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Abstract

We demonstrate that macroeconomic models with nominal rigidities admit multiple

global solutions supporting alternative equilibria typically overlooked in the literature.

In these equilibria, self-fulfilling aggregate volatility pushes the economy into crises

(booms) characterized by increased (decreased) aggregate risk. This phenomenon

arises because conventional monetary policy cannot fully anchor expectations about

output growth, as these expectations depend not only on the policy rate but also on

the strength of the precautionary savings channel. We propose a new policy rule that

explicitly targets aggregate volatility alongside standard objectives, restoring equilib-

rium uniqueness and ensuring complete stabilization.
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1 Introduction

Macroeconomic models with nominal rigidities can feature multiple global solutions driven
by self-fulfilling aggregate volatility, regardless of the central bank’s responsiveness to stan-
dard business cycle targets such as output gap and inflation. We illustrate this phenomenon
within a standard New Keynesian framework.1 Common linear approximation methods
often omit higher-order terms related to aggregate volatility, inadvertently discarding these
equilibria. In contrast, our continuous-time formulation retains these moments in closed-
form equilibrium conditions while remaining tractable. These alternative solutions can
generate large and persistent output fluctuations, requiring adjustments in monetary policy
implementation to restore stability.

In the canonical New Keynesian model, aggregate volatility affects consumption through
the precautionary savings channel. When households anticipate higher future income volatil-
ity, they increase savings while reducing current spending and output, shifting the economy
toward a lower baseline level of activity. In such an environment, subsequent shocks—whether
positive or negative—lead to stronger income responses, confirming the expectation of
heightened volatility. The mechanism operates via an aggregate demand externality: each
household’s attempt to hedge against future risk reduces aggregate demand, further low-
ering output and increasing uncertainty for all. In some equilibria, the resulting feedback
loop becomes self-fulfilling, sustaining high aggregate volatility and prolonged downturns.

For instance, consider a scenario in which households in period 0 predict higher ag-
gregate volatility in next period’s consumption. They increase precautionary savings and
reduce current consumption, triggering a recession in period 0. In period 1, their initial
fear about aggregate volatility can be confirmed if, for each consumption realization in pe-
riod 1, there is a corresponding conditional volatility of period 2 consumption that justifies
it. Specifically, higher consumption in period 1 should be paired with lower conditional
volatility of period 2 consumption, which reduces precautionary savings. Thus, house-
holds’ beliefs about current volatility are shaped by past expectations and confirmed by
subsequent actions. Note then, that our equilibrium construction relies on nominal rigidi-
ties: households’ path-dependent consumption strategies determine the stochastic paths of
output in a demand-driven economy.

In our first example of such a rational expectations equilibrium, the output gap fol-
lows a local martingale—meaning that, on average, the economy remains at its current

1See, for example, Galı́ (2015).

1



level from one period to the next. We prove that, in this solution, the stabilized path (i.e.,
the flexible price economy benchmark) acts as an attractor for all sample paths, with the
conditional volatility of subsequent consumption declining as the economy approaches it.
Consequently, after the emergence of a self-fulfilling volatility shock, the economy is al-
most surely stabilized in the long run. However, along the equilibrium path—and until the
economy is nearly stabilized following the initial shock—it experiences a prolonged reces-
sion accompanied by increased aggregate volatility. We demonstrate that a probability-zero
event, in which conditional volatility ultimately diverges toward infinity, is key to support-
ing the appearance of the initial shock, ensuring that the economy follows a local martingale
even if it eventually stabilizes. We interpret this property as an endogenously generated rare
disaster event arising in a self-fulfilling manner.

Next, we present another class of global solutions. We demonstrate that these solutions
generate stable, stationary long-run distributions while exhibiting stochastic fluctuations in
both aggregate volatility and the output gap, along with suboptimal steady states charac-
terized by under- or over-production. These findings suggest that economies may sustain
equilibria with incessant fluctuations in aggregate volatility and that the welfare costs of
business cycles could have been underestimated in the previous literature.

Conventional Taylor rules fail to prevent multiple equilibria and self-fulfilling shocks
to aggregate volatility because they do not break the feedback loop linking precautionary
savings, endogenous output growth, and its volatility. We show that central banks can
address this issue by either (i) establishing explicit output growth mandates while using the
policy rate as an intermediate tool, or (ii) incorporating economic volatility directly into
their interest rate rules. The latter approach requires that central banks accurately measure
and target economic volatility. Even when measurements are imperfect, volatility targeting
accelerates economic stabilization under these alternative regimes.

Related literature Our non-linear characterization of the model shares similarities with
Caballero and Simsek (2020a,b) in terms of incorporating aggregate volatility, which af-
fects the business cycle fluctuations. However, while their framework focuses on how be-
havioral biases can generate intriguing crisis dynamics through the feedback loop between
asset markets and business cycles,2 our attention centers on the traditional policy rule un-

2Caballero and Simsek (2020b) present a model with optimists and pessimists who hold differing beliefs
about the probability of an imminent recession or normal state. During zero lower bound (ZLB) episodes, an
endogenous decline in risky asset valuation, triggered by a reduction in optimists’ wealth, leads to a demand
recession. We explore related ZLB issues in a separate paper, Dordal i Carreras and Lee (2024).
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der rational expectations and the existence of alternative equilibria arising from endogenous

higher-order moments.
While Benhabib et al. (2002) study monetary-fiscal regimes in regards to eliminating

indeterminacy issues posed by the ZLB, and Obstfeld and Rogoff (2021) show how a prob-
abilistic (and small) fiscal currency backing can rule out speculative hyperinflation in mon-
etary models, our focus is on the self-fulfilling emergence of aggregate volatility outside
the ZLB and the exploration of alternative monetary policy rules.

There is a large macro-finance literature on the self-fulfilling nature of real and finan-
cial uncertainty: e.g., Bacchetta et al. (2017), Fajgelbaum et al. (2017),3 Heathcote and
Perri (2018), Benhabib et al. (2019, 2024), and Chan (2024). Bacchetta et al. (2017) char-
acterize an endowment economy where current asset prices are affected by a sunspot that
shifts the perceived risk of future asset prices. In Heathcote and Perri (2018), wealth-poor
households who expect high unemployment cut spending through precautionary savings,
leading to a self-fulfilling rise in unemployment. Benhabib et al. (2019) develop a model
of “mutual learning” between financial markets and the real economy, leading to strategic
complementarity and self-fulfilling uncertainty. Benhabib et al. (2024) study a model of
aggregate demand externality,4 where a positive feedback loop between aggregate output
and defaults generates a self-fulfilling default cycle.5 We instead abstract from defaults
and focus on the self-fulfilling appearance of aggregate volatility in a model with nominal
rigidities and aggregate demand externalities. Chan (2024) departs from the complete in-
formation benchmark in a linearized New Keynesian framework, showing that beliefs about
aggregate demand can be self-fulfilling. In contrast, we assume complete information and
solve the standard model non-linearly, revealing that this approach can also generate self-
fulfilling aggregate volatility.6

Our equilibrium multiplicity results resemble those of Acharya and Dogra (2020) and
Khorrami and Mendo (2024). While Acharya and Dogra (2020) investigates how deter-
minacy conditions change in the presence of exogenous idiosyncratic volatilities that are
functions of aggregate output, we explore the existence of self-fulfilling aggregate volatility

3In Fajgelbaum et al. (2017), higher uncertainty about fundamentals leads to lower investment, slowing
down information flows and further discouraging investment. This results in ‘uncertainty traps’ characterized
by self-fulfilling uncertainty and low activity.

4For a modern treatment of this issue, see Farhi and Werning (2016).
5When aggregate output falls, it raises defaults as firms’ revenues and profits decline. As defaults disrupt

production, they further decrease aggregate output, ad infinitum.
6For other recent works on self-fulfilling fluctuations in the business cycle and financial markets, see e.g.,

Kaplan and Menzio (2016) and Gârleanu and Panageas (2021).
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and examine the monetary policy that restores determinacy. Khorrami and Mendo (2024)
study similar equilibrium indeterminacy issues around aggregate volatility and propose fis-
cal rules as an alternative mechanism to determine equilibrium.

Layout Section 2 presents the model and derives the key equilibrium conditions. Sec-
tion 3 provides the main results concerning the existence of multiple equilibria. Section 4
analyzes policy interventions that restore the constrained-efficient equilibrium. Section 5
extends these results to an environment with sticky prices. Section 6 concludes.

2 Standard Non-linear New Keynesian Model

This section describes the main assumptions and presents the exact non-linear optimality
conditions of a standard New Keynesian model. To build analytical intuition for our subse-
quent results on equilibrium multiplicity, we first consider a simplified version of the model
with perfectly rigid prices—an assumption relaxed later in Section 5. Appendix II contains
detailed derivations and technical aspects underlying the results presented here.

2.1 Households

Consider an economy with a representative household h, whose optimization problem is
given by

Γh
t ≡ max

{Ch
s , L

h
s }s≥t

{Bh
s }s>t

Et

∫ ∞

t

e−ρ(s−t)

logCh
s −

(
Lh
s

)1+ 1
η

1 + 1
η

 ds, (1)

subject to the budget constraint

Ḃh
t = itB

h
t − p̄Ch

t + wtL
h
t +Dt,

where Ch
t and Lh

t denote household consumption and labor supply, respectively. Here, η is
the Frisch elasticity of labor supply, ρ is the time discount rate, and Bh

t represents nominal
bond holdings, which are in zero aggregate net supply in equilibrium. The household
receives lump-sum transfers Dt, which include firms’ profits and government transfers. The
equilibrium wage is wt, and the policy rate set by the central bank is it. The household’s
value function is denoted by Γh

t .
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We simplify the analysis by assuming a perfectly rigid price level: pt = p̄, ∀t, implying
zero inflation (πt = 0 for all t). Although not crucial, this assumption allows us to illus-
trate clearly the key mechanisms of interest.7 There is no government spending, and thus
aggregate consumption fully determines production.

We obtain the intertemporal optimality condition of (1) as

−itdt = Et

(
dξN,h

t

ξN,h
t

)
, where ξN,h

t = e−ρt1

p̄

1

Ch
t

, (2)

with dξN,h
t

ξN,h
t

representing the instantaneous (nominal) stochastic discount factor, whose ex-
pected value equals the (minus) nominal risk-free rate, −itdt.8 Due to the rigid price as-
sumption, the real and nominal risk-free rates are equal, rt = it, where rt represents the
real interest rate.

We can rewrite equation (2) as

Et

(
dCh

t

Ch
t

)
= (it − ρ)dt+ Vart

(
dCh

t

Ch
t

)
︸ ︷︷ ︸

Endogenous
precautionary savings

, (3)

where the last term, Vart(
dCh

t

Ch
t
), captures the endogenous volatility of consumption growth.

Typically, this term is second-order and omitted in log-linearized models. In contrast, our
non-linear characterization in equation (3) explicitly accounts for consumption volatility,
allowing it to affect the drift. This additional term reflects the standard precautionary

savings channel: higher business cycle volatility increases households’ demand for riskless
savings, lowering current consumption and raising expected consumption growth.

Finally, the household must also satisfy the intratemporal optimality condition:

1

ptCh
t

=

(
Lh
t

) 1
η

wt

, (4)

7Section 5 relaxes the assumption of rigid prices by incorporating price stickiness à la Rotemberg (1982),
showing that the multiplicity of equilibria associated with aggregate volatility persists even in a model with
inflation. The perfectly rigid price assumption, adopted without loss of generality here, provides intuition
by simplifying the New Keynesian Phillips curve (πt = 0 for all t) and facilitating analytical derivations of
global equilibrium solutions.

8Appendix II provides the Hamilton-Jacobi-Bellman (HJB) equation-based derivation for equations (2)
and (4), and Online Appendix B derives an analytic form of the equilibrium value function Γh

t of households.
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and the transversality condition imposed on the value function Γh
t :

lim
t→∞

E0

[
e−ρtΓh

t

]
= 0. (5)

2.2 Firms

We assume the usual Dixit-Stiglitz monopolistic competition among firms, where the de-
mand each firm i ∈ [0, 1] faces is given by

Dt(p
i
t, pt) =

(
pit
pt

)−ε

Yt, with pt =

(∫ 1

0

(
pit
)1−ε

di

) 1
1−ε

,

where pit is an individual firm i’s price, pt is the price aggregator, and Yt is the aggregate
output. In the assumed rigid price equilibrium, firms never change their prices so pit = pt =

p̄ and Dt(p
i
t, pt) = Dt(p̄, p̄) = Yt for all i ∈ [0, 1] and ∀t, i.e., each firm i produces to meet

the aggregate demand Yt.
An individual firm i produces with the linear production function: Y i

t = AtL
i
t, taking

the aggregate price pt, wage wt, and the aggregate output Yt as given, where Li
t is firm i’s

labor hiring, and At is the economy’s total factor productivity assumed to be exogenous
and to follow a geometric Brownian motion with drift:

dAt

At

= gdt+ σdZt, (6)

where g is its expected growth rate and σ is what we call ‘fundamental’ volatility, assumed
to be constant over time.9 It follows that firms’ profits to be rebated can be written as
Dt = p̄Yt−wtLt, with Lt =

∫
Li
tdi. We assume that all the aggregate variables are adapted

to the filtration (Ft)t∈R generated by the process in (6) in a given filtered probability space
(Ω,F , (Ft)t∈R,P).

Definition 1 (Equilibrium) An equilibrium is defined by the following sets of variables:

household-specific quantities {Bh
t , C

h
t , L

h
t }h, firm-specific quantities {Y i

t , L
i
t}i, aggregate

quantities {Bt, Ct, Yt, Lt}, and prices {wt, p̄}. These variables satisfy the household opti-

mality conditions (i.e., equations (2) and (4) together with the transversality condition (5)),

9This assumption is made for simplicity and our analysis can be extended to include cases where σt is
time-varying and adapted to the Brownian motion Zt.
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the aggregation conditions Bh
t = Bt = 0 for all h, Ch

t = Ct = Yt for all h, Lh
t = Lt for all

h, Y i
t = Yt and Li

t = Lt for all i,10 and a monetary policy rule introduced in Section 2.3.

Henceforth, we adopt aggregate notation by omitting the superscripts h and i, whenever
the distinction between household- or firm-specific and aggregate variables is not essential.

Flexible Price Equilibrium We characterize the counterfactual flexible price equilibrium
as the equilibrium in which firms freely set prices. The outcomes under this equilibrium are
termed ‘natural’ because central banks, facing price rigidity, target these outcomes using
monetary policy instruments. As proven in Appendix II.2.2, the natural output Y n

t follows:

dY n
t

Y n
t

=
(

rn︸︷︷︸
Natural rate

−ρ+ σ2
)
dt+ σ︸︷︷︸

Natural volatility

dZt. (7)

where rn = ρ + g − σ2 denotes the natural interest rate. From the monetary authority’s
perspective, the process described in (7) is exogenous and thus beyond the influence of
monetary policy. Notice that natural output Y n

t follows a geometric Brownian motion with
volatility σ, matching the volatility of the At process in (6).

Rigid Price Equilibrium and the ‘Gap’ Economy Returning to the rigid-price econ-
omy, we introduce σs

t as the excess volatility of the output growth rate {Yt} relative to the
benchmark flexible-price output in (7). By definition, we have:

Vart

(
dYt

Yt

)
= (σ + σs

t )
2dt, (8)

where σs
t is an endogenous volatility term determined in equilibrium. Substituting equa-

tion (8) into the nonlinear Euler equation (3), and using Ch
t = Ct = Yt for all h, yields:

dYt

Yt

=
(
it − ρ+ (σ + σs

t )
2
)
dt+ (σ + σs

t )dZt. (9)

10Due to rigid prices, firm optimization problems can be abstracted away.
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Using the standard definition of the output gap Ŷt = ln
(

Yt

Y n
t

)
, we obtain:11

dŶt =
(
it −

(
rn

New terms︷ ︸︸ ︷
−1

2
(σ + σs

t )
2 +

1

2
σ2
))

dt+ σs
tdZt. (10)

Notice that equation equation (10) includes a feedback effect that is absent in log-linearized
models.12 Given the policy rate it, a rise in endogenous volatility σs

t increases the drift
term and reduces the output gap Ŷt. The intuition follows directly from the precautionary
saving mechanism in equation (3), as higher volatility induces households to save more
and consume less, triggering a recession. This feedback loop will become essential for
understanding the multiplicity of equilibria discussed in Section 3.

Finally, define the risk-adjusted natural rate as:

rTt = rn − 1

2
(σ + σs

t )
2 +

1

2
σ2. (11)

The rate rTt itself is endogenous and negatively related to the aggregate excess volatility
σs
t . This risk-adjusted natural rate represents the economy’s effective “reference” risk-free

rate, at which setting it = rTt completely eliminates the drift of the output gap.

2.3 Taylor Rule

We assume that the central bank sets the risk-free interest rate it according to the following
Taylor rule:

it = rn + ϕyŶt, with ϕy > 0. (12)

Condition ϕy > 0, known as the “Taylor principle”, ensures a unique equilibrium in the log-
linearized version of the model. Substituting equation (12) into equation (10), we derive
the following dynamics for Ŷt:

dŶt =

(
ϕyŶt−

σ2

2
+

(σ + σs
t )

2

2

)
dt+ σs

tdZt, (13)

11In equation (9), we assume output Yt is adapted to the filtration (Ft)t∈R generated by the technology
process in (6). Thus, σs

t in (9) can be interpreted as fundamental excess volatility.
12For comparison, see the linearized IS equation in (14), where endogenous excess volatility σs

t does not
affect the drift.
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2.4 Log-Linear Approximation

We first analyze the log-linearized version of the model as a benchmark case. Omitting the
volatility terms from the drift of equation (10), we obtain a linear IS equation:

dŶt = (it − rn) dt+ σs
tdZt. (14)

Proposition 1 (Benchmark Equilibrium) The log-linearized model, defined by the Tay-

lor rule (12), the linear IS equation (14), and the transversality condition (5), admits a

‘unique’ rational expectations equilibrium characterized by perfect stabilization of the out-

put gap Ŷt = 0 and zero excess volatility σs
t = 0 for all t.

Proof. Substituting (12) into (14), we obtain the standard log-linear approximation of the
output gap dynamics:

dŶt =
(
ϕyŶt

)
dt+ σs

tdZt. (15)

With the local dynamics around the flexible-price equilibrium given by (15), Blanchard and
Kahn (1980) establish the existence of a unique linear rational expectations equilibrium un-
der the Taylor principle ϕy > 0 in (12).13 The resulting equilibrium with Ŷt = σs

t = 0 for
all t corresponds to a perfectly stabilized economy.

The benchmark equilibrium described in Proposition 1, characterized by perfect sta-
bilization (σs

t = Ŷt = 0 for all t), remains an equilibrium of the exact non-linear model
defined by the IS equation (10) and the Taylor rule (12). However, equilibrium uniqueness
is no longer guaranteed in a non-linear framework. The next section analyzes how multiple
equilibria emerge when moving beyond the log-linear approximation.

