a2θ. (B4)

Since, from (50),
z(0) = x = ϕ(a1, a2) + (R− a3)η + a2θ, (B5)

the principal’s problem of designing a truth-telling mechanism based on yr when there is
no derivative market is equivalent to his problem of designing an incentive scheme based
on z(0) to induce b = 0 (i.e., a3 = R) when derivative transactions are allowed. As a result,
as is the case for w∗(z(0)) in Lemma 5, we directly obtain following results for w∗(yr).

Lemma 8 [Speculation and Hedging with w∗(yr)]
(1) If µ∗

2 < 0 for the wage contract, w∗(yr), described in (B3), then the manager will always

report truly, i.e., r = R, ∀R, when w∗(yr) is offered.

(2) If µ∗
2 > 0 for w∗(yr), then the manager will report r such that |R−r| = ∞ when w∗(yr)

is offered.
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From Lemma 8, we obtain the following propositions.

Proposition 10 When there is no derivative market and communication between the prin-

cipal and the agent is costless, then w∗(yr) described in (B3) is the optimal truth-telling

contract for the firm’s hidden risk exposure, R, if µ∗
2 < 0 for w∗(yr). In this case:

(1) The principal’s inability to observeR does not reduce the firm’s welfare (i.e., no adverse

selection).

(2) An introduction of a derivative market does not improve the firm’s welfare compared

with SW T in (B1).

Proposition 10 along with Propositions 8 and 9 reaffirms that the benefits that derivative
markets bring are actually informational gains, as the agent engages in perfect hedging in
derivative markets. If the principal and the agent cannot communicate with each other due
to huge communication costs, these benefits are actually associated with saving commu-
nication costs1 that would realistically incur when principal has to design a truth-telling
contract that induces the agent to reveal his exact information about the firm’s risk expo-
sure R. When the communication between the principal and the agent becomes free, the
principal, by designing w∗(yr), can easily reproduce the same results as when she observes
the firm’s innate risk exposure, if µ∗

2 < 0 for w∗(yr). However, in reality, the costs asso-
ciated with communicating this information and updating the compensation contract based
on the reavealed R may be greater than the hedging cost. As shown in (B4), allowing the
manager to choose a3 in derivative transactions is observationally equivalent to allowing
him to freely report the firm’s realized risk exposure R.

On the other hand, if µ∗
2 > 0 for w∗(yr), the manager does not report the true R under

w∗(yr), and shareholders have to redesign a truth-telling mechanism, wT (x, r, η) different
from w∗(yr). It can be similar to (C.8), except that we design wo(yr, η) instead of wo(x, η).
Therefore, two games (i.e., with derivative markets and with free communication) are of
the isomorphic structure.

Proposition 11 When µ∗
2 > 0 for w∗(yr) described in (B3), the introduction of a derivative

market does not improve on the firm’s efficiency when communication between the principal

and the agent is freely allowed, and it actually lowers the firm’s efficiency if σ2
R is very

small, when the restriction on derivative transaction is not feasible.

1In the presence of derivative markets, the principal and the agent do not need to communicate about the
realized R, since the agent can eliminate this innate risk R through derivative transactions (i.e., a3 = R).
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As explained in Proposition 13, when communication between shareholders and the
manager is not available and µ∗

2 > 0 for w∗(yr) in (52), the manager’s opportunity to trans-
act derivatives may or may not improve the firm’s welfare compared to the case without the
derivative market depending on the size of uncertainty σ2

R on the exposure R.
If the communication becomes free between the principal and the agent however, the

access to the derivative market reduces the firm’s welfare when σ2
R is small enough. It is

because both wo(x, η) in (C.8) and wN(x, η) in (49)2 are actually truth-telling contracts.
Therefore, when there is no derivative market, the principal designs either wo(yr, η) or
wN(x, η) under the free communication depending on which of two gives the better wel-
fare. As shown in Proposition 13, the principal prefers designing wN(x, η) to wo(yr, η) if
σ2
R is very small. The optimal truth-telling mechanism wN(x, η), which actually does not

elicit any information from the agent, thus performs weakly better than wo(x, η). How-
ever, after the derivative market is introduced, the principal has to shift from wN(x, η) to
wo(x, η) because there now exists an incentive problem associated with a3.

In summary, when the communication between shareholders and the manager becomes
free, the manager’s access to derivative market transactions does not change the firm’s
welfare if µ∗

2 < 0, and might lower it if µ∗
2 > 0 and no restriction on the derivative trading

can be imposed by the principal.

B.1. Proof of Appendix B

Proof of Proposition 10: From Lemma 8, we see that w∗(yr) is a truth-telling mechanism
for the firm’s hidden risk exposure, R, if µ∗

2 < 0 for w∗(yr). Since r = R, ∀R, under
w∗(yr), we have

y ≡ x−Rη = ϕ(a1, a2) + a2θ = yr. (B6)

Furthemore, we have that w∗(yr) in equation (B3) has the same contractual form as w∗(y)

in (42). Thus, the optimal action combination to be chosen by the agent under w∗(yr) is
(a∗1, a

∗
2), i.e., (aT1 (R), a

T
2 (R)) = (a∗1, a

∗
2),∀R. Therefore, we derive

SW T = SW ∗(a∗1, a
∗
2), (B7)

2Note that both wo(x, η) and wN (x, η) do not depend on the reported value of R, so we regard both two
contracts as truth-telling mechanism.
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and from Proposition 9, we derive that SW T is the same as the joint benefits that will be
obtained under w∗(z(0)) when there is a derivative market.