3 Multiple Equilibria

This section illustrates alternative global solutions of the model driven by aggregate volatil-
ity and studies the properties of the resulting business cycle dynamics. We proceed in two

13See Buiter (1984) for conditions and results from Blanchard and Kahn (1980) adapted to continuous-
time settings. In this log-linearized scenario, the transversality condition (5) becomes

lim
t→∞

E0

∣∣∣Ŷt

∣∣∣ <∞, (16)

as originally proposed in Blanchard and Kahn (1980).
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steps. First, in Section 3.1, we construct a non-stationary equilibrium that allows aggregate
volatility to temporarily deviate from the perfectly stabilized path (i.e., benchmark equi-
librium) and graphically explore the underlying economic mechanisms. Next, in Section
3.2, we introduce a broader class of stationary equilibria with permanent deviations from
the benchmark equilibrium. Appendix II provides a detailed characterization and formal
proofs of the results presented here.

3.1 Martingale equilibrium

We begin by presenting a rational expectations equilibrium that supports the emergence of
an initial excess volatility σs

0 > 0 by explicitly constructing an equilibrium path in which Ŷt

follows a local martingale. Our martingale equilibrium construction (i) supports an initial
jump in excess volatility, σs

0 > 0, which arises in a self-fulfilling manner;14 (ii) satisfies the
process defined by the dynamic IS equation (13); and (iii) does not diverge in expectations
in the long run, consistent with the transversality condition (5).15 We also demonstrate that
this specific equilibrium is non-stationary by design. It is explicitly constructed through the
following steps, with derivation details provided in Appendix I.

Step 1 Assume that Ŷt is a local martingale consistent with the dynamics in (13). Therefore,
the drift of the {Ŷt} process in (13) must be zero, resulting in:

Ŷt = −
(σ + σs

t )
2

2ϕy

+
σ2

2ϕy

. (17)

Step 2 Second, we show the existence of a stochastic process for {σs
t} starting from σs

0 that
supports the equilibrium expression for the output gap in (17). Using (13) and (17),

14The emergence of the initial excess volatility σs
0 is not part of the economy’s filtration (Ft)t∈R. This

can be viewed as a “sunspot” shock to the excess volatility σs
t , with aggregate variables responding to its

appearance.
15The transversality condition is proved in Online Appendix B.1.
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we obtain an expression for that process as follows:16

dσs
t = −(ϕy)

2 (σs
t )

2

2(σ + σs
t )

3
dt− ϕy

σs
t

σ + σs
t

dZt. (18)

Equations (17) and (18) describe the dynamics of our constructed rational expectations
equilibrium that supports initial excess volatility σs

0 > 0. Online Appendix D shows that
the stochastic differential equation (18) admits a strong solution, as required in the filtered
probability space assumed in the paper.

Proposition 2 (Martingale Equilibrium) The model admits a rational expectations equi-

librium which supports initial excess volatility σs
0 > 0 and is represented by the Ŷt dynamics

in equation (17), and the σs
t process in equation (18). We refer to this as the “Martingale”

equilibrium, which has the following properties:

Property 1 Excess volatility σs
t converges to zero almost surely, i.e., σs

t
a.s−−−→ σs

∞ = 0.

Property 2 Output gap Ŷt converges to zero almost surely, i.e., Ŷt
a.s−−−→ Ŷ∞ = 0.

Property 3 Non-uniform integrability: aggregate variance (σ + σs
t )

2 satisfies

E0

(
sup
t≥0

(σ + σs
t )

2

)
=∞, and lim

K→∞
sup
t≥0

(
E0 (σ + σs

t )
2
1{(σ+σs

t )
2≥K}

)
> 0.

Proof. See Appendix I.2.
The results that σs

t
a.s−−−→ σs

∞ = 0 and Ŷt
a.s−−−→ Ŷ∞ = 0 imply that equilibrium paths

originating from an initial excess volatility σs
0 > 0 are almost surely stabilized in the long

run. Nevertheless, this almost-sure stabilization remains compatible with the self-fulfilling
emergence of σs

0 > 0. Specifically, by Property 3, we have E0

(
supt≥0 (σ + σs

t )
2) = ∞,

indicating that an initial self-fulfilling shock σs
0 is sustained by a vanishing probability of

infinitely large equilibrium aggregate variance occurring along some future paths.17

16When σ = 0, ∀t, equation (18) becomes the following Bessel process:

dσs
t = − (ϕy)

2

2σs
t

dt− ϕydZt,

which stops when σs
t reaches zero. For general properties of Bessel processes, see Lawler (2019).

17Note that, since every nonnegative local martingale is a supermartingale, σs
t is a supermartingale.
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Intuition Here we explain in detail the intuition for (i) how an initial excess volatility
σs
0 can appear, and (ii) the three Properties in Proposition 2. To this end, we simplify the

economic environment and make the following assumptions:

A.1 A shock dZt in each period takes one of two possible values: {+1,−1}, with equal
probability.

A.2 Martingale equilibrium: output gap Ŷt equals the conditional expected value of the
next-period output gap, Ŷt+1. Thus, if Ŷt+1 takes either Ŷ (1)

t+1 or Ŷ (2)
t+1 when dZt+1 = 1

or −1, respectively, then

Ŷt =
1

2

(
Ŷ

(1)
t+1 + Ŷ

(2)
t+1

)
.

A.3 Aggregate demand (i.e., output gap) Ŷt falls as the conditional variance of the next
period’s Ŷt+1 rises, due to precautionary savings. Both Ŷt and σs

t are zero on the
stabilized path (i.e., flexible-price economy).

Since there are two possible realizations of the shock dZt in each period, we can represent
this with a tree diagram, as depicted in Figure 1. The thick vertical line represents the sta-

Ŷ0

Ŷ
(2)
1

Ŷ
(4)
2

Ŷ
(8)
3

-

Ŷ
(7)
3

+

-

Ŷ
(3)
2

Ŷ
(6)
3

-

Ŷ
(5)
3

+

+

-

Ŷ
(1)
1

Ŷ
(2)
2

Ŷ
(4)
3

-

Ŷ
(3)
3

+

-

Ŷ
(1)
2

Ŷ
(2)
3

-

Ŷ
(1)
3

+

+

+

σ
s,(1)
1

σ
s,(2)
2 σ

s,(1)
2

σ
s,(4)
3 σ

s,(3)
3 σ

s,(2)
3

σ
s,(1)
3

Stabilized

Ŷt < 0←

Average path

BP

Agents0

BP

Agents1

BP

Agents2

BP

Agents3

Sunspot

AttractionDivergence

Figure 1: A rise in σs
0 as a rational expectations equilibrium.

bilized path, with areas to its left and right representing recessions and booms, respectively.
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The key to build a rational expectations equilibrium that supports a self-fulfilling jump in
excess volatility σs

0 > 0 is to construct a path-dependent consumption strategy for agents
with time-varying conditional volatilities.

First, let us imagine that the the current period agents (Agents0) suddenly believe that
the future agents will choose a path-dependent consumption demand18 so that the next-
period’s Ŷ1 becomes Ŷ (1)

1 after dZ1 = +1 is realized and Ŷ
(2)
1 if dZ1 = −1 is realized, with

Ŷ
(1)
1 > Ŷ

(2)
1 . Then the current output Ŷ0 becomes Ŷ0 =

1
2

(
Ŷ

(1)
1 + Ŷ

(2)
1

)
with Ŷ0 below the

stabilized path, as Agents0 believe that there exists dispersion in next-period outputs, which
is given by σ

s,(1)
1 =

Ŷ
(1)
1 −Ŷ

(2)
1

2
, and which leads to lower consumption through precautionary

savings at t = 0. Now imagine dZ1 = −1 is realized. For Agents0’s belief in Ŷ1 = Ŷ
(2)
1

to be consistent, Agents1 must believe that future agents will choose their consumption
in a way that, at time 2, Ŷ2 becomes Ŷ (3)

2 with dZ2 = +1 and Ŷ
(4)
2 with dZ2 = −1, with

conditional volatility σ
s,(2)
2 =

Ŷ
(3)
2 −Ŷ

(4)
2

2
higher than σ

s,(1)
1 , since Ŷ (2)

1 is lower than the initial
output, Ŷ0.

After dZ2 is realized, Agents1’s belief about Ŷ2 can be made consistent through future
agents {Agentsn≥2}’s coordination in a forward looking fashion. Observe that all the nodes
in Figure 1 satisfy assumptions A.2 and A.3, with distance between adjacent nodes getting
progressively narrower (wider) as output gap gets closer (farther) to the stabilization. This
results in divergent and attraction paths offsetting each other, making the output gap {Ŷt}
follow a local martingale process in expectation. In sum, Agents0’s initial doubt about
volatility in the next-period outcome is validated through coordination among intertemporal
agents (i.e., the representative household) at each node.19

Note that (i) we obtain an equilibrium with a stochastic aggregate volatility: i.e., σs
t is

dependent on the path of shocks, as output gap {Ŷt} is stochastic and negatively depends on
the conditional volatility of its next-period level. Equation (18) specifies the exact stochas-
tic process of {σs

t} starting from σs
0 > 0; (ii) Since excess volatility σs

t decreases as output
gap Ŷt approaches the stabilized path, this path becomes an attraction point for the set of
alternative paths in its neighborhood, justifying the result of Proposition 2 that σs

t almost
surely converges to zero over time. Nonetheless, as excess volatility σs

t rises whenever
output Ŷt deviates farther from the stabilized level, this also aligns with the result of Propo-
sition 2 that maximal σs

t diverges, E0(sup(σ+σs
t )

2) =∞. However, this divergent behavior

18Note that agents’ demand determines output in this environment with rigid prices.
19Our equilibrium construction is feasible because all future agents have common knowledge of their

consumption strategies and there is frictionless communication across intertemporal periods (i.e., perfect
recall). For a discussion of how limited recall eliminates indeterminacy, see Angeletos and Lian (2023).
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only happens with vanishingly small probability as σs
t

a.s−−−→ 0.
The conclusion in terms of monetary policy is that a conventional Taylor rule almost

surely stabilizes the disruption caused by an initial excess volatility shock σs
0 > 0 in the

long-run, but does not prevent the economy from entering a crisis phase with a positive
{σs

t} path starting from σs
0.

(a) With Taylor coefficient ϕy = 0.11 (b) With Taylor coefficient ϕy = 0.33

Figure 2: Martingale equilibrium with ϕy = 0.11 (Figure 2a), and ϕy = 0.33 (Figure 2b).

Simulation Figure 2 illustrates the dynamic paths of {σs
t} under the martingale equilib-

rium with σs
0 = 0.18 and examines the impact of changes in the policy responsiveness to

the output gap ϕy. Panel 2a employs the default calibration ϕy = 0.11, whereas Panel 2b
assumes a more responsive stance with ϕy = 0.33. With σs

0 > 0, a higher ϕy acceler-
ates convergence toward perfect stabilization, albeit with an increased likelihood of a more
severe crisis path over a given period. In other words, for a fixed initial excess volatil-
ity to persist under a more responsive monetary policy, higher endogenous volatility (i.e.,
elevated σs

t ) and deeper recessions (i.e., lower Ŷt) must occur in the future, albeit with
vanishing probability.

Escape Clause If the central bank and/or the government credibly commit to preventing
Ŷt from falling below a predetermined threshold through interventions,20 then the equilib-

20For example, governments might commit to incurring significant fiscal deficits during severe recessions.
This approach has similar implications for restoring determinate equilibrium as discussed in Benhabib et al.
(2002), who examines the role of monetary-fiscal regimes in eliminating the indeterminacy posed by the ZLB.
Similarly, Obstfeld and Rogoff (2021) demonstrate how a probabilistic fiscal currency backing can preclude
speculative hyperinflation in monetary models.
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ria generated by the excess volatility σs
0 (and supported by the paths in Figure 1) cannot be

sustained as a rational expectations equilibrium. This clause shows that a credible commit-
ment to intervene when the economy is at risk of a severe recession precludes a crisis phase
initiated by a positive volatility shock σs

0 > 0.

Negative Volatility Similarly, we can construct a rational expectations equilibrium with
an initial negative excess volatility shock, σs

0 < 0. This equilibrium is characterized by a
boom with strong aggregate demand and low volatility.21

In summary, our model’s non-linear characterization yields two key predictions: (i) the
emergence of boom and crisis phases driven by self-fulfilling volatility shocks; and (ii) the
joint evolution of the first (output level) and second (conditional volatility) moments of the
model during crises and booms.

3.2 Ornstein-Uhlenbeck equilibria

This section introduces a broader class of equilibria with several noteworthy properties: (i)
initial excess volatility σs

0 adapted to the economy’s filtration (i.e., equilibria that do not
require initial sunspot volatility shocks in σs

0), (ii) non-degenerate and stationary stochastic
processes for the model variables in the long run,22 and (iii) the potential for alternative
deterministic steady states characterized by under- or overproduction.

For that purpose, we conjecture an alternative class of equilibria where the output gap
{Ŷt} dynamics follow a process of the form

dŶt = θ ·
[
µ− Ŷt

]
dt+ σs

t dZt, (19)

where θ and µ are constant parameters. Note that (19) resembles an Ornstein-Uhlenbeck
process, with one major difference: the process features an endogenous volatility σs

t , which
is determined in equilibrium, whereas typical Ornstein-Uhlenbeck processes have constant
volatility associated with the diffusion component. When θ = 0, the process (19) becomes
the martingale equilibrium studied in Section 3.1. Note that with θ > 0 and µ < σ2

2ϕy
, the

Ŷt process features a mean reversion to µ. To close the model, we equate the drift terms in

21As seen in equation (8), the process for actual output Yt has σ+σs
t as its conditional volatility. Therefore,

a self-fulfilling negative excess volatility shock σs
0 < 0 reduces the volatility of the growth rate of Yt from σ

to σ + σs
t .

22In our martingale equilibrium, once σs
t reaches zero, it remains at zero thereafter, resulting in a non-

stationary solution to the model.
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equation (13) and equation (19) and obtain23

Ŷt =
θµ

θ + ϕy

− 1

2(θ + ϕy)

[
(σ + σs

t )
2 − σ2

]
, (20)

with
d(σ + σs

t )
2 = −θ

[
2µϕy + (σ + σs

t )
2 − σ2

]
dt− 2(θ + ϕy)σ

s
t dZt. (21)

Proposition 3 (Ornstein-Uhlenbeck Equilibrium) The model admits a rational expecta-

tions equilibrium characterized by the Ŷt dynamics in equation (20) and the σs
t process in

equation (21). We refer to this as the “Ornstein-Uhlenbeck” equilibrium, with the following

properties:

Property 1 For θ > 0, µ < σ2

2ϕy
and µ ̸= 0, the process of σs

t defined in (21) is stable and

admits a unique stationary distribution. In the limit σ → 0, if (θ+ϕy) ̸= 0 and

µϕy < 0, this stationary distribution coincides with the generalized gamma

distribution GGD(a, d, p), given by24

a =

√
2(θ + ϕy)

2

θ
, d = − 2θµϕy

(θ + ϕy)2
, and p = 2, (22)

where a is the scale parameter, d is the power-law shape parameter, and p is

the exponential shape parameter.

Property 2 For θ > 0 and µ = 0, the process of σs
t defined in (21) is non-stationary and its

distribution degenerates to the perfectly stabilized equilibrium with σs
t = 0 as

t→∞.

Property 3 The long-run expectations of the output gap Ŷt and excess variance (σ+σs
t )

2−
σ2 are given by

lim
t→∞

E0

[
Ŷt

]
= µ, and lim

t→∞
E0

[
(σ + σs

t )
2 − σ2

]
= −2µϕy

Proof. See Online Appendices B and C.

23Online Appendix B verifies the transversality condition (5) under the Ornstein-Uhlenbeck equilibrium
defined by (20) and (21). Online Appendix D confirms that the stochastic differential equation (21) admits a
strong solution, as required in a given filtered probability space.

24See, e.g., Boukai (2022) for an application of the generalized gamma distribution as a benchmark risk-
neutral distribution in stochastic volatility models.
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Property 3 of Proposition 3 implies that solutions with µ ̸= 0 exhibit a long-run ex-
pected excess variance given by−2µϕy ̸= 0. Together with Property 1, this result indicates
that the volatility process {σs

t} is never permanently fixed at any particular value, includ-
ing zero. For example, even if the economy initially has σs

0 = 0, the aggregate variance
(σ + σs

t )
2 immediately starts drifting toward σ2 − 2µϕy, since the drift term in (21) is pos-

itive when excess volatility is zero. Consequently, the model admits alternative equilibria
characterized by an endogenous, stationary stochastic process {σs

t} arising from arbitrary
initial conditions.

In contrast, when µ = 0, the equilibrium does not support a stationary stochastic pro-
cess in the long-run but still allows for temporary deviations from the perfectly stabilized
equilibrium, analogous to the Martingale equilibria discussed in Section 3.1. Figure 3 il-
lustrates representative sample paths of the volatility process {σs

t} under both calibrations.

(a) µ < 0 (b) µ = 0

Figure 3: Simulated paths for the excess volatility process {σs
t} under the Ornstein-

Uhlenbeck solution with θ > 0 and various µ calibrations. In Panel 3a, the red line denotes
the long-run expected excess volatility, σs,∗.

Property 3 also implies that the Ornstein-Uhlenbeck equilibrium features a determinis-
tic steady state for the output gap Ŷt, equal to the parameter µ. Therefore, equilibria with
θ > 0 and µ < 0 (0 < µ < σ2

2ϕy
) exhibit steady-state underproduction (overproduction),

where output is |100 × µ| percent below (above) its natural level. The intuition for this
result is that a process for {σs

t} with long-run expected excess variance −2µϕy > 0 (< 0)
induces a stronger (weaker) precautionary response in household consumption to aggregate
volatility relative to the flexible-price benchmark.
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Implications This additional class of alternative solutions highlights several implications
for the welfare analysis in New Keynesian models. First, by commonly evaluating the econ-
omy around the log-linear solution presented in (15), traditional welfare accounting likely
overlooks the additional losses stemming from the existence of a non-zero excess volatility
process, σs

t . Second, and potentially more important, traditional welfare evaluations omit
the capacity of monetary policy interventions to generate first-order gains by moving the
economy away from steady states featuring suboptimal production levels.

The next section discusses the implementation details of a monetary policy capable of
restoring the economy to its constrained efficient equilibrium.

4 A New Monetary Policy

The flexible price equilibrium characterized by equation (7) and Appendix II.2.2 is a constrained-
efficient allocation,25 see, e.g., Woodford (2003) and Galı́ (2015). Therefore, in light of the
previous analysis in Section 2.3, the monetary authority aims to achieve the flexible price
allocation as the unique equilibrium path, if possible. In this section, we provide a new
monetary policy that allows the central bank to accomplish this goal.