Proof of Proposition 11 Note that both non-communication contractswN(x, η) andwo(x, η)

in (C.8) are truth-telling mechanisms.3 Therefore, if µ∗
2 > 0 for w∗(yr) in equation (B3),

we have
SW T ≥ max{SWN , SW o(ao1, a

o
2, R)}. (B8)

Furthermore, from Proposition 13, we have SWN > SW o(ao1, a
o
2, R) when σ2

R is very
small. Thus, we obtain that SW T > SW o(ao1, a

o
2, R) when σ2

R is very small.

3The principal can design wN (x, η) without using r. Also, by designing wo(yr, η) as a truth-telling
mechanism, he can obtain the same result as wo(x, η) would provide.
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Appendix C. Optimal Contracts when µ∗2 > 0 in Section 3

New optimal contract when µ∗
2 > 0 in (52) in the presence of derivative markets In

deriving the optimal contract in the presence of derivative markets when µ∗
2 > 0 forw(z(b̂))

in (52), we first consider the case in which the principal designs a contract that ensures a
finite a3 when µ∗

2 > 0 for w∗(z(b̂)) in (52). Let (ao1, a
o
2, a

o
3), where |bo ≡ R − ao3| < ∞,

be the optimal action combination and wo(z(b̂), η) be the wage contract which optimally
induces that action combination (ao1, a

o
2, a

o
3) where b̂ = bo ≡ R − ao3. We denote the

optimized joint benefits in this case as

SW o(ao1, a
o
2, a

o
3) ≡ ϕ(ao1, a

o
2)− Co(ao1, a

o
2, b

o)− λv(ao1), (C.1)

where

Co(ao1, a
o
2, b

o) ≡
∫ [

wo(z(b̂), η)− λu(wo(z(b̂), η))
]
g(z(b̂), η|ao1, ao2, bo)dzdη (C.2)

denotes the agency cost arising from inducing (ao1, a
o
2, a

o
3) when there is a derivative market

and µ∗
2 > 0 for w∗(z(b̂)) in equation (52).

Lemma 9 If wo(z(b̂), η) is an optimal contract that induces (ao1, a
o
2, a

o
3) where b̂ = R −

ao3 ≡ bo ̸= 0, then wo(z(0), η) ≡ wo(x, η)1 is also an optimal contract which induces

(ao1, a
o
2, a3 = R). Therefore,

SW o(ao1, a
o
2, a

o
3) = SW o(ao1, a

o
2, a3 = R).

Therefore, without loss of generality, the principal chooses to induce complete hedging

from the agent (i.e., a3 = R or b = 0).

Lemma 9 indicates that when the principal has to design a compensation contract to
guarantee the agent’s choice of a3 satisfying |R − a3| < ∞ due to the fact that µ∗

2 > 0 for
w∗(z(b̂)), the level of a3 to be induced by wo(z(b̂), η) is a matter of indifference as long as
it is finite and the efficiency is concerned. This is because, as shown in equation (50), the
agent’s derivative choice, a3, is additively separable from his other two productive action
choices, (a1, a2), in determining the output level, x, and not only the output level but also
the derivative market variables, η, are observable (thus contractible). This feature allows the

1Note that z(0) = x from equation (50).
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principal to always eliminate or add hedgeable risks to the agent’s compensation, making
a level of remaining hedgeable risks irrelevant. Without loss of generality, therefore, from
now on we focus on the case where a3 = R (i.e., complete hedging) is induced.2 The
optimal contract wo(x, η) that induces the agent’s complete hedging (i.e., b = 0 or a3 =

R) is obtained by solving a maximization problem that is similar to (39) with an added
requirement that a contract induces the manager to take a3 = R.

Given that the agent’s choosing a3 given his private information R is equivalent to
his choosing b = R − a3, a new optimal contract, wo(x, η), inducing the agent to take
(ao1, a

o
2, b = 0) when µ∗

2 > 0 for w∗(z(b̂)) in (52), must solve the following optimization
problem:3,4

max
w(·)≥k

∫
(x− w(x, η))g(x, η|ao1, ao2, b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|ao1, ao2, b = 0)dxdη − v(ao1)

)
s.t. (i)

∫
u(w(x, η))g1(x, η|ao1, ao2, b = 0)dxdη − v′(ao1) = 0,

(ii)

∫
u(w(x, η))g2(x, η|ao1, ao2, b = 0)dxdη = 0,

(iii) b = 0 ∈ argmax
b′

∫
u(w(x, η))g(x, η|ao1, ao2, b′)dxdη, ∀b.

(C.3)
Note that we take the optimal (ao1, a

o
2) as given, and rely on the first-order approach for

incentive constraints associated with the action a1 and the project choice a2. However, we
do not use the same approach for the incentive compatibility constraint associated with the
hedging choice b. The following Lemma 10 demonstrates the reason we cannot rely on the
first-order approach for the incentive compatibility around b.

Lemma 10 If w∗(z(0)) in (52) is designed, the agent will be indifferent between taking b

and taking −b, ∀b.

Lemma 10 shows that, if w∗(z(0)) is designed and offered, the manager’s expected utility
becomes symmetric around b = 0 (i.e., a3 = R) in the space of b (i.e., in the space of a3).

2Therefore, we have the same indeterminacy issue as in Section 2. It comes from the same linear tech-
nology with the fact that the principal is risk-neutral.

3Here the distribution g(x, η|a1, a2, b) is of the same form as (46) with b in the position of R in (46).
4Our analysis of the new optimal contractwo(x, η) in this section follows closely to our treatment without

project choice a2 in Section 2.2. There is no specific role of ao2 in deriving a new optimal contract wo(x, η)
that induces perfect hedging from the agent.
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As we know: ∫
u(w∗(z(0)))g(z(0), η|ao1, ao2, b)dzdη (C.4)

is continuous and differentiable in b, Lemma 10 implies:∫
u(w∗(z(0))g3(z(0), η|ao1, ao2, b = 0)dzdη = 0, (C.5)

where g3(·|·) denotes the first derivative of g(·|·) taken with respect to b. Since (w∗(z(0)), a∗1, a
∗
2)

is the solution of the optimization in (C.3) without the incentive constraint of b, i.e., (iii)
in (C.3), if we use the first-order approach for the incentive constraint associated with b in
program (C.3), we always end up obtaining w∗(z(0)) in (52) as an optimal contract. How-
ever, µ∗

2 > 0 for w∗(z(0)) implies from Lemma 5 that this contract incentivizes an agent to
take b = ±∞ instead of taking a stipulated b = 0.5 Therefore, we have to explicitly include
the incentive constraint for b which does not rely only on the first-order condition at b = 0.

Without relying on the first-order approach, we follow Grossman and Hart (1983), re-
placing the incentive constraint for b (i.e., (iii) in (C.3)) with:∫

u(w(x, η)) (g(x, η|ao1, ao2, b = 0)− g(x, η|ao1, ao2, b)) dxdη ≥ 0, ∀b, (C.6)

which implies that the manager’s indirect utility is maximized when he takes b = 0 (i.e.,
a3 = R).

Now we state formally the optimization problem of choosing the optimal contract wo(·)
given (ao1, a

o
2) as:

max
w(·)≥k

∫
(x− w(x, η))g(x, η|ao1, ao2, b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|ao1, ao2, b = 0)dxdη − v(ao1)

)
s.t. (i)

∫
u(w(x, η))g1(x, η|ao1, ao2, b = 0)dxdη − v′(ao1) = 0,

(ii)

∫
u(w(x, η))g2(x, η|ao1, ao2, b = 0)dxdη = 0,

(iii)

∫
u(w(x, η)) (g(x, η|ao1, ao2, b = 0)− g(x, η|ao1, ao2, b)) dxdη ≥ 0, ∀b,

(C.7)

5Note that a technical problem about the first-order approach does not arise in the incentive constraint
about the project choice a2, which also determines the firm’s risks. It is because lowering risk through project
choice a2 is costly in terms of return, while doing it through a3 is not. Thus, the manager’s expected utility
is not symmetric in the space of a2.
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Note that the set of incentive constraints for all b (i.e., (C.6)) are taken into account to make
sure the agent’s expected indirect utility is at maximum when he chooses b = 0 instead of
other b > 0 or b < 0.

The first-order condition of the above program (C.7) yields the optimal contract,wo(x, η),
that satisfies6

1

u′(wo(x, η))
=λ+ (µo

1ϕ
o
1 + µo

2ϕ
o
2)
x− ϕ(ao1, a

o
2)

(ao2)
2

+ µo
2

1

ao2

(
(x− ϕ(ao1, a

o
2))

2

(ao2)
2

− 1

)
+

∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db︸ ︷︷ ︸

Additional term to (52)

,
(C.8)

for (x, η) satisfying wo(x, η) ≥ k and wo(x, η) = k otherwise. In equation (C.8), ϕo
i ≡

ϕi(a
o
1, a

o
2), i = 1, 2, and µo

1, µ
o
2, and µo

4(b) are the optimized Lagrange multipliers associ-
ated with the first, second, and third constraints (for specific b) in the above optimization
program (C.7), respectively.

As shown in the Appendix, we obtain the following proposition from (C.8).

Proposition 12 [Hedging through Punishment]
If µ∗

2 > 0 for w∗(z(0)) described in (52), then the principal can motivate the manager to

hedge completely by designing a new compensation contract, wo(x, η) in (C.8), which (i)

satisfieswo(x, η) = wo(x,−η) for all x, η, and (ii) penalizes the manager for having higher

realized (x − ϕ)2η2). To be specific, given realized (x, η), a higher (x − ϕ)2η2 yields a

lower wage wo(x, η), while given the output x and sample covariance (x−ϕ)2η2, a higher

η raises the wage wo(x, η).