4.1 Modified Taylor rule

Instead of the Taylor rule in (12), assume the central bank follows:

it = rn + ϕyŶt −
1

2

(
(σ + σs

t )
2 − σ2

)︸ ︷︷ ︸
Aggregate volatility targeting

, with ϕy > 0. (23)

This rule targets both the output gap Ŷt and aggregate excess volatility with a coefficient
of 1

2
. Substituting (23) into the IS equation (10) eliminates the volatility feedback terms

from the drift. The dynamics then simplify to equation (15), ensuring that the benchmark
equilibrium of Proposition 1 (i.e., perfect stabilization, Ŷt = σs

t = 0 for all t) is the unique

rational expectations equilibrium whenever the Taylor principle ϕy > 0 holds.

25With a proper production subsidy that eliminates the real distortion generated by monopolistic compe-
tition, the flexible price equilibrium allocation becomes the first best. For more on this issue, see Woodford
(2003).
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Interpretation The additional volatility target in the policy rule (23) is necessary to offset
the feedback loop between the endogenous volatility of the output gap and its drift. To
better understand this, we can rewrite equation (23) as it = rTt +ϕyŶt, where rTt is the risk-
adjusted natural rate defined in (11). This formulation highlights that monetary policy in
a risky environment should target the risk-adjusted, rather than the simple natural, interest
rate. Note that rTt is time-varying in this setting, as it depends on the endogenous excess
volatility σs

t .
Following the policy rule in (23) eliminates any excess volatility, ensuring σs

t = 0 for
all t. Thus, along the equilibrium path, a central bank adhering to (23) behaves in a manner
observationally equivalent to one following the traditional rule (12). The key distinction is
that (23) incorporates an off-equilibrium threat to target excess volatility should it emerge.
A direct implication is that, in practice, differences in central banks’ perceived credibility
in enforcing such threats may explain their varying degrees of success in economic stabi-
lization, even under seemingly similar monetary policy regimes.

Practicality A potential issue with the policy rule (23) is its lack of robustness in practical
implementations. Specifically, the coefficient attached to the volatility term, representing
the strength of the policymakers’ response to deviations in aggregate volatility, must be
precisely 1

2
. If the central bank’s responsiveness to the volatility term is either too strong or

too weak, due to policy mistakes or measurement errors,26 the rule (23) cannot effectively
counteract the precautionary savings feedback loop present in the non-linear IS equation
(10).27

To examine the consequences of deviating from the 1
2

volatility target, we consider
the following alternative rule within the context of the previously discussed martingale

26In practice, the components of output volatility {σ, σs
t } and the risk-adjusted natural rate rTt may not be

directly observable or may be observed with errors. For instance, assume a multiplicative measurement error
for the volatility gap ≡ (σ+σs

t )
2−σ2, such that volatility gapobs

t = εt ·volatility gapt, where volatility gapobs
t

represents the measured volatility gap. In these cases, even with the precise targeting strength of 1
2 on the

observed volatility gap, i.e., volatility gapobs
t , central banks effectively deviate from the 1

2 response strength
on the true volatility gap. Conversely, additive measurement errors result in standard monetary policy shocks.

27To clarify the 1
2 targeting requirement, Online Appendix E extends the model to constant relative risk

aversion (CRRA) utility, deriving a risk-adjusted natural rate:

rTt = rn − γ2

2

[
(σ + σs

t )
2 − σ2

]
,

where γ is the relative risk aversion (RRA) coefficient. The optimal volatility targeting is then γ2

2 , meaning
the central bank must fully offset households’ precautionary response to volatility shocks, which scales with
their RRA. Under logarithmic utility, RRA equals one.
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equilibrium of Section 3.1:

it = rn + ϕyŶt − ϕvol
(
(σ + σs

t )
2 − σ2

)
, (24)

where ϕvol is a constant term, which differs from 1
2
.28 With the policy rule (24), we obtain

dŶt =

[
ϕyŶt +

(
1

2
− ϕvol

)(
(σ + σs

t )
2 − σ2

)]
dt+ σs

tdZt,

as the new {Ŷt} dynamics. When ϕvol ̸= 1
2
, the martingale equilibrium with self-fulfilling

volatility σs
t reappears and is characterized by29

Ŷt = −
(σ + σs

t )
2

2ϕtotal
+

σ2

2ϕtotal
, with ϕtotal ≡

ϕy

1− 2ϕvol
, (25)

where the {σs
t}’s process after an initial volatility shock σs

0 appears is given by

dσs
t = −

ϕ2
total (σ

s
t )

2

2 (σ + σs
t )

3dt− ϕtotal
σs
t

σ + σs
t

dZt. (26)

Note that ϕvol → 1
2
, given ϕy > 0, is equivalent to ϕy →∞with ϕvol = 0, both of which

lead to ϕtotal → ∞ and ensure determinacy. Therefore, there exists an alternative—albeit
impractical—stabilization rule that involves an infinitely aggressive off-equilibrium threat
to output gap deviations.30 We also find that any combination of parameters (ϕy, ϕvol) that
drives the value of ϕtotal towards infinity results in faster convergence to perfect stabiliza-
tion, on average. However, this comes at the cost of an increased likelihood of a more
severe crisis path within a given time period, as discussed previously in relation to Figure
2.

Comparison Woodford (2001, 2003) study the Taylor rule in a log-linearized New Key-

28The policy rule in (24) with ϕvol ̸= 1
2 similarly permits the Ornstein-Uhlenbeck equilibrium to exist.

Online Appendix A details the equilibrium conditions for this case.
29Equations (25) and (26) are easily derived similarly to Proposition 2.
30See Cochrane (2007) for a comprehensive discussion on this topic in traditional New Keynesian frame-

works.
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nesian model, summarized by31,32

Et(dŶt+1) = (imt − rn) dt,

it = i∗t + ϕyŶt, with ϕy > 0,
(27)

where imt is the interest rate governing the household’s intertemporal consumption smooth-
ing, and i∗t is the central bank’s target for the policy rate, it. They uncover that:

B.1 When imt = it, then i∗t = rn guarantees that Ŷt = 0 for all t, as a unique equilibrium.
Even if i∗t ̸= rn, there is still a unique equilibrium, but Ŷt ̸= 0 on the equilibrium
path.

B.2 When imt ̸= it, setting i∗t = rn + (it − imt ) achieves Ŷt = 0 for all t, as a unique
equilibrium. If it − imt is an exogenous process, then even when i∗t ̸= rn + (it − imt ),
there is still a unique equilibrium, but Ŷt ̸= 0 on the equilibrium path.

What we do corresponds to neither case: in our model, it − imt depends on the endogenous
volatility of the {Ŷt} process, with rTt ≡ rn + (it − imt ) in equation (11). We show that

C.1 If i∗t = rTt , we achieve Ŷt = 0 for all t, as a unique equilibrium. In this case, the
policy rule corresponds to the new rule proposed in (23).

C.2 In contrast to Woodford (2001, 2003), where it − imt is exogenous, if i∗t ̸= rTt , we
cannot guarantee a unique equilibrium, and the martingale equilibrium of Section
3.1 with a self-fulfilling initial volatility σs

0 or the Ornstein-Uhlenbeck equilibrium
of Section 3.2 may potentially appear.

C.3 it− imt depends only on the volatility gap, i.e., (σ+ σs
t )

2− σ2. Thus, in a knife-edge
case where i∗t − (it− imt ) does not contain any multiple of the volatility gap (or more
generally, is not a function of the excess volatility σs

t ), even if i∗t − (it − imt ) ̸= rn,
we have a unique equilibrium, but Ŷt ̸= 0 along the equilibrium path.

31For comparison, inflation is abstracted away in equation (27).
32We thank an anonymous referee for suggesting this comparison.
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4.2 Policy reformulation and growth mandates

We can rewrite the policy rule in (23) as

Et (d log Yt)

dt︸ ︷︷ ︸
Growth rate

=
Et (d log Y

n
t )

dt︸ ︷︷ ︸
Benchmark
growth rate

+ ϕyŶt︸︷︷︸
Business cycle
targeting

=

(
g − 1

2
σ2

)
+ ϕyŶt.

Thus, an output growth rule centered around the natural growth rate can restore model
determinacy and stabilize the economy. From a practical perspective, such a policy refor-
mulation has several advantages, as it does not require the monetary authority to measure
or target deviations in the aggregate volatility with precise strength. Forecast errors in the
output growth rate or its natural counterpart are actually more forgiving in this implemen-
tation, resulting in traditional monetary policy shocks instead of multiple equilibria.

To understand the intuition behind this result, recall that the source of equilibrium mul-
tiplicity lies in the feedback loop between the endogenous components of the economy’s
(expected) growth rate and its conditional volatility, generated by the intertemporal con-
sumption decisions of agents and captured by the drift and volatility components of equa-
tion (9). To break this loop, the monetary authority must establish a (direct or indirect) tight
grip over at least one of these components. Examining the definition of the expected growth
rate and its first-order linear approximation, i.e., Et(d log Yt)

dt
= it− ρ+ 1

2
(σ+ σs

t )
2 ≈ it− ρ,

we observe that a traditional Taylor rule in a log-linearized framework can exert the same
degree of control over the endogenous components of economic growth as a direct growth
mandate. However, this statement is no longer true when considering the global solution
of the model, which properly accounts for economic risk, (σ + σs

t )
2.

Therefore, to avoid sunspot shocks and equilibrium multiplicity, the monetary author-
ity faces the dilemma of either: (a) establishing clear economic growth mandates,33 using
the policy rate it as an intermediate tool toward attaining these objectives, or (b) precisely
targeting deviations in the aggregate volatility of the economy when following an interest
rate rule.

Thus far, we have abstracted from inflation dynamics by assuming perfectly rigid prices,
highlighting that the multiplicity of global solutions originates from the dynamic IS equa-
tion—driven by households’ intertemporal decisions—and the central bank’s policy rule.

33That is, in addition to any inflation mandates dictated by traditional considerations.
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The next section demonstrates that these results extend to standard sticky-price models
commonly studied in the literature.

5 Model with Sticky Prices

We briefly summarize the key assumptions underlying the derivation of the New Keynesian
Phillips curve with sticky prices following Rotemberg (1982), and present the main results
regarding equilibrium multiplicity in this framework. Detailed derivations are provided in
Online Appendix F. For robustness, Online Appendix G replicates these findings under the
alternative assumption of sticky price adjustments à la Calvo (1983).

Rotemberg (1982) assumes a continuum of identical firms indexed by the interval [0, 1],
operating under monopolistic competition. The price process for firm i is given by

dpit = πi
tp

i
t dt,

where each firm can adjust its price pit by choosing an inflation rate πi
t. These adjustments

incur convex adjustment costs Θ(πi
t), specified by

Θ(πi
t) =

τ

2
(πi

t)
2ptYt,

with τ ≥ 0 determining the penalty on the speed of adjustment. In equilibrium, the model
yields symmetric inflation rates across firms, resulting in a nonlinear version of the New
Keynesian Phillips curve given by:

dπt =

[
[2(ρ+ πt)− it − (σ + σs

t )(σ + σs
t + σπ

t )]πt −
(
ϵ− 1

τ

)(
e(

η+1
η )Ŷt − 1

)]
dt+σπ

t πt dZt,

(28)
where σπ

t is the endogenous volatility of inflation growth. The IS equation then becomes:

dŶt =
[
it − πt − rTt

]
dt+ σs

t dZt, (29)

which modifies the rigid-price benchmark equation (10) by subtracting the inflation rate πt

from its drift.

Proposition 4 (Model with Sticky Prices) The model with sticky prices à la Rotemberg

(1982), represented by the New Keynesian Phillips curve (28), IS equation (29), Taylor rule
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(12), and the transversality condition (5), admits an alternative solution to the benchmark

equilibrium given by:
dŶt = θ

[
µ− Ŷt

]
dt+ σs

t dZt,

πt = f(σs
t ),

(30)

where f(·) is a smooth function of excess volatility σs
t . This alternative equilibrium solu-

tion exists for any positive degree of price stickiness, as captured by the adjustment rate

parameter τ > 0.

Proof. See Online Appendix F.
Proposition 4 extends the Ornstein-Uhlenbeck equilibria of Section 3.2 to the sticky-

price framework and remains valid under alternative Phillips curve specifications. In par-
ticular, the results hold when the Phillips curve is generated via Calvo pricing or expressed
in a linear form, such as:

dπt =
(
ρ πt − κ Ŷt

)
dt+ σπ

t πt dZt,

for some κ > 0. This linear specification typically arises from linearizing the Phillips curve
in a wide variety of sticky-price models. Under this linearized form, it is straightforward
to verify that the IS equation (29) together with an extension of the Taylor rule in (23) that
incorporates additional inflation targeting,

it = rn + ϕy Ŷt + ϕπ πt − 1
2

(
(σ + σs

t )
2 − σ2

)
︸ ︷︷ ︸
Aggregate volatility targeting

, with ϕy +
κ(ϕπ − 1)

ρ︸ ︷︷ ︸
≡ϕ

> 0,

delivers perfect stabilization as the unique rational expectations equilibrium, with ϕ > 0

satisfying the Taylor principle.
Finally, note that any positive degree of price stickiness (τ > 0) permits equilibria of the

form (30), whereas perfectly flexible prices (τ = 0) yield a unique equilibrium described
by (7), with σs

t = 0 and Ŷt = 0 for all t. Even minimal stickiness prevents aggregate supply
from fully offsetting coordinated household consumption, thereby generating and sustain-
ing self-fulfilling aggregate volatility along alternative equilibrium paths, as illustrated in
Figure 1.
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6 Conclusion

This paper establishes that standard New Keynesian models exhibit multiple global solu-
tions previously unknown to the literature. In these solutions, self-fulfilling volatility arises
under conventional Taylor rules because such rules do not target the economy’s aggregate
volatility—a key driver of precautionary savings. When households perceive higher future
volatility, they consume less today, triggering the very fluctuations they fear.

To address this issue, we propose a modified interest rate rule that incorporates a re-
sponse to aggregate volatility. By fully neutralizing the intertemporal feedback loop be-
tween volatility and precautionary savings, this new policy stabilizes the economy along a
unique equilibrium path. An alternative way to implement the same idea is to assign man-
dates for output growth, allowing the monetary authority to guide expectations directly.

Our results indicate that central banks risk fueling boom-bust cycles along alternative
equilibrium paths if they concentrate solely on conventional targets such as output or in-
flation and overlook second-moment shocks. Future work might investigate: (i) the quan-
titative relevance of these alternative equilibria and which ones align most closely with
empirical data, (ii) the interplay between volatility-targeting policy and financial stability
mandates (e.g., macroprudential policies), and (iii) how forward guidance and fiscal tools
can reinforce volatility-targeting frameworks to mitigate boom-bust cycles arising in these
equilibria.
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I Proofs and Derivations

I.1 Derivations in Section 2

Derivation of Equation (3) From the definition of (nominal) state-price density ξNt =

e−ρt 1
Ct

1
pt

, we obtain

dξNt
ξNt

= −ρdt− dCt

Ct

− dpt
pt

+
1

2

(
dCt

Ct

)2

+
1

2

(
dpt
pt

)2

+
dCt

Ct

dpt
pt

. (I.1)

Since we have a perfectly rigid price (i.e., pt = p̄ for all t), the above (I.1) becomes

dξNt
ξNt

= −ρdt− dCt

Ct

+

(
dCt

Ct

)2

= −ρdt− dCt

Ct

+Vart

(
dCt

Ct

)
.

(I.2)

Plugging equation (I.2) into equation (2), we obtain

Et

(
dCt

Ct

)
= (it − ρ) dt+Vart

(
dCt

Ct

)
.

Derivation of Equation (10) From equation (9), we obtain

d lnYt =

(
it − ρ+

1

2
(σ + σs

t )
2

)
dt+ (σ + σs

t )dZt. (I.3)

From (7), we obtain

d lnY n
t =

(
rn − ρ+

1

2
σ2

)
dt+ σdZt. (I.4)

Therefore, by subtracting equation (I.4) from equation (I.3), we obtain equation (10):

dŶt =

(
it −

(
rn − 1

2
(σ + σs

t )
2 +

1

2
σ2

))
dt+ σs

tdZt.
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I.2 Proofs of Section 3.1

The Construction of the Martingale Equilibrium in Section 3.1 and the Proof of Propo-
sition 2. Setting the drift of the Ŷt process in (13) to zero, i.e.,

dŶt =

ϕyŶt−
σ2

2
+

(σ + σs
t )

2

2︸ ︷︷ ︸
=0

 dt+ σs
tdZt = σs

tdZt, (I.5)

leads to

Ŷt = −
(σ + σs

t )
2

2ϕy

+
σ2

2ϕy

, (I.6)

proving equation (17). From equations (I.5) and (I.6), we obtain

dŶt = −
1

ϕy

(σ + σs
t )dσ

s
t −

1

2ϕy

(dσs
t )

2 = σs
tdZt,

which leads to
dσs

t = −(ϕy)
2 (σs

t )
2

2(σ + σs
t )

3
dt− ϕy

σs
t

σ + σs
t

dZt,

proving equation (18).
From equations (I.5) and (I.6), it is evident that Et ≡ (σ+σs

t )
2−σ2 has no drift, thereby

qualifying as a local martingale. This can also be demonstrated as follows:

dEt = 2 (σ + σs
t ) dσ

s
t + (dσs

t )
2

= 2(σ + σs
t )

(
��������
− (ϕy)

2(σs
t )

2

2(σ + σs
t )

3
dt− ϕy

σs
t

σ + σs
t

dZt

)
+

���������
(ϕy)

2 (σs
t )

2

(σ + σs
t )

2
dt

= −2ϕy(σ
s
t )dZt = 2ϕy

(
σ −

√
σ2 + Et

)
dZt.

(I.7)

Our logic proceeds as follows:

Step 1 Starting from E0 > 0, Et > 0 for all t almost surely, i.e., 0 is a natural boundary of
the Et process.

Proof. We use the methodology of Linetsky (2007): by defining a function m(E)
that measures the speed of convergence in the process (I.7) as follows:

m (E) ≡ 1(√
σ2 + E − σ

)2 ,
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which determines the behavior of Et process.

For small ∆ > 0, we calculate the following two integrals:

I0 ≡
∫ ∆

0

E ·m (E) dE =

∫ ∆

0

E · 1(√
σ2 + E − σ

)2dE
=

∫ √
∆+σ2−σ

0

(
t+ 2σ

t

)
· 2(t+ σ)dt→∞,

(I.8)

with t ≡
√
E + σ2 − σ as a change of variable. Similarly,

J0 ≡
∫ ∆

0

(∆− E) ·m (E) dE =

∫ ∆

0

(∆− E) · 1(√
σ2 + E − σ

)2dE
=

∫ √
∆+σ2−σ

0

[
(∆ + σ2)− (t+ σ)2

t2

]
· 2(t+ σ)dt→∞.

(I.9)

With I0 = ∞ and J0 = ∞, process Et has zero as a natural boundary, i.e., Et never
reaches the boundary at zero if it starts in the interior of the state space. In other
words, if E0 > 0, then Et ≥ 0 almost surely.