Proposition 12 can be understood in the following way: the production function x =

ϕ(ao1, a
o
2) + a2θ+ bη gives us the relation b = Cov(x, η) = E((x− ϕ(ao1, a

o
2))η). It implies

that if the agent takes b = 0, a statistical covariance between output x and hedgeable risk
η disappears, whereas any other b ̸= 0 generates non-zero population covariances. Since
b = 0 generates x = ϕ(ao1, a

o
2) + a2θ, which is independent of η, wo(x, η) = wo(x,−η)

for all x, η is ensured to minimize the amount of risk imposed on the agent, as η becomes
irrelevant in inducing (ao1, a

o
2) and has a symmetric distribution around 0.

At optimum, by punishing the covariance between x and η,7 shareholders effectively
incentivize the manager to engage in full hedging and take b = 0. As our framework is

6We suppress the dependence of distribution g and likelihood ratios on (ao1, a
o
2).

7It is possible since η is observable at the end of the period and thus contracts can be written upon it.
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in one-period setting, any positive or negative realized sample covariance Ĉov = (x −
ϕ(ao1, a

o
2))η = bη2 + a2θη, instead of a population covariance, is punished by the principal

through a lower compensation wo(x, η). If the realized sample covariance Ĉov = (x −
ϕ(ao1, a

o
2))η = bη2 + a2θη is large, not because of the manager’s speculation (b ̸= 0) but

from a high realized market observable, |η|, then the principal takes it into account and
raises wo(x, η). In contrast, given realized output and market observables (x, η), a bigger
realization of Ĉov is likely to be generated by b ̸= 0 with a bigger |b|, thus the agent is
punished and her wage income wo(x, η) falls.

Designing the new optimal contract including this covariance punishment is not, how-
ever, costless compared with wN(x, η) in (49), the optimal contract in cases where there is
no derivative market, since it exposes the agent to additional risks. As we show below, if
this cost is relatively high compared to the informational gain that principal gets through
the agent’s derivative transaction, an introduction of derivative markets can actually reduce
the welfare.

Proposition 13 If µ∗
2 > 0 for w∗(z(0)) in (52), the introduction of a derivative market

will reduce welfare compared with SWN in equation (48) when the amount of uncertainty

about the firm’s risk exposure, σ2
R, is small.

The logic is similar to Proposition 5, except that whether the manager would speculate
depend on the sign of µ∗

2 in (52) here. As we show in Proposition 9, the optimal contract
must be altered from wN(x, η) when derivative markets open. In cases where the manager
voluntarily chooses to hedge after the derivative market is introduced given his original
optimal dual-agency contract (i.e., µ∗

2 < 0 for w∗(y) in (42) or equivalently µ∗
2 < 0 for

w∗(z(0)) in (52)), the compensation contract remains mainly unchanged from w∗(y) while
being based on z(0) = x rather than y, and the welfare unambiguously increases by the
informational gain generated by an opportunity of the manager to hedge in the derivative
market and eliminate the firm’s risk exposure R. However, when w∗(z(0)) with µ∗

2 > 0

induces the manager to speculate in the derivative market, shareholders must revise the
manager’s contract to wo(x, η) to provide the manager with an incentive to hedge, which
imposes additional risks on the risk-averse manager’s side and incurs the cost out of it.
Thus, there are costs and benefits associated with derivative trading that the principal must
consider.

Altering contracts to ensure the agent hedges rather than speculates is costly since it
needs to consider the agent’s additional incentive problem associated with a3 by exposing
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him to the additional risk: market observables η, whereas the principal gets informational
benefits as now she does not have to know about the firm’s risk exposure R as the agent
eliminates any hedgeable risk (i.e., b = 0 or a3 = R) under wo(x, η). On the other hand,
when there is no derivative market, principal’s inability to observe R causes welfare loss
as she now should offer wN(x, η) instead of w∗(y).8 To illustrate these costs and benefits
more precisely, we use equation (43), equation (48), and equation (C.1), and decompose
the welfare change in the following way.

SW o(ao1, a
o
2, a3 = R)−SWN =

(
SW ∗(a∗1, a

∗
2)− SWN

)
−(SW ∗(a∗1, a

∗
2)− SW o(ao1, a

o
2, a3 = R)) .

(C.9)
The first part, SW ∗(a∗1, a

∗
2) − SWN , represents the welfare loss due to the principal’s

inability to observe the firm’s risk exposure when there is no derivative market (or equiv-
alently informational gains from the introduction of a derivative market). The second part
represents the welfare loss due to the additional incentive problem associated with the man-
ager’s derivative choices when the derivative market is introduced and the manager specu-
lates under w∗(z(0)) in (52).

Note that no expectation with respect to R is taken for joint benefits SW ∗(a∗1, a
∗
2) and

SW o(ao1, a
o
2, a3 = R), as both are independent of R. When there is no derivative market

and the firm’s risk exposure, R, is observed by the principal as well as the manager, joint
benefits, SW ∗(a∗1, a

∗
2), are obviously independent of the R’s realization because (a∗1, a

∗
2)

are independent of R. Likewise, when wo(x, η) is designed in the presence of derivative
markets, the joint benefits SW o(ao1, a

o
2, a3 = R) are independent of R as agent is always

induced to take b = R− a3 = 0 no matter what R is realized. However, in calculating joint
benefits SWN , an expectation with respect to R is taken, implying that the distribution of
R affects the level of SWN .

The above discussion implies that informational gains from the manager’s derivative
transaction declines as the amount of uncertainty around the firm’s risk exposure R falls.
On the other hand, the cost of controlling the additional incentive problem associated with
a3 (or equivalently b = R − a3) is independent of the firm’s risk exposure R and thus σ2

R.
For instance, even if R is known to the principal (i.e., σ2

R = 0), the moral hazard problem
associated with inducing b = 0 still remains to the same degree. Therefore, the amount of
uncertainty about R is indeed a matter of indifference in incentivizing the agent’s choice of

8Of course, principal can always design wo(x, η) instead of wN (x, η) when there is no derivative market.
However, wo(x, η) will perform poorly without the derivative market.
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b.
As a result, if the uncertainty around R, e.g., σ2

R, is small enough, the contractual cost
dominates informational gains when derivative markets are introduced, and shareholders
would be better off prohibiting the manager from trading derivatives. Therefore, recent fi-
nancial innovations can potentially hurt the efficiency of firms through its effects on agency
relationships.

C.1. Proof of Appendix C

Proof of Lemma 9: From equation (50), we have z(b̂) = ϕ(a1, a2) + (b − b̂)η + a2θ for
any given (a1, a2, b), and z(0) = ϕ(a1, a2)+ b′η+ a2θ for any given (a1, a2, b

′). Therefore,
we obtain

z(b̂|a1, a2, b) = z(0|a1, a2, b′), whenever b′ = b− b̂. (C.10)

Furthermore, if b′ = b − b̂, two joint density functions of (z(b̂), η) and (z(0), η) are the
same, i.e.,

g(z(b̂), η|a1, a2, b) =
1

2πa2
exp

−1

2


(
z(b̂)− ϕ(a1, a2)− (b− b̂)η

)2
a22

+ η2




= g(z(0), η|a1, a2, b′), ∀b′ = b− b̂.
(C.11)

Thus, we derive that for ∀(a1, a2, b), we have∫
u(wo(z(b̂), η))g(z(b̂), η|a1, a2, b)dzdη =

∫
u(wo(z(0), η))g(z(0), η|a1, a2, b′ = b−b̂))dzdη.

(C.12)
Note that the manager is induced to take (ao1, a

o
2, b

o ≡ R − ao3 = b̂) under the contract
wo(z(b̂), η). Thus, the manager will be induced to take (ao1, a

o
2, b

′ = 0 (i.e., a3 = R)) under
wage contract wo(z(0), η). Moreover, since∫

wo(z(b̂), η)g(z(b̂), η|ao1, ao2, bo)dzdη =

∫
wo(z(0), η)g(z(0), η|ao1, ao2, 0))dzdη,

(C.13)
using equation (C.1) and equation (C.2), we finally derive:

SW o(ao1, a
o
2, a

o
3) = SW o(ao1, a

o
2, R).
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Proof of Lemma 10: Proof is almost the same as in Lemma 3. When w∗(z(0)) described
in equation (52) is designed, we have

z(0|a1, a2, b) = x = ϕ(a1, a2) + bη + a2θ. (C.14)

If the agent takes (a1, a2, b) under w∗(z(0)), then his expected utility is:∫
u(w∗(z(0)))g(z(0), η|a1, a2, b)dzdη−v(a1) =

∫
u(w∗(z(0)))q(z(0)|a1, a2, b, η)l(η)dzdη−v(a1),

(C.15)
where q(·) denotes the conditional density function of z(0) given (a1, a2, b, η) and l(·)
denotes the density function of η ∼ N(0, 1).

Now, suppose the agent takes (a1, a2,−b) under w∗(z(0)). Then, his expected utility
becomes:∫
u(w∗(z(0)))g(z(0), η|a1, a2,−b)dzdη−v(a1) =

∫
u(w∗(z(0)))q(z(0)|a1, a2,−b, η)l(η)dzdη−v(a1).

(C.16)
Since

q(z(0)|a1, a2, b, η) =
1√
2πa2

exp

(
−(z(0)− ϕ(a1, a2)− bη)2

2a22

)
, (C.17)

we have
q(z(0)|a1, a2, b, η) = q(z(0)|a1, a2,−b,−η). (C.18)

Since η ∼ N(0, 1) is symmetrically distributed around 0 and l(η) = l(−η), ∀η, we finally
have∫
u(w∗(z(0)))g(z(0), η|a1, a2, b)dzdη−v(a1) =

∫
u(w∗(z(0)))g(z(0), η|a1, a2,−b)dzdη−v(a1).