Step 2 As Et is a local martingale that is non-negative due to Step 1, it becomes a super-
martingale: see e.g., Le Gall (2016) about how to use Fatou’s lemma in proving this
statement.1,2

Step 3 Since Et is a supermartingale that is non-negative (or more generally, bounded from
below), we can apply the famous martingale convergence theorem (see e.g., Williams
(1991) and Le Gall (2016)), that implies:

Et
a.s−−−→ E∞,

point-wise, where E∞ exists and is finite almost surely.

Step 4 Now, we define a function that is globally concave:3

Φ(x) ≡ 4
[
σ log

(√
σ2 + x− σ

)
+
√
σ2 + x

]
,

1Et might not be a true martingale as σ −
√
σ2 + Et in equation (I.7) is not bounded.

2As a result, equation (16), the transversality condition under log-linear approximation (Blanchard and
Kahn, 1980), is proved. Online Appendix B.1 proves that the actual transversality condition (5) is satisfied
under the martingale equilibrium.

3We appreciate Victor Kleptsyn at CNRS à Institut de Recherche Mathématique de Rennes for suggesting
function Φ(x).
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which yields

Φ′(x) =
1√

σ2 + x− σ
,

and Φ(x)→ −∞ as x→ 0. Additionally, we can obtain

d (Φ (Et)) = Φ′(Et)dEt +
1

2
Φ′′(Et)(dEt)2

= −ϕ2
y

1√
σ2 + Et

dt− 2ϕydZt.
(I.10)

From Step 3, we know that E∞ is finite with probability one, which implies that the
drift 1√

σ2+E∞
of (I.10) is finite and positive as well. Then, the only way to satisfy

(I.10) in the long run is for Φ(Et)→ −∞, implying E∞ = 0.

Step 5 Finally, Et → 0 implies that σs
t → 0 almost surely. It can be easily shown that this

satisfies our stochastic process (18) as follows:

dσs
t︸︷︷︸

a.s−−−→0

= − (ϕy)
2(σs

t )
2

2(σ + σs
t )

3︸ ︷︷ ︸
a.s−−−→0

dt− ϕy
σs
t

σ + σs
t︸ ︷︷ ︸

a.s−−−→0

dZt. (I.11)

Step 6 Finally from Le Gall (2016), we know that if

E0

(
sup
t≥0
|Et|
)

<∞, or lim
K→∞

sup
t≥0

(
E0

(
|Et|1{|Et|≥K}

))
> 0,

then Et, which is a local martingale, becomes an uniformly integrable martingale.
But then, if Et is an uniformly integrable martingale,

0 < E0 = lim
t→∞

E0Et = E0 E∞︸︷︷︸
=0

= 0,

which is a contradiction. Therefore, Property 3 of Proposition 2 is proved.

Special case With σ = 0, the stochastic process (I.11) becomes:

dσs
t = −

(ϕy)
2

2σs
t

dt− ϕydZt, (I.12)
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which is known as a Bessel process and widely studied in the literature. The process stops
when σs

t reaches zero. In this case, we can observe that equation (I.8) becomes4

I0 ≡
∫ ∆

0

E · 1(√
02 + E − 0

)2dE = ∆ <∞,

with J0 =∞. This implies that the Et process has zero as an exit boundary, meaning the Et
process is instantaneously terminated the first time this boundary is reached. The behavior
of the Bessel process (I.12) hitting time (i.e., the first time it reaches zero) is well known.
For example, its hitting time τ has a well-defined distribution, as derived in Lawler (2019).

I.3 Derivations of Section 3.2

The equilibrium output gap Ŷt follows:

dŶt =

[
ϕyŶt −

σ2

2
+

(σ + σs
t )

2

2

]
dt+ σs

t dZt. (I.13)

Now we guess that the solution of the model represented by equation (I.13) has the follow-
ing form:

dŶt = θ ·
[
µ− Ŷt

]
dt+ σs

t dZt, (I.14)

where θ and µ are constant parameters. The process I.14 is similar to the Ornstein-Uhlenbeck
process, except for the fact that it has an endogenous volatility σs

t which is to be determined
in equilibrium.

Note that when θ = 0, the process becomes the martingale conjectured in Section
3.1. For this new conjectured solution to be valid, the drift term in equation (I.13) and
equation (I.14) should be equal, implying that the output gap under this conjecture is:

Ŷt =
θµ

θ + ϕy

− 1

2(θ + ϕy)

[
(σ + σs

t )
2 − σ2

]
. (I.15)

4We appreciate an anonymous referee for pointing out this discontinuity.
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We know that σs
t follows a process of the form:5

dσs
t = µσ

t dt+ σ̃tdZt,

where µσ
t and σ̃t are unknown variables. Applying Ito’s Lemma to I.15 we obtain:

dŶt = −
(

1

θ + ϕy

)[
(σ + σs

t ) · µσ +
σ̃2
t

2

]
dt− σ̃t ·

(
σ + σs

t

θ + ϕy

)
dZt. (I.16)

By equating the drift and volatility terms of equations I.16 and I.15, and based on equa-
tion (20), we obtain the unknown variables µσ

t and σ̃t consistent with our guessed solution
as follows:

σ̃t = −(θ + ϕy)

(
σs
t

σ + σs
t

)
,

µσ
t = −

(
θ

σ + σs
t

)[
µϕy +

1

2

[
(σ + σs

t )
2 − σ2

]]
− (θ + ϕy)

2 (σs
t )

2

2(σ + σs
t )

3
.

Therefore, the σs
t process consistent with our guessed solution in (19) can be written as:

dσs
t =−

[(
θ

σ + σs
t

)[
µϕy +

1

2

[
(σ + σs

t )
2 − σ2

]]
+ (θ + ϕy)

2 (σs
t )

2

2(σ + σs
t )

3

]
dt

− (θ + ϕy)

(
σs
t

σ + σs
t

)
dZt,

(I.17)

leading to

d(σ + σs
t )

2 = −θ
[
2µϕy + (σ + σs

t )
2 − σ2

]
dt− 2(θ + ϕy)σ

s
t dZt.

Notice the two following important observations:

Observation 1 When θ = 0, the solution (I.17) becomes the martingale equilibrium solution of Sec-
tion 3.1.

Observation 2 We obtain solutions with different values of θ and µ parameters, so there is a chance
that different parametrization of this pair of parameters can be consistent with a ra-
tional expectations equilibrium solution considered in Section 3.2.

5As in Section 2, we assume that all the aggregate variables are adapted to the given filtration {Ft}t≥0

generated by the Brownian motion dZt.
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II Detailed Derivations in Section 2

II.1 Model Setup

A representative household h solves the following intertemporal optimization consumption-
savings decision problem:

max
{Ch

s , L
h
s }s≥t

{Bh
s }s>t

Et

∫ ∞

t

e−ρ(s−t)

logCh
s −

(
Lh
s

)1+ 1
η

1 + 1
η

 ds, s.t. dBh
t =

[
itB

h
t − ptC

h
t + wtL

h
t +Dt

]
dt,

where Ch
t is consumption, Lh

t aggregate labor, wt is the equilibrium wage level, Bh
t are

risk-free bonds held by the household h at the beginning of t (hence, Bh
t at t is taken as

given for each household), it is the nominal interest rate, Dt is a lump-sum transfer of any
firm profits/losses towards the household, pt the nominal price of consumption goods and
ρ is the subjective discount rate of the household.6

An individual firm i produces in this economy with the following production function:

Y i
t = AtL

i
t, with

dAt

At

= gdt+ σ︸︷︷︸
Fundamental risk

dZt,

where At is the economy’s total factor productivity, assumed to be exogenous and to follow
a geometric Brownian motion with drift, where g is the expected growth rate of At, σ
is its volatility, which we assume to be constant over time and which we define as the
fundamental volatility, and Zt is a standard Brownian motion process. It follows that firms’
profits are defined as:

Dt = ptYt − wtLt.

Finally, we assume bonds are in zero net supply in equilibrium (i.e., Bt = 0, ∀t), and that
there is no government spending, so market clearing in this economy results in Ct = Yt.

II.2 Flexible Price Economy

We first solve the flexible price economy as our benchmark economy. For that purpose, we
assume the usual Dixit-Stiglitz monopolistic competition among firms, where the demand

6Later, we will impose the equilibrium condition: Ch
t = Ct,∀h, Lh

t = Lt,∀h, Bh
t = Bt = 0,∀h, where

Ct, Lt, and Bt are aggregate variables.
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each firm i faces is given by

D(pit, pt) =

(
pit
pt

)−ε

Yt,

where pit is an individual firm i’s price, pt is the price aggregator, and Yt is the aggregate
output. Each firm i takes the aggregate price pt, wage wt, and the aggregate output Yt as
given.

II.2.1 Household problem

In the flexible price economy, each household takes the {At, pt, it} processes as given:

dpt
pt

= πtdt+ σp
t dZt,

and

dit = µi
tdt+ σi

tdZt,

where πt, σ
p
t , µi

t, and σi
t are all endogenous, so the state variables for each household would

become {Bh
t , At, pt, it}.7

Hamilton-Jacobi-Bellman (HJB) formulation of the households’ problem We define
the value function of household h as:

Γh ≡ Γh
(
Bh

t , At, pt, it, t
)
= max

{Ch
s , L

h
s }s≥t

{Bh
s }s>t

Et

∫ ∞

t

e−ρ(s−t)

logCh
s −

(
Lh
s

)1+ 1
η

1 + 1
η

 ds.

subject to dBh
t =

[
itB

h
t − ptC

h
t + wtL

h
t +Dt

]
dt. The HJB equation is given by

ρ · Γh = max
Ch

t ,L
h
t

logCh
t −

(
Lh
t

)1+ 1
η

1 + 1
η

+
Et

[
dΓh
]

dt

 . (II.1)

7This is a conjectural but correct statement due to the classical dichotomy between real and nominal
sectors: output, consumption, and labor in equilibrium turn out to depend on At (only), and it turns out that
pt and it do not matter for the real economy and the welfare of the households.
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Using Ito’s Lemma, we compute:

dΓh = µΓ,h
t dt+ σΓ,h

t dZt, (II.2)

where

µΓ,h
t =Γh

t + Γh
B ·
(
itB

h
t − ptC

h
t + wtL

h
t +Dt

)
+ Γh

A · Atg + Γh
p · ptπt + Γh

i · µi
t

+
1

2
Γh
AA · (Atσ)

2 +
1

2
Γh
pp · (ptσ

p
t )

2 +
1

2
Γh
ii · (σi

t)
2

+ Γh
Ap · (σAt)(ptσ

p
t ) + Γh

Ai · (σAt)σ
i
t + Γh

pi · (ptσ
p
t )σ

i
t,

and σΓ,h
t = Γh

A(σAt)+Γh
p(ptσ

p
t )+Γh

i (σ
i
t). In the same way, we compute dΓh

B = µΓB ,h
t dt+

σΓB ,h
t dZt, where

µΓB ,h
t =Γh

Bt + Γh
BB ·

(
itB

h
t − ptC

h
t + wtL

h
t +Dt

)
+ Γh

BA · Atg + Γh
Bp · ptπt + Γh

Bi · µi
t

+
1

2
Γh
BAA · (Atσ)

2 +
1

2
Γh
Bpp · (ptσ

p
t )

2 +
1

2
Γh
Bii · (σi

t)
2 (II.3)

+ Γh
BAp · (σAt)(ptσ

p
t ) + Γh

BAi · (σAt)σ
i
t + Γh

Bpi · (ptσ
p
t )σ

i
t,

and σΓB ,h
t = Γh

BA(σAt)+Γh
Bp(ptσ

p
t )+Γh

Bi(σ
i
t). Note that Γh

∆ = ∂Γh

∂∆
is defined as the deriva-

tive with respect to any subindex variable ∆ = {t, Bh, A, p, i}. Now plug equation (II.2)
into equation (II.1) to obtain:

ρ · Γh = max
Ch

t ,L
h
t

logCh
t −

(
Lh
t

)1+ 1
η

1 + 1
η

+ µΓ,h
t

 . (II.4)

Households’ first-order conditions (FOC) Computing the first-order conditions with
respect to Ch

t and Lh
t from equation (II.4), we obtain:

Γh
B =

1

ptCh
t

, (II.5)

Γh
B =

(
Lh
t

) 1
η

wt

. (II.6)

Finally, merging (II.5) with (II.6) gives us the intratemporal optimality condition.
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State price density and pricing kernel We know the state price density and the stochas-
tic discount factor between two adjacent periods are given by ζN,h

t = e−ρt 1
ptCh

t
, and dQh

t =

dζN,h
t

ζN,h
t

, respectively. Let us use a star superscript to denote the choice variables evaluated at

the optimum, that is Ch,∗
t and Lh,∗

t . Then, we can express equation (II.4) as:

ρ · Γh = logCh,∗
t −

(
Lh,∗
t

)1+ 1
η

1 + 1
η

+ µΓ,h,∗
t . (II.7)

Taking the derivative of both sides of equation (II.7) with respect to Bt, using the envelope
theorem and rearranging, we obtain:

(ρ− it) · Γh
B = µΓB ,h,∗

t , (II.8)

where µΓB ,h,∗
t is from equation (II.3) and it is evaluated at the optimum. Plugging (II.8)

into the process for Γh
B, we obtain a simplified expression:

dΓh
B = (ρ− it) · Γh

Bdt+
(
Γh
BA(Atσ) + Γh

Bp(ptσ
p
t ) + Γh

Bi

(
σi
t

))︸ ︷︷ ︸
≡σ

ΓB,h
t

dZt. (II.9)

Note that ζN,h
t = e−ρtΓh

B, then, using equation (II.9) and applying Ito’s Lemma, we obtain:

dζN,h
t = − ζNt · itdt+ ζNt ·

[
σΓB ,h
t

Γh
B

]
dZt.

From the definition of dQt, we obtain:

dQh
t ≡

dζN,h
t

ζN,h
t

= −itdt+

[
σΓB ,h
t

Γh
B

]
dZt, (II.10)

and Et

[
dQh

t

]
= −itdt follows by taking expectations, which proves (2) in the flexible price

equilibrium.
Equilibrium is defined as in Definition 1. From now, we interchangeably use variables

with and without h superscript.

Nominal and real interest rates Prices and consumption should be adapted to the fil-
tration generated by the Brownian motion Zt process. Let us express the processes for
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consumption and price as:

dpt = πtptdt+ σp
t ptdZt,

dCt = gCt Ctdt+ σC
t CtdZt, (II.11)

where πt, gCt , σp
t and σC

t are variables to be determined in equilibrium, and which can be
interpreted as the inflation rate, the expected consumption growth, and the volatilities of
the price and consumption processes, respectively. As the real state density is defined as
ζrt = e−ρt 1

Ct
, the real interest rate rt is defined by the relation Et

[
dζrt
ζrt

]
= −rtdt, similarly

to (2).
With (II.11), applying Ito’s Lemma to the real state density ζrt = e−ρt 1

Ct
results in

dζrt
ζrt

= −
[
ρ+ gCt −

(
σC
t

)2]︸ ︷︷ ︸
≡rt

dt− σC
t dZt, (II.12)

which determines the real interest rate rt = ρ+ gCt − (σC
t )

2. We also apply Ito’s Lemma to
ζNt = e−ρt 1

ptCt
and use the above processes for pt and Ct to obtain:

dQt ≡
dζNt
ζNt

= −
[
ρ+ gCt + πt − (σp

t )
2 −

(
σC
t

)2 − σp
t σ

C
t

]
dt−

[
σp
t + σC

t

]
dZt,

which can be rearranged as:

dQt ≡
dζNt
ζNt

= −
[
rt + πt − σp

t

(
σC
t + σp

t

)]︸ ︷︷ ︸
=it

dt−
[
σp
t + σC

t

]
dZt. (II.13)

Comparing equation (II.10) and equation (II.13), we obtain

it = rt + πt − σp
t

(
σC
t + σp

t

)
, where: rt = ρ+ gCt −

(
σC
t

)2
.

II.2.2 Firm problem and equilibrium

Firm optimization The demand faced by each firm i is given by

D(pit, pt) =

(
pit
pt

)−ε

Yt,
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where pit is an individual firm’s price, pt is the price aggregator, and Yt is the aggregate
output. Each firm i solves the following problem:

max
pit

pit

(
pit
pt

)−ε

Yt −
wt

At

(
pit
pt

)−ε

Yt,

which results in the following first-order condition for the firm:8

pt =

(
ε

ε− 1

)
wt

At

, (II.14)

which is intuitive as it tells us that in equilibrium, price is equal to the marginal cost of
production multiplied by the constant mark-up, due to the constant elasticity of demand
ε > 1. Using equation (II.14) and the equilibrium condition Ct = Yt = AtLt in the first-
order condition of the household in (II.5) and (II.6), we obtain Ln

t =
(
ε−1
ε

) η
η+1 ,9 which

is a constant. This implies that in the flexible price equilibrium, we have Cn
t = Y n

t =

At

(
ε−1
ε

) η
η+1 . It follows that the stochastic process for Y n

t is the same as that for At, as
follows:

dY n
t

Y n
t

=
dCn

t

Cn
t

= gdt+ σdZt. (II.15)

Equation (II.15) implies that the growth rate of consumption and its volatility are gCt = g

and σC
t = σ, so the real interest rate in the flexible price economy, i.e., the natural rate of

interest, can be expressed as rnt ≡ rn = ρ+ g − σ2 from (II.12), which finally gives

dY n
t

Y n
t

=

(
rn︸︷︷︸

Natural rate

−ρ+ σ2

)
dt+ σdZt,

which proves equation (7).