(C.19)

Proof of Proposition 12: To prove this proposition, we start with the following Lemma
11. Our proof strategy here will be similar to Proposition 3, but now we have the project
choice ao2 chosen by the manager.
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Lemma 11 If µ∗
2 > 0 for contract w∗(z(0)) in equation (52), then the optimal contract

wo(x, η) guaranteeing that the agent takes ao1, a
o
2, a

o
3 = R (b = 0), i.e., wo(x, η) in equa-

tion (C.8), must satisfy

(1) µo
2 ≥ 0

(2) µo
4(b) ̸= 0 (> 0) for a positive Borel-measure of b.9

(3) wo(x, η) = wo(x,−η) for all x, η and µo
4(b) = µo

4(−b) for all b.

Proof. (1) µo
2 ≥ 0: Assume that µo

2 < 0, then under the contract w1(x, η) satisfying

1

u′(w1(x, η))
= λ+(µo

1ϕ
o
1 + µo

2ϕ
o
2)
x− ϕ(ao1, a

o
2)

(ao2)
2

+
µo
2

ao2

(
(x− ϕ(ao1, a

o
2))

2

(ao2)
2

− 1

)
, (C.20)

for (x, η) satisfying w1(x, η) ≥ k and w1(x, η) = k, the agent voluntarily chooses b = 0

even though we did not consider the constraint (iii) in (C.7). Thus w1(x, η) becomes the
solution of (C.7). However, it contradicts with our assumption of µ∗

2 > 0 for w∗(z(0)) since
(w1(x, η), µo

1, µ
o
2) becomes (w∗(z(0)), µ∗

1, µ
∗
2) without the incentive constraint (iii) about b.

(2) µo
4(b) ̸= 0 for a positive Borel-measure of b: Assume µo

4(b) = 0 a.s. Then optimal
contract wo(x, η) becomes:

1

u′(wo(x, η))
= λ+(µo

1ϕ
o
1 + µo

2ϕ
o
2)
x− ϕ(ao1, a

o
2)

(ao2)
2

+
µo
2

ao2

(
(x− ϕ(ao1, a

o
2))

2

(ao2)
2

− 1

)
, (C.21)

for (x, η) satisfying wo(x, η) ≥ k and wo(x, η) = k.
Because we already know (wo(x, η), µo

1, µ
o
2, a

o
1, a

o
2) becomes (w∗(z(0)), µ∗

1, µ
∗
2, a

∗
1, a

∗
2)

in this case and µ∗
2 > 0 holds, (wo(x, η), µo

1, µ
o
2) will induce b = ±∞ instead of b = 0 from

the agent, a contradiction to the constraint (iii) in (C.7).

(3) wo(x, η) = wo(x,−η) for all x, η and µo
4(b) = µo

4(−b) for all b: We first see:10

g(x, η|b) = 1

2πao2
exp

(
−1

2

(x− ϕ(ao1, a
o
2)− bη)2

(ao2)
2

− 1

2
η2
)
, (C.22)

9We already know µo
4(b) ≥ 0 for every b (almost surely), since it is derived from the inequality constraint

at each b.
10We suppress ao1, a

o
2 in g(x, η|ao1, ao2, b) in (C.7) to make our expressions simpler.
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where
g(x, η|b)

g(x, η|b = 0)
= exp

(
bη(x− ϕ(ao1, a

o
2))

(ao2)
2

)
exp

(
− b2η2

2(ao2)
2

)
. (C.23)

From (C.22), and (C.23), we observe that g(x, η|b = 0), g1(x, η|b = 0), and g2(x, η|b = 0)

are all even with η where g1 and g2 are partial derivatives of g with respect to a1 and a2:
i.e., (i) g(x,−η|b = 0) = g(x, η|b = 0); (ii) g1(x,−η|b = 0) = g1(x, η|b = 0); (iii)
g2(x,−η|b = 0) = g2(x, η|b = 0). Also from (C.22), we acknowledge:

g(x,−η|b) = g(x, η| − b), ∀(x, η, b). (C.24)

Our strategy is to prove that: (i) if wo(x, η) is an optimal contract, then wo(x,−η) sat-
isfies all the constraints in (C.7); (ii) Related to (i), if wo(x, η) is an optimal contract, then
wo(x,−η) also becomes an optimal contract; and (iii) µo

4(−b) = µo
4(b) for ∀b at the opti-

mum.

Step 1. If wo(x, η) is an optimal contract, then wo(x,−η) satisfies all the constraints in
(C.7).
(i) As wo(x, η) is optimal, note that it satisfies all of the constraints in (C.7). We start from
the incentive compatibility in action a1: based on that g1(x, η|b = 0) is even in η,∫
u(wo(x,−η))g1(x, η|b = 0)dxdη − v′(ao1) =

∫
u(wo(x,−η))g1(x,−η|b = 0)dxdη − v′(ao1)

=

∫
u(wo(x, η))g1(x, η|b = 0)dxdη − v′(ao1) = 0,

where we use the change of variable (i.e., −η to η) in the second equality.

(ii) Incentive compatibility in action a2: based on that g2(x, η|b = 0) is even in η,∫
u(wo(x,−η))g2(x, η|b = 0)dxdη =

∫
u(wo(x,−η))g2(x,−η|b = 0)dxdη

=

∫
u(wo(x, η))g2(x, η|b = 0)dxdη = 0.

(iii) Incentive compatibility in after-hedging risk exposure b: as wo(x, η) is optimal, we
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know it satisfies ∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη ≥ 0, ∀b. (C.25)

From (C.24) and that g(x, η|b = 0) is even in η, we obtain for ∀b,∫
u(wo(x,−η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

=

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η| − b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη ≥ 0,

(C.26)

where the first equality is from (C.24) and the second equality is from the change of vari-
able (i.e., −η to η). Thus, we proved that if wo(x, η) is an optimal contract, then wo(x,−η)
satisfies all the constraints in (C.7).

Step 2. Next, if wo(x, η) is an optimal contract, then wo(x,−η) also becomes an optimal
contract.
From the above Step 1, wo(x,−η) satisfies all the constraints in (C.7). It is sufficient to
show that wo(x,−η) achieves the same efficiency as wo(x, η). It follows from:∫

(x− wo(x,−η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x, η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x,−η))g(x,−η|b = 0)dxdη + λ

(∫
u(wo(x,−η))g(x,−η|b = 0)dxdη − v(ao1)

)
=

∫
(x− wo(x, η))g(x, η|b = 0)dxdη + λ

(∫
u(wo(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
,

(C.27)
where the first equality is from that g(x, η|b = 0) is symmetric in η, and the second equality
is from the change of variable (i.e., −η to η). Therefore, if wo(x, η) is an optimal contract,
then wo(x,−η) becomes an optimal contract and we obtain wo(x,−η) = wo(x, η).11

Step 3. µo
4(−b) = µo

4(b) for ∀b.
Note from the Lagrange duality theorem (see e.g., Luenberger (1969)) that the optimal

11We implicitly assume that the optimal contract is unique in this environment, following the literature
(e.g., Jewitt et al. (2008)).
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solution (µo
1, µ

o
2, {µo

4(b)}, wo(·)) is the one that solves:

min
µ1,µ2,{µ4(·)}

max
w(·)

L ≡
∫

(x− w(x, η))g(x, η|b = 0)dxdη + λ

(∫
u(w(x, η))g(x, η|b = 0)dxdη − v(ao1)

)
+ µ1

(∫
u(w(x, η))g1(x, η|b = 0)dxdη − v′(ao1)

)
+ µ2

(∫
u(w(x, η))g2(x, η|b = 0)dxdη

)
+

∫
b

µ4(b)

(∫
u(w(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db,

(C.28)
while satisfying µo

4(b) ≥ 0 for ∀b and the following complementary slackness condition at
the optimum:

µo
4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
= 0, ∀b. (C.29)

The last term in (C.28) given the optimal contract wo(x, η) can be written as∫
b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη

)
db,

(C.30)

where we use the change of variable (i.e., b to −b) and wo(x,−η) = wo(x, η). Now with
(C.24) and that g(x, η|b = 0) is even in η, we know:∫
u(wo(x,−η)) (g(x, η|b = 0)− g(x, η| − b)) dxdη =

∫
u(wo(x,−η)) (g(x,−η|b = 0)− g(x,−η|b)) dxdη

=

∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη,

(C.31)
where we use the change of variable (i.e., −η to η) for the second equality. With (C.30)
and (C.31), the last term in (C.28) can be therefore written as∫

b

µ4(b)

(∫
u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη

)
db

=

∫
b

µ4(−b)
(∫

u(wo(x, η)) (g(x, η|b = 0)− g(x, η|b)) dxdη
)
db.

(C.32)

Plugging in (C.32) to the original Lagrangian in (C.28) yields µo
4(−b) = µo

4(b).
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Step 4. We have:∫
u(wo(x, η))g(x, η|b)dxdη =

∫
u(wo(x, η))g(x, η| − b)dxdη, (C.33)

which implies that the agent’s indirect utility is symmetric in b around b = 0.

It follows from:∫
u(wo(x, η))g(x, η| − b)dxdη =

∫
u(wo(x, η))g(x,−η|b)dxdη =

∫
u(wo(x,−η))g(x,−η|b)dxdη

=

∫
u(wo(x, η))g(x, η|b)dxdη,

(C.34)
where we use (C.24) in the first equality, wo(x,−η) = wo(x, η) in the second, and and the
change of variable (i.e., −η to η) in the third equality.

Proof of Proposition 12: Given (ao1, a
o
2), we define Ĉov ≡ (x− ϕ(ao1, a

o
2))η.12 Since

exp

(
bη(x− ϕ(ao1, a

o
2))

(ao2)
2

)
= exp

(
b

(ao2)
2
Ĉov

)
=

∞∑
k=0

1

k!

bk

(ao2)
2k
Ĉov

k
, (C.35)

From equation (C.23), we obtain

g(x, η|b)
g(x, η|b = 0)

=

(
∞∑
k=0

1

k!

bk

(ao2)
2k
Ĉov

k

)
exp

(
− b2η2

2(ao2)
2

)
, (C.36)

and therefore, we attain∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db =

∫
µo
4(b)db−

∫
µo
4(b)

(
∞∑
k=0

1

k!

bk

(ao2)
2k
Ĉov

k

)
exp

(
− b2η2

2(ao2)
2

)
db

=

∫
µo
4(b)db−

∞∑
k=0

 1

k!