II.3 Rigid Price Economy

We now solve the equilibrium of the rigid price economy with pt = p̄ for all t. The rigid
price economy’s consumption volatility, which we define as σC

t , is given by σC
t = σ + σs

t

8In equilibrium, pit = pt as every firm chooses the same price level.
9We impose the superscript n (i.e., natural) in variables to denote that those are the equilibrium values in

the flexible price economy.
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(i.e. volatility of the flexible price equilibrium in (II.15), plus excess volatility of rigid price
equilibrium). Therefore, the consumption process can be written as:

dCt = gCt Ctdt+ (σ + σs
t )CtdZt. (II.16)

Let us conjecture that this endogenous ‘excess’ volatility σs
t , which is one of the state

variables in the rigid price economy, follows the process dσs
t = µσ

t dt + σσ
t dZt. With price

rigidity (i.e., pt = p̄ for all t), the agent takes the {At, σ
s
t} processes as given, so the state

variables for each household become {Bh
t , At, σ

s
t}.10

Hamilton-Jacobi-Bellman (HJB) formulation of the households’ problem We define
the value function of household h as:

Γh ≡ Γh
(
Bh

t , At, σ
s
t , t
)
= max

{Ch
s , L

h
s }s≥t

{Bh
s }s>t

Et

∫ ∞

s

e−ρ(s−t)

logCh
s −

(
Lh
s

)1+ 1
η

1 + 1
η

 ds.

subject to dBh
t =

[
itB

h
t − ptC

h
t + wtL

h
t +Dt

]
dt. The HJB equation can be written as:

ρ · Γh = max
Ch

t ,L
h
t

logCh
t −

(
Lh
t

)1+ 1
η

1 + 1
η

+
Et

[
dΓh
]

dt

 , (II.17)

Using Ito’s Lemma, we compute:

dΓh = µΓ,h
t dt+ σΓ,h

t dZt, (II.18)

where

µΓ,h
t =Γh

t + Γh
B ·
(
itB

h
t − p̄ · Ch

t + wtL
h
t +Dt

)
+ Γh

A · Atg + Γh
σ · µσ

t

+
1

2
Γh
AA · (Atσ)

2 +
1

2
Γh
σσ · (σσ

t )
2 + Γh

Aσ · (Atσ)(σ
σ
t ),

10This is a conjectural (but correct) statement as the actual output (thereby, consumption and other vari-
ables including inflation, nominal interest rate (that follows the Taylor rule), etc) would turn out to only
depend on At and σs

t under our equilibrium construction.
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and σΓ,h
t = Γh

A(σAt)+Γh
σ(σ

σ
t ). Applying Ito’s Lemma to Γh

B, we compute dΓh
B = µΓB ,h

t dt+

σΓB ,h
t dZt, where

µΓB ,h
t =Γh

Bt + Γh
BB ·

(
itB

h
t − p̄ · Ch

t + wtL
h
t +Dt

)
+ Γh

BA · Atg + Γh
Bσ · µσ

t

+
1

2
Γh
BAA · (Atσ)

2 +
1

2
Γh
Bσσ · (σσ

t )
2 + Γh

BAσ · (Atσ)(σ
σ
t ),

(II.19)

and σΓB ,h
t = Γh

BA · (σAt) + Γh
Bσ · σσ

t . Note Γh
∆ = ∂Γh

∂∆
is defined as the derivative with

respect to any subindex variable ∆ = {t, Bh, A, σs}. Now plug equation (II.18) into equa-
tion (II.17) to obtain:

ρ · Γh = max
Ch

t ,L
h
t

logCh
t −

(
Lh
t

)1+ 1
η

1 + 1
η

+ µΓ,h
t

 . (II.20)

Households’ first-order conditions (FOC) Computing the first-order conditions with
respect to Ch

t and Lh
t from equation (II.20), we obtain:

Γh
B =

1

p̄Ch
t

, (II.21)

Γh
B =

(
Lh
t

) 1
η

wt

. (II.22)

Finally, merging (II.21) with (II.22) gives us the intratemporal condition of the problem.

State price density and pricing kernel We know that the state price density and the
stochastic discount factor between two adjacent periods are given by ζN,h

t = e−ρt 1
p̄Ch

t
, and

dQh
t =

dζN,h
t

ζN,h
t

, respectively. Let us use a star superscript to denote the choice variables

evaluated at the optimum, that is Ch,∗
t and Lh,∗

t . Then, we can express equation (II.20) as:

ρ · Γh = logCh,∗
t −

(
Lh,∗
t

)1+ 1
η

1 + 1
η

+ µΓ,h,∗
t . (II.23)

Taking the derivative of both sides of equation (II.23) with respect to Bt, using the envelop
theorem and rearranging, we obtain:

(ρ− it) · Γh
B = µΓB ,h,∗

t , (II.24)
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where µΓB ,h,∗
t follows from equation (II.19) evaluated at the optimum. Plugging equa-

tion (II.24) into the process for Γh
B, we obtain a simplified expression at the optimum:

dΓh
B = (ρ− it) · Γh

Bdt+
(
Γh
BA · (Atσ) + Γh

Bσ · (σσ
t )
)︸ ︷︷ ︸

≡σ
ΓB,h
t

dZt. (II.25)

Notice that ζN,h
t = e−ρtΓh

B, then using equation (II.25) and applying Ito’s Lemma, we
obtain:

dζN,h
t = − ζNt · itdt+ ζN,h

t ·

[
σΓB ,h
t

Γh
B

]
dZt.

From the previous equation, we obtain:

dQh
t ≡

dζN,h
t

ζN,h
t

= −itdt+

[
σΓB ,h
t

Γh
B

]
dZt, (II.26)

and Et

[
dQh

t

]
= −itdt also follows in the rigid price economy by taking conditional ex-

pectations.
Again, the equilibrium is defined by Definition 1. From now, we interchangeably use

variables with and without h superscript.

Verification of Equilibria Now let us verify that our Ornstein-Uhlenbeck equilibrium,11

characterized by equations (I.15) and (I.17), satisfies the equilibrium conditions derived
above. From (I.15) and (I.17),

Ŷt =
θµ

θ + ϕy

− 1

2(θ + ϕy)

[
(σ + σs

t )
2 − σ2

]
, (II.27)

dσs
t =−

[(
θ

σ + σs
t

)[
µϕy +

1

2

[
(σ + σs

t )
2 − σ2

]]
+ (θ + ϕy)

2 (σs
t )

2

2(σ + σs
t )

3

]
dt

− (θ + ϕy)

(
σs
t

σ + σs
t

)
dZt, (II.28)

These equations will be a solution to the model, as long as there is no contradiction with
the equilibrium conditions. In order to check if (II.27) and (II.28) satisfy the equilibrium

11With θ = 0, it becomes the martingale equilibrium of Section 3.1.
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conditions, first, the output gap is defined as:

Ŷt = log

(
Yt

Y n
t

)
= log

(
Ct

Cn
t

)
= log

(
Ct

At

)
− η

η + 1
log

(
ε− 1

ε

)
, (II.29)

where the last equality follows from Cn
t = At

(
ε−1
ε

) η
η+1 , as shown above for the flexible

price equilibrium. Combining (II.27) and (II.29), we obtain:

Ct = At

(
ε− 1

ε

) η
η+1

· exp
{

θµ

θ + ϕy

− 1

2(θ + ϕy)

[
(σ + σs

t )
2 − σ2

]}
,

which is a function of At and σs
t . We can now compute the derivative of equation (II.21)

with respect to At and σs
t as:

ΓBA = −ΓB

Ct

· ∂Ct

∂At

, (II.30)

ΓBσ = −ΓB

Ct

· ∂Ct

∂σs
t

. (II.31)

Plugging equations (II.30) and (II.31) into equation (II.25), we obtain:

dΓB = (ρ− it) · ΓBdt− ΓB

[
At

Ct

· ∂Ct

∂At

· σ +
1

Ct

· ∂Ct

∂σs
t

· σσ
t

]
dZt. (II.32)

Using Ito’s Lemma in equation (II.21) together with equation (II.16), we obtain

dΓB = −ΓB

(
gCt − (σC

t )
2
)

dt− ΓB(σ + σs
t )dZt. (II.33)

Comparing the volatility terms in (II.32) and (II.33) (i.e., the terms multiplying dZt), it
must follow that:

σ + σs
t =

At

Ct

· ∂Ct

∂At

· σ +
1

Ct

· ∂Ct

∂σs
t

· σσ
t . (II.34)

We can now compute the derivative of Ct with respect to At and σs
t as:

∂Ct

∂At

=
Ct

At

,
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and

∂Ct

∂σs
t

= Ct ·
(
−(σ + σs

t )

θ + ϕy

)
= Ct · (σσ

t )
−1 · σs

t ,

which satisfies (II.34). Therefore, the conjectured martingale solution is verified as a valid
equilibrium of the model.
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A Equilibrium Dynamics: Summary

As in the main text, we use the superscript h to denote household-specific variables (e.g.,
Ch
t ); variables without the superscript refer to aggregates. We assume a representative-

agent economy with a unit measure of households, where each household solves an identi-
cal optimization problem and selects the same consumption, labor, and bond investment in
equilibrium. This results in an equilibrium given by: Ch

t = Ct = Yt for all h, Lht = Lt for
all h, Dh

t = Dt for all h, Yt = AtLt and Bt = 0.
In Online Appendix, we consider the most general version of the model, with a mone-

tary policy rule targeting aggregate volatility with responsiveness ϕvol, i.e.,

it = rn + ϕyŶt − ϕvol
[
(σ + σst )

2 − σ2
]
. (A.1)

With this rule, individual optimality conditions, after imposing equilibrium conditions
Ch
t = Ct = Yt for all h, Lht = Lt for all h, Dh

t = Dt for all h, Yt = AtLt and Bt = 0, are
characterized by

Ḃt = itBt − p̄Ct + wtLt +Dt,

Bt = Ḃt = 0,

Dt = p̄Yt − wtLt,

dCt
Ct

=
(
it − ρ+ (σ + σst )

2) dt+ (σ + σst ) dZt,

Lt =

(
wt
p̄

1

Ch
t

)η
.

Ornstein-Uhlehbeck equilibrium Under the Ornstein-Uhlenbeck equilibrium described
in Section 3.2, output gap Ŷt follows dŶt = θ

(
µ− Ŷt

)
dt+σstdZt. With an adjusted policy

rule following (A.1), the equilibrium is characterized by the following conditions:

Yt = AtLt, (A.2)

At = A0︸︷︷︸
=1

e(g−
1
2
σ2)·t+σZt ,

Y n
t = At

(
ε− 1

ε

) η
η+1

=

(
ε− 1

ε

) η
η+1

e(g−
1
2
σ2)·t+σZt .

1
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with

rn = ρ+ g − σ2,

it = rn + ϕyŶt − ϕvol
[
(σ + σst )

2 − σ2
]
,

Ŷt = µ−
(

1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
, (A.3)

=
µθ

θ + ϕy
−
(

1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2 − σ2
]
.

where the endogenous excess volatility σst follows a stochastic differential equation given
by

dσst =

µσt ≡µ̃(σs
t )︷ ︸︸ ︷

−1

2

(
1

σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

dt

−
(

θ + ϕy
1− 2ϕvol

)(
σst

σ + σst

)
︸ ︷︷ ︸

σσ
t ≡σ̃(σs

t )

dZt.

(A.4)
which leads to

d
[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
= −θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
dt− 2

(
θ + ϕy

1− 2ϕvol

)
σstdZt.

(A.5)

Note that with ϕvol = 0, equation (A.4) becomes (21) of Section 3.2. With θ = 0, we return
to the martingale equilibrium of Section 3.1 and equation (A.4) becomes equation (18).
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B Equilibrium Value Function for the Representative House-
hold and the Transversality Condition

In this section, we characterize the equilibrium value function of households under the
general equilibrium described in Online Appendix A, and prove the transversality condition
for individual households.

The Hamilton-Jacobi-Bellman (HJB) equation of household h is given by:

ρ · Γh = max
Ch

t ,L
h
t

logCh
t −

(
Lht
)1+ 1

η

1 + 1
η

+ µΓ,h
t

 . (B.1)

where we assume Bh
t as the only endogenous state variable,1 and {At, σst} as exogenous

state variables from individual household’s perspective, as σst is an aggregate variable that
affects aggregate price and quantity variables. We calculate µΓ,h

t as follows:

µΓ,h
t =Γht + ΓhB ·

(
itB

h
t − p̄ · Ch

t + wtL
h
t +Dt

)
+ ΓhA · Atg + Γhσ · µσt

+
1

2
ΓhAA · (Atσ)2 +

1

2
Γhσσ · (σσt )2 + ΓhAσ · (Atσ)(σσt ),

where subscripts denote differentiation with respect to the corresponding variable, yielding
the following first-order conditions:

ΓhB =
1

p̄Ct
=
L

1
η

t

wt
,

where we impose equilibrium conditions Ch
t = Ct and Lht = Lt.

Under the general Ornstein-Uhlenbeck equilibrium described in Online Appendix A,
we can characterize the exact functional form of Γh(Bh

t , At, σ
s
t , t). From (A.4), together

with2

it = ρ+ g − σ2 +
θϕyµ

θ + ϕy
− ϕy + 2θϕvol

2(θ + ϕy)
·
[(
σ + σsj

)2 − σ2
]
, (B.2)

1Eventually, we will impose the bond market equilibrium condition, i.e., Bt = 0.
2In equilibrium,Bh

t = 0. We characterize the individual value Γh as a function ofBh
t , which is specific to

an individual household, and (At, σ
s
t ), which are exogenous to an individual household, under the equilibrium

dynamics of Online Appendix A.
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and using the fact that wtLt− p̄ ·Ct+Dt = 0, together with log(Ct) =
(

η
η+1

)
log
(
ε−1
ε

)
+

log(At)+Ŷt and equation (A.2) to substitute for labor Lt, we can express the value function
Γh of the household evaluated at the optimum as:3

Γh =
1

ρ
·
(

η

η + 1

)
log

(
ε− 1

ε

)
+

1

ρ
· ΓhB · itBh

t +
1

ρ
· logAt +

1

ρ
· ΓhA · Atg +

1

2ρ
ΓhAA · (Atσ)2

− 1

ρ
ΓhAσ · (Atσ)

(
θ + ϕy

1− 2ϕvol

)(
σst

σ + σst

)
+

1

ρ
· Γht

+
1

ρ
·
[
µ−

(
1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]]

− 1

ρ
·
(
ε− 1

ε

)
e
( η+1

η )
[
µ−

(
1−2ϕvol
2(θ+ϕy)

)[
(σ+σs

t )
2−σ2+

2µϕy
1−2ϕvol

]]
1 + 1

η

− 1

2ρ
Γhσ ·

(
1

σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

+
1

2ρ
Γhσσ ·

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2

.

(B.3)
To further simplify the problem, we adopt a guess-and-verify approach by assuming that
the value function Γh takes the following form:

Γguess =
1

ρ
· log(At) + h (σst ) ·

Bh
t

At
+ Γ̃ (σst ) .

Therefore, we assume that the value function depends on log(At); on a term that is a mul-
tiple of a function of σst and the ratio Bh

t

At
; and on a function solely of σst (plus constants).

Differentiating yields:

ΓguessB =
h (σst )

At
, ΓguessA =

1

ρAt
− h (σst ) ·

Bh
t

A2
t

,

ΓguessAA = − 1

ρ (At)
2 + 2h (σst ) ·

Bh
t

A3
t

, ΓguessAσ = −h′ (σst ) ·
Bh
t

A2
t

,

Γguessσ = h′ (σst ) ·
Bh
t

At
+ Γ̃′ (σst ) , Γguessσσ = h′′ (σst ) ·

Bh
t

At
+ Γ̃′′ (σst ) .

3Note that it following our modified Taylor rule will be a sole function of σs
t in equilibrium, as shown in

(B.2).

4



Online Appendix: For Online Publication Only

Finding h(σst ) First, collecting all the terms that have Bh
t

At
, we see that h(σst ) satisfies

h(σst ) =
1

ρ
ith(σ

s
t )−

1

ρ
gh(σst ) +

1

�2ρ
σ2 · �2h(σst )

− 1

ρ
h′(σst )σ

[
−
(

θ + ϕy
1− 2ϕvol

)(
σst

σ + σst

)]
− 1

2ρ
h′(σst )

(
1

σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

+
1

2ρ
h′′(σst )

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2

.

(B.4)
We conjecture

h(σst ) ∝ exp

[(
1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2]] . (B.5)

If the conjecture (B.5) is true, we obtain

h′(σst ) = h(σst ) ·
1− 2ϕvol
(θ + ϕy)

(σ + σst ),

h′′(σst ) = h(σst ) ·

[
1− 2ϕvol
(θ + ϕy)

+

(
1− 2ϕvol
(θ + ϕy)

)2

(σ + σst )
2

]
,

which can be plugged into (B.4) and lead to

ρ =(it − g + σ2) + σσst

− 1

2

1− 2ϕvol
(θ + ϕy)

�����(σ + σst )

(
1

����σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

+
1

2

[
1− 2ϕvol
(θ + ϕy)

+

(
1− 2ϕvol
(θ + ϕy)

)2

(σ + σst )
2

](
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2

,

leading to the equilibrium interest rate (B.2), thereby confirming our conjectural functional
form (B.5). Finally, from the optimality condition

ΓhB = ΓB = h(σst )
1

At
=

1

p̄Ct
=

1

p̄Yt
,
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and with the help of (A.3), we obtain

h (σst ) =
1

p̄
(
ε−1
ε

)( η
η+1)

· e
−
[
µ−

(
1−2ϕvol
2(θ+ϕy)

)[
(σ+σs

t )
2−σ2+

2µϕy
1−2ϕvol

]]
.

Finding Γ̃(σst ) The final term Γ̃(σst ) should satisfy the following ordinary differential
equation (ODE):

Γ̃ (σst ) =
1

ρ
·
(

η

η + 1

)
log

(
ε− 1

ε

)
+

1

ρ2

(
g − 1

2
σ2

)
+

1

ρ
·
[
µ−

(
1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]]
− 1

ρ

(
η

η + 1

)(
ε− 1

ε

)
· e(

η+1
η )

[
µ−

(
1−2ϕvol
2(θ+ϕy)

)[
(σ+σs

t )
2−σ2+

2µϕy
1−2ϕvol

]]

− 1

2ρ
Γ̃′ (σst ) ·

(
1

σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

+
1

2ρ
Γ̃′′ (σst ) ·

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2

.

We can rearrange the previous equation as

Γ̃ (σst ) +A (σst ) Γ̃
′ (σst ) + B (σst ) Γ̃

′′ (σst ) = R (σst ) (B.6)

where:

A (σst ) =
1

2ρ

(
1

σ + σst

)[
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2
]

B (σst ) =− 1

2ρ

(
θ + ϕy

1− 2ϕvol

)2(
σst

σ + σst

)2

R (σst ) =
1

ρ
·
(

η

η + 1

)
log

(
ε− 1

ε

)
+

1

ρ2

(
g − 1

2
σ2

)
+

1

ρ
·
[
µ−

(
1− 2ϕvol
2 (θ + ϕy)

)[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]]
− 1

ρ

(
η

η + 1

)(
ε− 1

ε

)
· e(

η+1
η )

[
µ−

(
1−2ϕvol
2(θ+ϕy)

)[
(σ+σs

t )
2−σ2+

2µϕy
1−2ϕvol

]]
.

Then, by Peano’s Theorem (Walter, 1973), we know that a function Γ̃ (σst ) solving the ODE
in equation (B.6) exists. Several points are worth noting. First, the initial assumption that
Γ depends on {Bh

t , At, σ
s
t , t}, i.e. Γ = Γ(Bh

t , At, σ
s
t , t), can be simplified to Γ(Bt, At, σ

s
t )

by dropping the explicit time dependence (and hence eliminating Γt from the derivations).

6
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Second, with aggregate bonds in zero net supply, Bt = 0 for all t, the representative house-
hold’s value function simplifies to:

Γ (At, σ
s
t ) =

1

ρ
· log(At) + Γ̃ (σst ) . (B.7)

B.1 Transversality condition

Using equation (B.7), the transversality condition of the representative household is given
by:

lim
t→∞

E0

[
e−ρt · Γ (At, σ

s
t )
]
= lim

t→∞
E0

[
e−ρt

1

ρ
log(At)

]
+ lim

t→∞
E0

[
e−ρtΓ̃ (σst )

]
= 0.

The first limit tends to zero, as shown by

lim
t→∞

E0

[
e−ρt

1

ρ
log(At)

]
= lim

t→∞
E0

[
e−ρt

1

ρ

[(
g − 1

2
σ2

)
t+ σZt

]]
=

1

ρ
lim
t→∞

e−ρt
(
g − 1

2
σ2

)
t = 0.

The second limit requires

lim
t→∞

E0

[
e−ρtΓ̃ (σst )

]
= 0,

which is trivially satisfied by Oksendal (1995) as (i) Γ̃(σst ) is well-defined by the ODE in
(B.6), (ii) the distribution of σst is stationary in the long run, as proven in Online Appendix
C.3; (iii) As shown in Online Appendix C.2, the process (A.4) is irreducible and stable,
thus converges to the stationary distribution.4

Sufficiency According to Bertsekas (2005) (Proposition 3.2.1) and Liberzon (2012) (Sec-
tion 5.1.4), the solution to the Hamilton-Jacobi-Bellman equation (B.1) is both necessary
and sufficient, as it satisfies the transversality condition and the the utility function is con-
cave in consumption and labor, with the budget constraint linear in bond holdings.5 There-
fore, our conjectured class of solutions, which follows an Ornstein-Uhlenbeck process,
satisfies the optimality conditions for the individual household.

4Global solutions converging to degenerate distributions with zero excess volatility (σs
t = 0 for all

t)—i.e., perfectly stabilized equilibrium, Martingale equilibrium, or Ornstein-Uhlenbeck process with µ =
0—trivially satisfy these conditions as well.

5It leads to a weakly concave stochastic Hamiltonian function. See Liberzon (2012) for details.

7
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C Characterizing Stability and Stationary Properties of
the Distribution: the Ornstein-Uhlenbeck Process

As explained in Online Appendix A, we examine the most general version of the model,
which incorporates the policy rule in (A.1) and defines the output gap as in equation (A.3).

C.1 Limit Behavior

Define
ut ≡ (σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol
,

and mt ≡ E0 (ut), then due to (A.5), ut follows

dut = −θutdt− 2

(
θ + ϕy

1− 2ϕvol

)
σstdZt,

leading to

ut = −θ
∫ t

0

uhdh− 2

(
θ + ϕy

1− 2ϕvol

)∫ t

0

σshdZh + p0.

Imposing the expectations operator E0, we obtain

dmt

dt
+ θmt = 0.

Solving the equation above:

mT ≡ E0

[
(σ + σsT )

2 − σ2 +
2µϕy

1− 2ϕvol

]
= e−θTm0, (C.1)

which can be rewritten as

E0

[
(σ + σsT )

2
]
= σ2 − 2µϕy

1− 2ϕvol
+ e−θTE0

[
(σ + σs0)

2 − σ2 +
2µϕy

1− 2ϕvol

]
.

Taking the limit as T → ∞, assuming that θ > 0, and using equation (C.1), we obtain:

lim
T→∞

E0

[
(σ + σsT )

2
]
= σ2 − 2µϕy

1− 2ϕvol
+ lim

T→∞
e−θTE0

[
(σ + σs0)

2 − σ2 +
2µϕy

1− 2ϕvol

]
= σ2 − 2µϕy

1− 2ϕvol
.

8
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Similarly, taking the limit of equation (A.3), assuming that θ > 0, and using equation (C.1),
we obtain:

lim
T→∞

E0

[
ŶT

]
= µ− 1− 2ϕvol

2(θ + ϕy)
lim
T→∞

e−θTE0

[
(σ + σs0)

2 − σ2 +
2µϕy

1− 2ϕvol

]
= µ.

Therefore, parameter µ in our Ornstein-Uhlenbeck process can be regarded as the long-run
expectation of Ŷt.

C.2 Process Stability: Foster-Lyapunov Drift Condition

We now demonstrate that the process {σst} defined in (A.4) is stable and converges to the
stationary distribution described in Online Appendix C. Following the techniques of Meyn
and Tweedie (1993, 1998, 2012), we select the Lyapunov function Φ(σst ) = (σst )

2, which
is positive definite and radially unbounded. The Lyapunov generator is given by:

LΦ(σst ) = Φ′(σst )µ̃(σ
s
t ) +

1

2
(σ̃(σst ))

2Φ′′(σst ).

The Foster-Lyapunov drift condition requires for there to exist some constants c > 0 and
d ≤ 0 such that

LΦ(σst ) ≤ −cΦ(σst ) + d, for all |σst | ≥ R, (C.2)

for some R > 0. This condition implies that outside a compact set |σst | ≤ R, the process
exhibits a negative drift relative to Φ. This negative drift is critical for establishing both the
tightness and stability of the process, ensuring convergence to its invariant measure (i.e.,
the stationary distribution).

Substituting the drift and diffusion terms into the Lyapunov generator yields:

LΦ(σst ) = −
(

σst
σ + σst

)
θ

[
(σ + σst )

2 − σ2 +
2µϕy

1− 2ϕvol

]
+ σ

(
θ + ϕy

1− 2ϕvol

)2
(σst )

2

(σ + σst )
3
.

(C.3)

9
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It is easy to notice that as σst → ∞, we obtain:6

lim
σs
t→∞

LΦ(σst ) ≃ −θ(σst )2.

Thus, for some constants 0 < c ≤ θ (with θ > 0) and d = 0, there exists an R suffi-
ciently large to satisfy the Foster-Lyapunov condition in equation (C.2). Since the process
is smooth and irreducible, the results in Meyn and Tweedie (1993, 1998, 2012) ensure its
long-run stability.

C.3 Stationary Distribution

We define n(σst , t) as the probability density function of σst , which satisfies the following
Kolmogorov Forward Equation:

∂n (σs, t)

∂t
= − d

dσs
[µ̃ (σs)n (σs, t)] +

d2

d(σs)2

[
1

2
σ̃(σs)2n (σs, t)

]
, (C.4)

where µ̃(σs) and σ̃(σs) are defined in process (A.4).
Setting ∂n(σs,t)

∂t
= 0 to obtain the stationary distribution, denoted n(σs), and integrating

(C.4) once:

µ̃ (σs)n (σs) =
d

dσs

[
1

2
σ̃(σs)2n (σs)

]
+ C1,

where C1 is the integration constant. Imposing the no-flux condition, C1 = 0, and defining
D(σs) ≡ σ̃(σs)2n(σs), we have

dD(σs)

dσs
=

2µ̃(σs)

σ̃(σs)2
D(σs),

which leads to
D(σs) ∝ exp

(∫
2µ̃(σs)

σ̃(σs)2
dσs
)
,

and results in a probability density function for the stationary distribution proportional to

n(σs) ∝ 1

σ̃(σs)2
exp

(∫
2µ̃(σs)

σ̃(σs)2
dσs
)
. (C.5)

6More specifically, we obtain from (C.3) that limσs
t→∞

LΦ(σs
t )

(σs
t )

2 = −θ.

10
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Substituting the expressions for µ̃(σs) and σ̃(σs) defined in (A.4) into equation (C.5)
and evaluating the integral yields:

n (σs) =
C2(

θ + ϕy
1− 2ϕvol

)2(
σst

σ + σst

)2 ·exp


−


θ

(
1− 2ϕvol
θ + ϕy

)2 [
(σs)2

2
+ 3σ2 log|σs|+ 3σσs − σ3

σs

]
+ θ

(
1− 2ϕvol
θ + ϕy

)2(
2µϕy

1− 2ϕvol
− σ

)[
log|σs| − σ

σs

]
+ log|σ + σs|




,

(C.6)
where C2 is the integration constant chosen so that the density integrates to one over the
domain of σs. Equation (C.6) defines the stationary distribution of σst , demonstrating that
the Ornstein–Uhlenbeck solution attains a stationary stochastic equilibrium. Note that this
distribution does not belong to any standard family.

Note that for µ = 0 and θ > 0 (see Property 2 of Proposition 3), we obtain C2 → 0 to
ensure that η(σst ) is a proper probability density function. This is consistent with the result
that the distribution degenerates at σs∞ = 0.

C.3.1 Limiting Case: Zero Fundamental Volatility

As fundamental volatility tends to zero (σ → 0), the long-run stationary distribution of
{σst} becomes

n (σs) = C̃2 · (σs)
−
(
1+

2θµϕy

(θ+ϕy)2
(1−2ϕvol)

)
e
−
(

θ(1−2ϕvol)
2(σs)2

2(θ+ϕy)2

)
. (C.7)

Moreover, if (i) the Ornstein-Uhlenbeck parameters satisfy θ > 0 and µ < 0, and (ii) the
Taylor rule coefficients satisfy ϕy > 0 and ϕvol < 1

2
, this distribution corresponds to the

generalized gamma distribution.

Generalized Gamma Distribution The generalized gamma distribution, GGD(a, d, p),
is defined by the probability density function

ñ(x) =
p/ad

Γ(d/p)
xd−1 exp

[
−
(x
a

)p]
.

where a > 0 is the scale parameter, d > 0 is the power-law shape parameter, p > 0 is the
exponential shape parameter, and Γ(·) denotes the gamma function. It is straightforward to

11
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verify that equation (C.7) conforms to this definition with the parametrization

a =

√
2(θ + ϕy)2

θ (1− 2ϕvol)
2 ,

d = − 2θµϕy
(θ + ϕy)2

(1− 2ϕvol) ,

p = 2.

Thus, in the long run, σst follows a generalized gamma distribution when σ → 0 and the
additional parameter restrictions hold.

Furthermore, by the properties of the generalized gamma distribution, the stationary
distribution of (σs∞)2 is given by GGD(a2, d/2, p/2). Since p/2 = 1 in this case, the
distribution reduces to a standard Gamma distribution, (σs∞)2 ∼ Gamma (a′, d′), where
a′ = a2 is the scale parameter and d′ = d/2 is the shape parameter.

12
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D Strong Solution

Based on Chapter 5.3, Weak and Strong Solutions of Øksendal (2003), proving that our
solution is strong requires verifying that the proposed solution for σst (or a transformation
such as (σ + σst )

2) satisfies both the Lipschitz continuity and the linear growth conditions.
Here, we focus on the case where µ < 0 and θ > 0;7 proofs for other cases are analogous.

To verify these conditions, define yt = (σ+σst )
2−σ2+ 2µϕy

1−2ϕvol
and rearrange equation

(A.5) as follows:

dyt = −θyt︸︷︷︸
≡v(yt)

dt+

[
2

(
θ + ϕy

1− 2ϕvol

)
σ − 2

(
θ + ϕy

1− 2ϕvol

)√
yt + σ2 − 2µϕy

1− 2ϕvol

]
︸ ︷︷ ︸

≡g(yt)

dZt,

where we defined v(yt) as the drift, and g(yt) as the volatility of the {yt} process.

D.1 Lipschitz Continuity

Lipschitz Continuity requires that for any y1, y2:

|v(y1)− v(y2)|+ |g(y1)− g(y2)| ≤ L · |y1 − y2|,

which we prove by showing that the following conditions separately hold:

|v(y1)− v(y2)| ≤ Lv · |y1 − y2|,

|g(y1)− g(y2)| ≤ Lg · |y1 − y2|,

which then allows us to trivially prove the original Lipschitz Continuity with L = Lv+Lg.

Drift term Since

|v(y1)− v(y2)| = |θ| · |y1 − y2|,

which leads to

|v(y1)− v(y2)| ≤ Lv · |y1 − y2|,

7In this case, σs
t ≥ 0 almost surely for all t, assuming σs

0 = 0.
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with Lv = |θ|, the drift function v(y) satisfies Lipschitz continuity.

Diffusion term From

|g(y1)− g(y2)| =

∣∣∣∣∣−2

(
θ + ϕy

1− 2ϕvol

)
·

(√
y1 + σ2 − 2µϕy

1− 2ϕvol
−

√
y2 + σ2 − 2µϕy

1− 2ϕvol

)∣∣∣∣∣ ,
we apply the mean value theorem: there is a constant ξ for any pair {y1, y2} such that√

y1 + σ2 − 2µϕy
1− 2ϕvol

−

√
y2 + σ2 − 2µϕy

1− 2ϕvol
=

1

2
√
ξ + σ2 − 2µϕy

1−2ϕvol

· (y1 − y2).

Therefore, we can express the previous expression as:

|g(y1)− g(y2)| =

∣∣∣∣∣∣
(

θ + ϕy
1− 2ϕvol

)
1√

ξ + σ2 − 2µϕy
1−2ϕvol

∣∣∣∣∣∣ · |y1 − y2|, (D.1)

The constant ξ defined above is specific to each pair; therefore, we require a constant that
uniformly satisfies the Lipschitz condition for any pair. Differentiating with respect to ξ,
we find that:

d

 1√
ξ + σ2 − 2µϕy

1−2ϕvol


dξ

< 0.

Note from (A.4) that with θ > 0 and µ < 0, we have σ̃(0) = 0 and µ̃(0) > 0. This implies
that σst = 0 is a natural boundary for the process {σst}. Consequently, the minimum of yt
occurs at σst = 0, yielding ymin = 2µϕy

1−2ϕvol
. Substituting this into the expression for ξ in

(D.1) gives:

|g(y1)− g(y2)| ≤ Lg · |y1 − y2| ,

where

Lg =
∣∣∣∣ 1σ ·

(
θ + ϕy

1− 2ϕvol

)∣∣∣∣ ,
14



Online Appendix: For Online Publication Only

satisfying Lipschitz continuity for the volatility function g(y).

D.2 Linear Growth Condition

The Linear Growth Condition requires:

|v(y)|2 + |g(y)|2 ≤ K ·
(
1 + |y|2

)
.

We prove the above equation by showing that the following conditions separately hold:

|v(y)|2 ≤ Kv ·
(
1 + |y|2

)
,

|g(y)|2 ≤ Kg ·
(
1 + |y|2

)
,

which then allow us to prove the Linear Growth Condition with K = Kv +Kg.

Drift term It is trivial to see that |v(y)|2 = |θ|2|y|2 ≤ Kv · (1 + |y|2) with Kv = θ2.

Diffusion term We see that

|g(y)|2 =

∣∣∣∣∣2
(

θ + ϕy
1− 2ϕvol

)
σ − 2

(
θ + ϕy

1− 2ϕvol

)√
y + σ2 − 2µϕy

1− 2ϕvol

∣∣∣∣∣
2

= 4

(
θ + ϕy

1− 2ϕvol

)2
[
σ −

√
y + σ2 − 2µϕy

1− 2ϕvol

]2
.

Since8

y + σ2 − 2µϕy
1− 2ϕvol

≥ σ2,

we obtain[
σ −

√
y + σ2 − 2µϕy

1− 2ϕvol

]2
< y + σ2 − 2µϕy

1− 2ϕvol

< 1 + |y|2 + σ2 − 2µϕy
1− 2ϕvol

< max

{
1 + σ2 − 2µϕy

1− 2ϕvol
, 1

}(
1 + |y|2

)
,

8Given that σs
t ≥ 0 for all t almost surely, when σs

t = 0, yt = ymin =
2µϕy

1−2ϕvol

15



Online Appendix: For Online Publication Only

leading to

|g(y)|2 < 4

(
θ + ϕy

1− 2ϕvol

)2

max

{
1 + σ2 − 2µϕy

1− 2ϕvol
, 1

}
︸ ︷︷ ︸

≡Kg

(
1 + |y|2

)
,

satisfying the Linear Growth Condition for the volatility function g(y).
Note that we defined yt = (σ + σst )

2 − σ2 + 2µϕy
1−2ϕvol

and proved that it permits a strong
solution. Thus, it is trivial to see that the conditions will also hold for (σ+ σst )

2 and for σst .
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E Constant Relative Risk Aversion (CRRA) Utility

We modify the baseline model by assuming a CRRA utility function with parameter γ. The
representative household solves:9

max
{Ch

s , L
h
s }s≥t

{Bh
s }s>t

Et
∫ ∞

t

e−ρ(s−t)

(Ch
s

)1−γ − 1

1− γ
−
(
Lhs
)1+ 1

η

1 + 1
η

 ds, s.t. dBh
t =

[
itB

h
t − ptC

h
t + wtL

h
t +Dt

]
dt.

Since most equilibrium expressions are similar to those in the main text with log-utility,
we summarize only the key equations. First, the real and nominal state price densities and
stochastic discount factors are given by:

dξrt
ξrt

= −
[
ρ+ γgCt − γ(γ + 1)

2

(
σCt
)2]

︸ ︷︷ ︸
≡rt

dt− γσCt dZt,

and

dQt ≡
dξNt
ξNt

= −
[
rt + πt − σPt (γσ

C
t + σPt )

]︸ ︷︷ ︸
≡it

dt−
[
γσCt + σPt

]
dZt.

From the Euler equation, the expected consumption growth is given by

Et

[
dCt
Ct

]
=

1

γ
(it − ρ)dt+

(γ + 1)

2
V art

(
dCt
Ct

)
.

Let σst denote the excess volatility of output growth, as defined earlier. Then, output Yt
follows the process:

dYt
Yt

=
1

γ

[
it − ρ+

γ(γ + 1)

2
(σ + σst )

2

]
dt+ (σ + σst )dZt, (E.1)

leading to

d lnYt =
1

γ

[
it − ρ+

1

2
γ2(σ + σst )

2

]
dt+ (σ + σst )dZt. (E.2)

9As in the main text, in equilibrium, we impose Ch
t = Ct, Lh

t = Lt, Bh
t = Bt = 0, ∀h, and Ct = Yt,

Dt = p̄Yt − wtLt.
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In a similar way to (E.1), natural output Y n
t follow

dY n
t

Y n
t

=
1

γ

[
rn − ρ+

γ(γ + 1)

2
σ2

]
dt+ σdZt, (E.3)

where the natural rate of interest rn is given by

rn = ρ+ γg − γ(γ + 1)

2
σ2.

Equation (E.3) can be written as

d lnY n
t =

1

γ

[
rn − ρ+

1

2
γ2σ2

]
dt+ σdZt. (E.4)

From equations (E.2) and (E.4), output gap Ŷt follows10

dŶt =
1

γ

[
it − rn + γ2

1

2

[
(σ + σst )

2 − σ2
]]
dt+ σstdZt

=
1

γ

[
it − rTt

]
dt+ σstdZt,

(E.5)

where the risk-adjusted natural rate rTt is similarly defined:

rTt = rn − 1

2
γ2
[
(σ + σst )

2 − σ2
]
.

Precautionary premium Defining the precautionary premium as ppt ≡ γ2(σ+ σst )
2, we

can express rTt as11

rTt = rn − 1

2
(ppt − ppnt ) , (E.6)

which has the same form as the log-utility case.