1

(ao2)
2k

(∫
µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db

)
︸ ︷︷ ︸

≡Ck(η)

 Ĉov
k
.

(C.37)
When k is odd, the coefficient Ck(η) becomes 0 for ∀η, since µo

4(b) = µo
4(−b) for all b from

12This is a realized value of sample covariance between x and η, as our framework is in single-period
setting.
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Lemma 11 implies

Ck:odd(η) =

∫
µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db =

∫
b≥0

µo
4(b)− µo

4(−b)︸ ︷︷ ︸
=0

 bk exp

(
− b2η2

2(ao2)
2

)
db = 0.

(C.38)
When k is even, the coefficient Ck(η) becomes strictly positive for ∀η, since µo

4(b) ̸= 0 for
the non-zero measure of b from Lemma 11 implies

Ck:even(η) =

∫
µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db =

∫
b≥0

(µo
4(b) + µo

4(−b))bk exp
(
− b2η2

2(ao2)
2

)
db

= 2

∫
b≥0

µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db > 0.

(C.39)
Therefore, (C.37) becomes:∫
µo
4(b)

(
1− g(x, η|b)

g(x, η|b = 0)

)
db =

∫
µo
4(b)db

− 2
∞∑

k:even

(
1

k!

1

(ao2)
2k

(∫
b≥0

µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db

))
Ĉov

k
.

(C.40)
Finally, we can plug the expression (C.40) into our optimal contact wo(x, η) in (C.8) when
wo(x, η) ≥ k and obtain

1

u′(wo(x, η))
=λ+ (µo

1ϕ
o
1 + µo

2ϕ
o
2)
x− ϕ(ao1, a

o
2)

(ao2)
2

+
µo
2

ao2

(
(x− ϕ(ao1, a

o
2))

2

(ao2)
2

− 1

)
+

∫
µo
4(b)db︸ ︷︷ ︸
>0

− 2
∞∑

k:even

1

k!

1

(ao2)
2k

(∫
b≥0

µo
4(b)b

k exp

(
− b2η2

2(ao2)
2

)
db

)
︸ ︷︷ ︸

≡Ck:even(η)>0︸ ︷︷ ︸
≡Dk:even(η)>0

Ĉov
k
.

(C.41)
Since Dk:even(η) > 0 for all even numbers k, given (x, η) a higher Ĉov results in a lower
compensation wo(x, η). Also as Dk:even(η) > 0 decreases in η2, given (x, Ĉov), a higher η2

results in a higher wo(x, η). In sum the principal punishes a sample covariance |Ĉov| but
becomes lenient when a high |Ĉov| comes from the high η realization, not from the agent’s
speculation activity (b ̸= 0).
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Note: Let ρ(b) ≡
∫
u(wo(x, η))g(x, η|ao1, ao2, b)dxdη − v(ao1) be the agent’s expected in-

direct utility as a function of b. Then from , we obtain ρ(b) = ρ(0) holds for a positive
measure of b13 and ρ(b) must be symmetric around b = 0 from (C.33) in Lemma 11.

As b → ±∞, Ĉov → ±∞ at any realization of (θ, η) since Ĉov = bη2 + ao2θη and
η2 > 0. The above optimal contract in (C.41) implies: as b → ±∞, we have w(x, η) =

w(ϕ(ao1, a
o
2) + bη + ao2θ, η) < w(ϕ(ao1, a

o
2) + ao2θ, η) uniformly on (θ, η).14 Thus we have

ρ(b) < ρ(0) when b→ ±∞.

Proof of Proposition 13: Although we do not explicitly characterize SWN in (48), we at
least see SWN is a continuous function of σ2

R. On the other hand, w∗(y) characterized in
(42) and wo(x, η) in equation (C.8) are independent of σ2

R, and so are SW ∗(a∗1, a
∗
2) and

SW o(ao1, a
o
2, a

o
3 = R). Thus, as the amount of uncertainty on the firm’s risk exposure

approaches zero (i.e., σ2
R → 0), we have

SW ∗(a∗1, a
∗
2)− SWN → 0, (C.42)

since the reason SWN < SW ∗(a∗1, a
∗
2) is that the shareholders do not observe the re-

alized R and this informational asymmetry disappears as σ2
R → 0. As SW ∗(a∗1, a

∗
2) −

SW o(ao1, a
o
2, R) > 0 remains unchanged as σ2

R → 0, when σ2
R is very small, we have

SW o(ao1, a
o
2, a

o
3 = R)− SWN < 0. (C.43)

13Due to the complementary slackness condition (C.29) about the constraint (iii) of the optimization in
equation (C.7), µo

4(b) > 0 for a positive measure of b in Lemma 11 means ρ(b) = ρ(0) for a positive measure
of b.

14Actually b → ±∞ also affects the output x in (C.41). While terms up to a second-order of the output
x enter in the optimal contract in (C.41), higher-order terms of Ĉov clearly dominates the first and second
order terms of x.
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