10Note that 1
γ is multiplied to the gap between it and rTt as it acts as an elasticity of intertemporal substi-

tution.
11This definition of ppt is equivalent to the risk premium in a canonical consumption-based asset pricing

model.

18



Online Appendix: For Online Publication Only

Martingale equilibrium We can construct the martingale equilibrium similarly in a sim-
ilar manner. Plugging policy rule (A.1) into equation (E.5):

dŶt =
1

γ

[
ϕyŶt +

[
γ2 − 2ϕvol

] 1
2

[
(σ + σst )

2 − σ2
]]

︸ ︷︷ ︸
=0

dt+ σstdZt.

Under the assumption that Ŷt is a local martingale, we obtain

Ŷt = − 1

2ϕy

[
γ2 − 2ϕvol

] [
(σ + σst )

2 − σ2
]
.

Defining ϕtotal ≡ ϕy
γ2−2ϕvol

, the previous expression becomes:

Ŷt = − 1

2ϕtotal

[
(σ + σst )

2 − σ2
]
. (E.7)

Then, from equation (E.7), we obtain

d(σ + σst )
2 = −2ϕtotalσ

s
tdZt,

and

dσst = −ϕ2
total

(σst )
2

2(σ + σst )
3
dt− ϕtotal

(
σst

σ + σst

)
dZt. (E.8)

When γ = 1 (i.e., under log-utility), equation (E.8) reduces to equation (26) in Section 4.

Ornstein-Uhlenbeck equilibrium If we assume that Ŷt follows an Ornstein-Uhlenbeck
process:

dŶt = θ
[
µ− Ŷt

]
dt+ σstdZt, (E.9)

then from

dŶt =
1

γ

[
ϕyŶt +

[
γ2 − 2ϕvol

] 1
2

[
(σ + σst )

2 − σ2
]]

︸ ︷︷ ︸
=θ(µ−Ŷt)

dt+ σstdZt,
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we obtain

Ŷt =

(
γθ

γθ + ϕy

)
µ− 1

2

(
1

γθ + ϕy

)[
γ2 − 2ϕvol

] [
(σ + σst )

2 − σ2
]
. (E.10)

If we define ϕ̃total ≡ γθ+ϕy
γ2−2ϕvol

,12 we obtain

Ŷt =

(
γθ

γθ + ϕy

)
µ− 1

2ϕ̃total

[
(σ + σst )

2 − σ2
]
,

from which with the help of equations (E.9) and (E.10), we obtain

d(σ + σst )
2 = −2θϕ̃total

[(
ϕy

γθ + ϕy

)
µ+

1

2ϕ̃total

[
(σ + σst )

2 − σ2
]]
dt− 2ϕ̃totalσ

s
tdZt,

and

dσst =− θϕ̃total

(
1

σ + σst

)[(
ϕy

γθ + ϕy

)
µ+

1

2ϕ̃total

[
(σ + σst )

2 − σ2
]
− ϕ̃2

total

(σst )
2

2(σ + σst )
3

]
dt

− ϕ̃total

(
σst

σ + σst

)
dZt.

Perfect stabilization and growth targeting The policy rule (A.1) with ϕvol = γ2 achieves
full stabilization and yields Ŷt = 0 for all t as the unique stable equilibrium. Or, with pre-
cautionary premium as defined in (E.6), we can write:

it = rn − 1

2
(ppt − ppnt )︸ ︷︷ ︸
=rTt

+ϕyŶt, (E.11)

which is of the same form as in the log-utility case of Section 4.
Finally, we can rewrite (E.11) as a growth mandate rule:

Et (d log Yt)

dt
=
Et (d log Y

n
t )

dt
+
ϕy
γ
Ŷt. (E.12)

12Note that it is just a natural extension of ϕtotal constant in (E.7), as θ = 0 corresponds to the martingale
equilibrium case.
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The expected growth rate of natural output is given by:

Et (d log Y
n
t )

dt
= g − 1

2γ
σ2,

so equation (E.12) can be rewritten as:

Et (d log Yt)

dt
=

(
g − 1

2γ
σ2

)
+
ϕy
γ
Ŷt.

A possible interpretation is that the central bank in practice follows the rule

Et (d log Yt)

dt
=

(
g − 1

2γ
σ2

)
+ ϕ̃yŶt,

which results in an implicit output gap target in the Taylor rule for interest rates, with
ϕy = γϕ̃y.
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F Model with Sticky Prices à la Rotemberg (1982)

In this section, we derive a New Keynesian Phillips curve based on nominal rigidities à la
Rotemberg (1982). First, we present the equilibrium conditions when firms are monopolis-
tically competitive as in a canonical New Keynesian model (Woodford, 2003).

F.1 Equilibrium Conditions

Firm i setting its price pit when pt is the price aggregator faces the demand given by

D(pit, pt) =

(
pit
pt

)−ϵ

Yt. (F.1)

Other equilibrium conditions do not change. The optimality conditions for households are
given by

1

ptCt
=
L
1/η
t

wt
, (F.2)

and
dYt
Yt

=
(
it + (σ + σst )

2 − πt − ρ
)︸ ︷︷ ︸

≡µYt

dt+ (σ + σst )dZt. (F.3)

In equilibrium, Yt = Ct = AtLt hold. Natural output Y n
t is given by

Y n
t = At

(
ϵ− 1

ϵ

) η
η+1

, (F.4)

and output gap Ŷt is similarly defined as follows:

Ŷt = log

(
Yt
Y n
t

)
. (F.5)

Combining equations (F.2) to (F.5), we obtain:

wt
ptAt

=

(
ϵ− 1

ϵ

)
e(

η+1
η )Ŷt . (F.6)
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F.2 Firm Price Setting

The price pit of an individual firm i evolves according to:

dpit = πitp
i
tdt. (F.7)

From firm i’s perspective, the current price pit is taken as given and acts as a state variable
when solving for πit, which the firm controls at each point t.

We assume that firms face price nominal rigidities à la Rotemberg (1982), i.e., they
need to pay convex adjustment costs whenever πit ̸= 0, given by:

Θ(πit) =
τ

2
(πit)

2ptYt.

For simplicity, we assume that this costs are rebated to the representative household in a
lump-sum fashion, so no output ends up “missing” in the final equilibrium.

Therefore, nominal firm profits Ψi
t at time t are given by:

Ψi
t =

[
pit −

wt
At

]
D(pit, pt)−Θ(πit)

= ptYt

[(
pit
pt

)1−ϵ

− wt
ptAt

(
pit
pt

)−ϵ

− τ

2
(πit)

2

]
.

Let Sit be a vector containing the state variables of the firm’s dynamic optimization
problem. Therefore, it contains the current price of the firm, pit ∈ Sit . We can express this
vector of states as following an Ito process of the form:

dSit = µS,it dt+GS,i
t dZt,

where µS,it andGS,i
t are vectors containing the drift and stochastic components of the states.

For example, πitp
i
t is a component of vector µS,it .

We define the value function of firm i, denoted V (Sit), as the present discounted sum of
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the real profits of the firm on the optimal path, formally:

V (Sit) = max
{πi

s}s≥t

Et
∫ ∞

t

ξrs
ξrt

Ψi
s

ps
ds

= max
{πi

s}s≥t

Et
∫ ∞

t

e−ρ(s−t)
Ct
Cs
Ys

[(
pis
ps

)1−ϵ

− ws
psAs

(
pis
ps

)−ϵ

− τ

2
(πis)

2

]
ds,

where ξrt = e−ρt 1
Ct

is the (real) state price density as defined in the main text. We then can
write the Hamilton-Jacobi-Bellman (HJB) equation of the firm’s problem as:

ρV (Sit) = max
{πi

s}s≥t

{
Yt

[(
pit
pt

)1−ϵ

− wt
ptAt

(
pit
pt

)−ϵ

− τ

2
(πit)

2

]
+
Et [dV (Sit)]

dt

}
. (F.8)

Based on Ito’s lemma, we can express the process for V (Sit) as:

dV (Sit) =

[
(∇SV )TµS,it +

1

2
Tr

[(
GS,i
t

)T
(HSV )GS,i

t

]]
dt+ (∇SV )TGS,i

t dZt,

where ∇SV and HSV stand for the gradient and Hessian of the value function V with
respect to the vector of states Sit , respectively.

This allows to alternatively write the value function as:

ρV (Sit) = max
{πi

s}s≥t

{
Yt

[(
pit
pt

)1−ϵ

− wt
ptAt

(
pit
pt

)−ϵ

− τ

2
(πit)

2

]
+ (∇SV )TµS,it +

1

2
Tr

[(
GS,i
t

)T
(HSV )GS,i

t

]}
.

(F.9)
Computing the first-order condition of equation (F.9) with respect to πis, we obtain:

∂V (Sit)

∂pit
= τYt

πit
pit
. (F.10)

Taking derivative of the HJB equation in (F.8) evaluated at the optimum with respect to
the price of the individual firm, we obtain:

ρ
∂V i

t

∂pit
= Yt

[
ϵ
wt
ptAt

(
1

pt

)(
pit
pt

)−(ϵ+1)

− (ϵ− 1)

(
1

pt

)(
pit
pt

)−ϵ
]
+

Et

[
d

(
∂V i

t

∂pit

)]
dt

.

(F.11)
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Plugging equation (F.10) into (F.11), we obtain:

ρ

(
τYt

πit
pit

)
= Yt

[
ϵ
wt
ptAt

(
1

pt

)(
pit
pt

)−(ϵ+1)

− (ϵ− 1)

(
1

pt

)(
pit
pt

)−ϵ
]
+

Et

[
d

(
τYt

πit
pit

)]
dt

.

(F.12)

Let us assume that individual firm inflation πit follows a geometric process of the form:

dπit = µπ,it π
i
tdt+ σπ,it πitdZt. (F.13)

Based on Ito’s lemma, together with equations (F.3), (F.7) and (F.13), we obtain:

d

(
τYt

πit
pit

)
=

(
τYt

πit
pit

)[
µYt + µπ,it − πit + σπ,it (σ + σst )

]
dt+

(
τYt

πit
pit

)
(σ + σst + σπ,it )dZt.

Taking expectations and using the fact that µπ,it =
Et[dπi

t]
πi
tdt

, we obtain:

Et
[
d

(
τYt

πit
pit

)]
dt

=

(
τYt

πit
pit

)[
Et [dπit]
πitdt

+ µYt − πit + σπ,it (σ + σst )

]
. (F.14)

Plugging equation (F.14) into equation (F.12) and rearranging, we obtain:

ρ

(
τYt

πit
pit

)
=

(
τYt

πit
pit

)(
1

πit

)(
ϵ− 1

τ

)[(
ϵ

ϵ− 1

)
wt
ptAt

(
pit
pt

)−1

− 1

](
pit
pt

)1−ϵ

+

(
τYt

πit
pit

)[
Et [dπit]
πitdt

+ µYt − πit + σπ,it (σ + σst )

]
,

which becomes

Et
[
dπit
]
=

[
(ρ+ πit − µYt − σπ,it (σ + σst ))π

i
t −
(
ϵ− 1

τ

)[(
ϵ

ϵ− 1

)
wt
ptAt

(
pit
pt

)−1

− 1

](
pit
pt

)1−ϵ
]
dt.

(F.15)

Under the symmetric equilibrium, i.e., pit = pt,∀i, πit = πt,∀i, and σπ,it = σπt ,∀i, equation
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(F.15) becomes:

Et [dπt] =
[
(ρ+ πt − µYt − σπt (σ + σst ))πt −

(
ϵ− 1

τ

)[(
ϵ

ϵ− 1

)
wt
ptAt

− 1

]]
dt.

(F.16)

Finally, we plug equation (F.6) into (F.16) and obtain

Et [dπt] =
[
(ρ+ πt − µYt − σπt (σ + σst ))πt −

(
ϵ− 1

τ

)[
e(

η+1
η )Ŷt − 1

]]
dt. (F.17)

which is the New Keynesian Phillips curve in our environment.
We can further replace the expression for µYt in equation (F.3) into (F.17), and use

equation (F.13) to obtain:

dπt =

[
[2(ρ+ πt)− it − (σ + σst )(σ + σst + σπt )]πt −

(
ϵ− 1

τ

)[
e(

η+1
η )Ŷt − 1

]]
dt+ σπt πtdZt.

(F.18)

Interpretation Equation (F.17) can be interpreted as follows. An increase in µYt prompts
households to borrow against the future and raise current consumption, leading to higher
aggregate demand and higher current inflation while reducing dπt on average. Similarly, a
rise in current income, Ŷt, increases inflation now and lowers dπt on average.

Moreover, a higher σπt (σ+σ
s
t ) implies that inflation is typically higher when aggregate

output is higher too. It raises the expected marginal price-adjustment cost (see equation
(F.10)) in the future (after dt period), inducing firms to raise inflation now and leading to
higher dπt on average.

Linearization By approximating (πt − µYt − σπt (σ + σst ))πt ≃ 0 and using

e(
η+1
η )Ŷt − 1 ≃

(
η + 1

η

)
Ŷ ,

equation (F.17) becomes

Et(dπt) =
(
ρπt − κŶt

)
dt, where κ ≡ (ϵ− 1)(η + 1)

τη
> 0,

leading to a standard continuous-time New Keynesian Phillips curve, e.g., Werning (2012).
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F.3 Equilibrium with Inflation and Endogenous Volatility

In this section, we prove that our main result—namely, that an equilibrium with endogenous
σst ̸= 0 exists unless monetary policy is adjusted to follow the rule in Section 4—holds even
in the presence of inflation. We base our proof on the derivation of the Phillips curve in
equation (F.18).

We work with the following three-equations system of the non-linear New Keynesian
model with pricing à la Rotemberg (1982), given by:

dπt =

[
[2(ρ+ πt)− it − (σ + σst )(σ + σst + σπt )] πt −

(
ϵ− 1

τ

)[
e(

η+1
η )Ŷt − 1

]]
dt+ σπt πtdZt,

(F.19)

dŶt =

[
it − πt −

(
rn − 1

2
(σ + σst )

2 +
1

2
σ2

)]
dt+ σstdZt, (F.20)

with monetary policy given by

it = rn + ϕyŶt + ϕππt − ϕvol
[
(σ + σst )

2 − σ2
]
, (F.21)

where the natural rate of interest is given by rn = ρ+ g − σ2.
Plugging monetary policy (F.21) into (F.19) and (F.20), we obtain:

dπt =

[ [
2ρ− rn − ϕvolσ

2 + (2− ϕπ)πt − ϕyŶt − (σ + σst ) [(1− ϕvol)(σ + σst ) + σπt ]
]
πt

−
(
ϵ− 1

τ

)[
e(

η+1
η )Ŷt − 1

] ]
dt+ σπt πtdZt,

(F.22)
and

dŶt =

[
ϕyŶt + (ϕπ − 1)πt +

(
1

2
− ϕvol

)[
(σ + σst )

2 − σ2
]]
dt+ σstdZt. (F.23)

In a manner similar to the baseline case with fully rigid prices, we now conjecture a so-
lution to the system given by equations (F.22) and (F.23) and verify that the conjectured
equilibrium indeed holds. Because the system now includes inflation πt, we introduce an
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additional assumption involving πt. Formally, we conjecture:

dŶt = θ
[
µ− Ŷt

]
dt+ σstdZt, (F.24)

πt = f(σst ), (F.25)

where (F.24) is the usual Ornstein-Uhlenbeck conjecture for the output gap process. Equa-
tion (F.25) conjectures that inflation is a smooth function of excess volatility, σst . Our goal
is to prove that there exists a smooth function f(·) such that (F.24) and (F.25) jointly con-
stitute an equilibrium.

Combining equations (F.23), (F.24) and (F.25), we obtain an expression for output gap
as:

Ŷt =

(
θ

θ + ϕy

)
µ−

(
1

θ + ϕy

)[
(ϕπ − 1)f(σst ) +

(
1

2
− ϕvol

)[
(σ + σst )

2 − σ2
]]
.

(F.26)

Plugging equations (F.26) and (F.25) into equations (F.22) and (F.24), we obtain:

dπt =
[
[ψ1 + ψ2f(σ

s
t )− (σ + σst ) [ψ3(σ + σst ) + σπt ]] f(σ

s
t )− ψ4

[
eψ5−ψ6f(σs

t )−ψ7(σ+σs
t )

2 − 1
]]
dt

+ σπt f(σ
s
t )dZt,

(F.27)
and

dŶt =
[
ψ8 + ψ9f(σ

s
t ) + ψ10(σ + σst )

2
]
dt+ σstdZt, (F.28)

where the constants are defined as:

ψ1 = 2ρ− rn −
[(

θ

θ + ϕy

)
ϕvol +

1

2

(
ϕy

θ + ϕy

)]
σ2 −

(
θϕy
θ + ϕy

)
µ,

ψ2 = 1 +

(
θ

θ + ϕy

)
(1− ϕπ), ψ3 =

(
θ

θ + ϕy

)
(1− ϕvol) +

(
ϕy

θ + ϕy

)
1

2
,

ψ4 =

(
ϵ− 1

τ

)
, ψ5 =

(
η + 1

η

)(
θ

θ + ϕy

)
µ+

(
η + 1

η

)(
1

θ + ϕy

)(
1

2
− ϕvol

)
σ2,

ψ6 =

(
η + 1

η

)(
ϕπ − 1

θ + ϕy

)
, ψ7 =

(
η + 1

η

)(
1

θ + ϕy

)(
1

2
− ϕvol

)
,

ψ8 =

(
θϕy
θ + ϕy

)
µ−

(
θ

θ + ϕy

)(
1

2
− ϕvol

)
σ2, ψ9 =

(
θ

θ + ϕy

)
(ϕπ − 1),

ψ10 =

(
θ

θ + ϕy

)(
1

2
− ϕvol

)
.

28



Online Appendix: For Online Publication Only

Equation (F.26) can be rewritten as N(Ŷt, σ
s
t ) = 0, where:

N(Ŷt, σ
s
t ) ≡ Ŷt −

(
θ

θ + ϕy

)
µ+

(
1

θ + ϕy

)[
(ϕπ − 1)f(σst ) +

(
1

2
− ϕvol

)[
(σ + σst )

2 − σ2
]]
,

which implicitly determines σst as a function of Ŷt. To compute the implicit derivatives, we
compute the following, with NŶ = 1, NŶ Ŷ = 0, NŶ σs = 0:

Nσs =

(
1

θ + ϕy

)
[(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )] ,

Nσsσs =

(
1

θ + ϕy

)
[(ϕπ − 1)f ′′(σst ) + (1− 2ϕvol)] ,

from which we can compute the implicit derivative of σst with respect to Ŷt as:

∂σst

∂Ŷt
= −NŶ

Nσs

= −
[

θ + ϕy
(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )

]
, (F.29)

and the second-order implicit derivative as:

∂2σst

∂2Ŷt
= −(θ + ϕy)

2

[
(ϕπ − 1)f ′′(σst ) + (1− 2ϕvol)

[(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )]
3

]
. (F.30)

Using Ito’s lemma, together with equations (F.28), (F.29), and (F.30), we obtain the
following expression for the process of σst :

dσst =−
[
ψ11

ψ8 + ψ9f(σ
s
t ) + ψ10(σ + σst )

2

ψ12f ′(σst ) + ψ13(σ + σst )
+ ψ14

ψ12f
′′(σst ) + ψ13

[ψ12f ′(σst ) + ψ13(σ + σst )]
3 (σ

s
t )

2

]
dt

−
[

ψ11

ψ12f ′(σst ) + ψ13(σ + σst )

]
σstdZt,

(F.31)
where the constants are defined as:

ψ11 = θ + ψy,

ψ12 = ϕπ − 1,

ψ13 = 1− 2ϕvol,

ψ14 =
(θ + ψy)

2

2
.
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Next, applying Ito’s lemma to equation (F.25) and using equation (F.31), we obtain:

dπt =−

[
ψ11f

′(σst )
ψ8 + ψ9f(σ

s
t ) + ψ10(σ + σst )

2

ψ12f ′(σst ) + ψ13(σ + σst )
+ ψ14

ψ13 (σ
s
t )

2

[ψ12f ′(σst ) + ψ13(σ + σst )]
3 (f

′(σst )− f ′′(σst )(σ + σst ))

]
dt

−
[

ψ11f
′(σst )

ψ12f ′(σst ) + ψ13(σ + σst )

]
σstdZt,

(F.32)
which expresses the process of inflation πt as a sole function of σst . Now, we can compare
(F.32) with the process described by the Phillips curve in equation (F.27). By comparing the
stochastic components of equations (F.27) and (F.32), we find that the volatility of inflation
must be equal to:

σπt = −
[

ψ11f
′(σst )

ψ12f ′(σst ) + ψ13(σ + σst )

](
σst

f(σst )

)
. (F.33)

Finally, comparing the trend components of equations (F.27) and (F.32), and substi-
tuting equation (F.33) where necessary, we obtain that the following condition must be
satisfied:

−

[
ψ11f

′(σst )
ψ8 + ψ9f(σ

s
t ) + ψ10(σ + σst )

2

ψ12f ′(σst ) + ψ13(σ + σst )
+ ψ14

ψ13 (σ
s
t )

2

[ψ12f ′(σst ) + ψ13(σ + σst )]
3 (f

′(σst )− f ′′(σst )(σ + σst ))

]

=

[
ψ1 + ψ2f(σ

s
t )− (σ + σst )

[
ψ3(σ + σst )−

[
ψ11f

′(σst )

ψ12f ′(σst ) + ψ13(σ + σst )

](
σst

f(σst )

)]]
f(σst )

− ψ4

[
eψ5−ψ6f(σs

t )−ψ7(σ+σs
t )

2 − 1
]
,

which can be rearranged as

f ′′(σst ) =
f ′(σst )

σ + σst
+

[ψ12f
′(σst ) + ψ13(σ + σst )]

3

ψ14ψ13(σst )
2(σ + σst )



ψ11f
′(σst )

ψ8 + ψ9f(σ
s
t ) + ψ10(σ + σst )

2

ψ12f ′(σst ) + ψ13(σ + σst )

+

[
ψ1 + ψ2f(σ

s
t )

− (σ + σst )

[
ψ3(σ + σst )−

[
ψ11f

′(σst )

ψ12f ′(σst ) + ψ13(σ + σst )

]
σst

f(σst )

]]
f(σst )

− ψ4

[
eψ5−ψ6f(σs

t )−ψ7(σ+σs
t )

2 − 1
]


︸ ︷︷ ︸

≡K(σs
t ,f(σ

s
t ),f

′(σs
t ))

.

(F.34)
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Define the following vector of variables x(σst ) = [x1(σ
s
t ), x2(σ

s
t )]

′, with elements de-
fined as:

x1(σ
s
t ) = f(σst ),

x2(σ
s
t ) = f ′(σst ).

Then the ordinary differential equation (ODE) in (F.34) can be rewritten as the following
first-order system: x′1(σst ) = x2(σ

s
t ),

x′2(σ
s
t ) = K (σst , x1(σ

s
t ), x2(σ

s
t )) .

In vectorized form, we can define K̃ (σst , x(σ
s
t )) = [x2(σ

s
t ), K (σst , x1(σ

s
t ), x2(σ

s
t ))]

′, so
that:

x′(σst ) = K̃ (σst , x(σ
s
t )) .

As K̃(σst , x1, x2) is continuous in a closed “box” (or “rectangle”) around any (σs0, x1(σ
s
0), x2(σ

s
0)),

we can apply Peano’s theorem (Walter, 1973), which guarantees that there exists at least
one local solution

(
x1(σ

s
t ), x2(σ

s
t )
)

that satisfies the ordinary differential equation (F.34).
Therefore, f(σst ) = x1(σ

s
t ) is a local solution to the original second-order ordinary differ-

ential equation (F.34). Since this proof holds over the entire domain of σst , it guarantees the
existence of a function f(·) such that the output gap follows the process in (F.24) for any
value of σst .

This solution differs from the perfectly stabilized path, defined by σst = πt = Ŷt = 0 for
all t. In particular, setting πt = σst = 0 contradicts equation (F.31), which implies that dσqt
generally exhibits a nonzero drift when evaluated at zero excess volatility. This contradicts
our assumption that σst = 0 for all t. Hence, the conjectured equilibrium in (F.24) and
(F.25) is distinct from the perfectly stabilized path.
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G Model with Sticky Prices à la Calvo (1983)

In this section, we derive a New Keynesian Phillips curve based on nominal rigidities à la
Calvo (1983). First, we present the equilibrium conditions when firms are monopolistically
competitive as in a canonical New Keynesian model (Woodford, 2003).

G.1 Equilibrium Conditions

Firm i setting its price pit when pt is the price aggregator faces the demand given by

D(pit, pt) =

(
pit
pt

)−ϵ

Yt.

and the following production function:

Y i
t = AtL

i
t, (G.1)

with demand equal to supply in equilibrium, D(pit, pt) = Y i
t . The price aggregatior is given

by

pt =

(∫ 1

0

(pit)
1−ϵdi

) 1
1−ϵ

. (G.2)

Other equilibrium conditions remain the same. The optimality conditions for house-
holds are given by

1

ptCt
=
L
1/η
t

wt
, (G.3)

and
dYt
Yt

=
(
it + (σ + σst )

2 − πt − ρ
)︸ ︷︷ ︸

≡µYt

dt+ (σ + σst )dZt. (G.4)

In equilibrium, Yt = Ct holds. Natural output Y n
t is given by

Y n
t = At

(
ϵ− 1

ϵ

) η
η+1

,

and output gap Ŷt is similarly defined as follows:

Ŷt = log

(
Yt
Y n
t

)
. (G.5)
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Combining equations (G.3) to (G.5), we obtain:

dŶt =

[
it − πt −

(
rn − 1

2
(σ + σst )

2 +
1

2
σ2

)]
dt+ σstdZt, (G.6)

wt
ptAt

=

(
ϵ− 1

ϵ

)
e(

η+1
η )Ŷt .

We define price dispersion as:

∆t =

∫ 1

0

(
pit
pt

)−ϵ

di, (G.7)

and (G.1) and the linear aggregation of labor, i.e.,Lt =
∫ 1

0
Litdi, we obtain:

Yt =
AtLt
∆t

.

Finally, we conjecture that the aggregate price follows a diffusion process of the form:

dpt = πtptdt+ σpt ptdZt (G.8)

where πt stands for inflation, and σpt is a potentially endogenous and unknown price volatil-
ity.

G.2 Firms Problem

Firms set prices following Calvo (1983), with the framework adapted to continuous time.
Over an interval of length dt, from t to t + dt, an individual firm i adjusts its price with
probability δ dt. From the perspective of time 0, the probability that a firm resets its price
for the first time at time t is:

δe−δtdt = δdt︸︷︷︸
change now

· e−δt︸︷︷︸
No change until t

.

Formally, we can describe the evolution of individual firm prices as jump processes:

dpit =
(
pi,∗t − pit−

)
dΛit, where: dΛit =

1, with probability δdt

0, with probability 1− δdt
, (G.9)
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where dΛit is an i.i.d Poisson random variable, with rate parameter δ ≥ 0, pit− stands for
the individual price of the firm just before t, and pi,∗t stands for the optimal reset price for
firm i at time t.

Nominal firm profits Ψi
t at time t are given by:

Ψi
t =

[
pit −

wt
At

]
D(pit, pt)

= ptYt

[(
pit
pt

)1−ϵ

− wt
ptAt

(
pit
pt

)−ϵ
]
.

Define Ψi
s|t as the nominal profits at time s ≥ t of an individual firm i that last reset its

prices in time t, formally:

Ψi
s|t = psYs

[(
pit
ps

)1−ϵ

− ws
psAs

(
pit
ps

)−ϵ
]
.

At time t, a price-changing firm i chooses pi,∗t to solve

max
pi,∗t

Et
∫ ∞

t

e−δ(s−t)
ξrs
ξrt

Ψi
s|t

ps
ds = Et

∫ ∞

t

e−(ρ+δ)(s−t)Ct
Cs
Ys

(pi,∗t
ps

)1−ϵ

− ws
psAs

(
pi,∗t
ps

)−ϵ
 ds,

where ξrt = e−ρt 1
Ct

is the (real) state price density as defined in the main text.
Computing the first-order condition with respect to pi,∗t and rearranging, we obtain:

p∗t
pt

≡ pi,∗t
pt

=

≡Ft︷ ︸︸ ︷
Et
∫ ∞

t

e−(ρ+δ)(s−t)
(
ps
pt

)ϵ
e(

η+1
η )Ŷsds

Et
∫ ∞

t

e−(ρ+δ)(s−t)
(
ps
pt

)ϵ−1

ds︸ ︷︷ ︸
≡Gt

=
Ft
Gt

, (G.10)

where it follows that the optimal reset price is the same for all firms, pi,∗t = p∗t for all i.
Based on the Hamilton-Jacobi-Bellman (HJB) method, we can find a recursive expres-
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sion for Ft and Gt as:

(ρ+ δ)Ft = e(
η+1
η )Ŷs +

Et [dFt]

dt
,

(ρ+ δ)Gt = 1 +
Et [dGt]

dt
.

This can be rewritten as:

dFt =

[
(ρ+ δ)− 1

Ft
e(

η+1
η )Ŷs

]
︸ ︷︷ ︸

≡µFt

Ftdt+ σFt FtdZt, (G.11)

dGt =

[
(ρ+ δ)− 1

Gt

]
︸ ︷︷ ︸

≡µGt

Gtdt+ σGt GtdZt, (G.12)

where σFt and σGt are endogenous unknown variables.

G.3 Price Process

Using equation (G.2), we can find an expression for the following derivatives:

dpt

d
(∫ 1

0
(pit)

1−ϵdi
) = −

(
1

ϵ− 1

)
pϵt,

d2pt

d2
(∫ 1

0
(pit)

1−ϵdi
) =

ϵ

(ϵ− 1)2
p2ϵ−1
t ,

which we can use to obtain an expression for the price process as:

dpt = −
(

1

ϵ− 1

)
pϵtd

(∫ 1

0

(pit)
1−ϵdi

)
+

1

2

ϵ

(ϵ− 1)2
p2ϵ−1
t

[
d

(∫ 1

0

(pit)
1−ϵdi

)]2
. (G.13)

Now notice that by the individual price process in (G.9) and pi,∗t = p∗, we have that:

d(pit)
1−ϵ =

[
(p∗t )

1−ϵ − (pit−)
1−ϵ] dΛit
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Then, we can compute:

d

∫ 1

0

(pit)
1−ϵdi =

∫ 1

0

d(pit)
1−ϵdi = Ei,t

[
d(pit)

1−ϵ]
= δ

[
(p∗t )

1−ϵ − (pt)
1−ϵ] dt = δ(pt)

1−ϵ

[(
p∗t
pt

)1−ϵ

− 1

]
dt.

(G.14)

Plugging equations (G.10) and (G.14) into equation (G.13) and eliminating all terms of
order higher than dt, we obtain

dpt =

(
δ

ϵ− 1

)[
1−

(
Ft
Gt

)1−ϵ
]
ptdt.

which validates the conjecture in equation (G.8) with σpt = 0 and inflation given by:

πt =

(
δ

ϵ− 1

)[
1−

(
Ft
Gt

)1−ϵ
]
. (G.15)

For later use, we can rearrange the previous expression as:

Ft
Gt

=

[
1−
(
ϵ− 1

δ

)
πt

] 1
1−ϵ

. (G.16)

G.4 Price Dispersion

From equation (G.7), we observe that price dispersion can be alternatively interpreted as a
cross-sectional expectation on price dispersion

∆t = Ei,t

[(
pit
pt

)−ϵ
]
,

where Ei,t stands for the expectations operator over the cross section i. As reset prices pi,∗t
are the same for firms resetting on the same instant, i.e., pi,∗t = p∗t ,

13 we obtain

∆t =

∫ t

−∞
δe−δ(t−s)

(
ps
pt

)−ϵ

ds. (G.17)

13See Woodford (2003) for the derivation of (G.17).
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We can now differentiate equation (G.17) with respect to time to obtain:

d∆

dt
= δe−δ(t−t)

(
pt
pt

)−ϵ

︸ ︷︷ ︸
boundary term

+

∫ t

−∞

d

dt

{
δe−δ(t−s)

(
ps
pt

)−ϵ
}
ds

= δ +

[
ϵ

(
1

pt

)
dpt
dt

− δ

] ∫ t

−∞
δe−δ(t−s)

(
ps
pt

)−ϵ

ds

= δ + [ϵπt − δ] ∆t,

(G.18)

where the last line follows from equations (G.17) and (G.8). We can rearrange (G.18)
further as:

d∆t = [δ(1−∆t) + ϵπt∆t] dt.

G.5 Inflation Process

We now compute the following derivatives from (G.15) and (G.16):

∂πt
∂Ft

= δ

(
Ft
Gt

)1−ϵ(
1

Ft

)
= [δ−(ϵ− 1)πt]

(
1

Ft

)
,

∂πt
∂Gt

= −δ
(
Ft
Gt

)1−ϵ(
1

Gt

)
= − [δ−(ϵ− 1)πt]

(
1

Gt

)
,

∂2πt
∂F 2

t

= −ϵδ
(
Ft
Gt

)1−ϵ(
1

Ft

)2

= −ϵ [δ−(ϵ− 1)πt]

(
1

Ft

)2

,

∂2πt
∂G2

t

= −(ϵ− 2)δ

(
Ft
Gt

)1−ϵ(
1

Gt

)2

= −(ϵ− 2) [δ−(ϵ− 1)πt]

(
1

Gt

)2

,

∂2πt
∂Ft∂Gt

= (ϵ− 1)δ

(
Ft
Gt

)1−ϵ(
1

FtGt

)
= (ϵ− 1) [δ−(ϵ− 1)πt]

(
1

FtGt

)
.

Using equations (G.11), (G.12), (G.15) and the derivatives above together with Ito’s
Lemma to find an expression for the inflation process:

dπt = [δ − (ϵ− 1)πt]

[
(µFt − µGt )−

1

2

[
ϵ(σF )2 + (ϵ− 2)(σGt )

2
]
+ (ϵ− 1)σFt σ

G
t

]
dt

+ [δ − (ϵ− 1)πt] (σ
F
t − σGt )dZt,
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which, after substituting the expressions for µFt and µGt in (G.11) and (G.12), becomes

dπt = [δ − (ϵ− 1)πt]

[
1

Gt

[
1− 1

δ
1

ϵ−1

[δ − (ϵ− 1)πt]
1

ϵ−1 e(
η+1
η )Ŷt

]
− 1

2

[
(ϵ− 1)(σFt − σGt )

2 + (σFt + σGt )(σ
F
t − σGt )

]]
dt

+ [δ − (ϵ− 1)πt] (σ
F
t − σGt )dZt,

which corresponds to the non-linear Phillips curve under Calvo (1983) pricing.
Note that the volatility term (σFt −σGt ) appears in the drift as in the dynamic IS equation

(G.4).

G.6 Solving the Model

Formally, we conjecture:

dŶt = θy
[
µy − Ŷt

]
dt+ σstdZt, (G.19)

dπt = θπ [µπ − πt] dt+ σπt dZt, (G.20)

πt = f(σst ), (G.21)

Et [dGt] = 0. (G.22)

Therefore, our conjecture is that output gap and inflation follow an Ornstein-Uhlenbeck
processes, while the process Gt is a martingale. We conjecture that inflation depends only
on excess volatility. Our objective is to prove the existence of a smooth function f(·) such
that equations (G.19), (G.20), (G.21), and (G.22) jointly characterize an equilibrium.

Comparing the drift terms of (G.12) and (G.22), we obtain:

Gt =
1

ρ+ δ
,

which implies dGt = 0 and σGt = 0. From equation (G.16), we obtain

Ft =

(
1

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

1
1−ϵ . (G.23)
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Computing the derivatives of Ft with respect to πt:

∂Ft
∂πt

=

(
1

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

ϵ
1−ϵ ,

∂2Ft
∂2πt

=

(
ϵ

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

2ϵ−1
1−ϵ .

Now we apply Ito’s Lemma using equations (G.20), (G.23) and the derivatives above to
obtain:

dFt =

(
1

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

ϵ
1−ϵ

[
θπ [µπ − πt] +

ϵ

2

(σπt )
2

δ − (ϵ− 1)πt

]
dt

+

(
1

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

ϵ
1−ϵ σπt dZt.

(G.24)

Equating the diffusion terms in (G.11) and (G.24), and using (G.23), we obtain:

σFt =
σπt

δ − (ϵ− 1)πt
.

Equating the drift terms in (G.11) and (G.24), we obtain:

Ft =

(
1

ρ+ δ

)[(
1

δ
1

1−ϵ (ρ+ δ)

)
[δ − (ϵ− 1)πt]

ϵ
1−ϵ

[
θπ [µπ − πt] +

ϵ

2

(σπt )
2

δ − (ϵ− 1)πt

]
+ e(

η+1
η )Ŷt

]
.

(G.25)

Combining equations (G.6), (G.19) and (G.21), we obtain an expression for output gap
as:

Ŷt =

(
θy

θy + ϕy

)
µy −

(
1

θy + ϕy

)[
(ϕπ − 1)f(σst ) +

(
1

2
− ϕvol

)[
(σ + σst )

2 − σ2
]]
.

(G.26)

Plugging equations (G.21), (G.23), and (G.26) into (G.25), we obtain:

φ1 [δ − φ2f(σ
s
t )] = θπ [µπ − f(σst )]+

ϵ

2

[
(σπt )

2

δ − φ2f(σst )

]
+φ3 [δ − φ2f(σ

s
t )]

φ4 eφ5−φ6f(σs
t )−φ7(σ+σs

t )
2

,

(G.27)
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where the constants are defined as:

φ1 = ρ+ δ,

φ2 = ϵ− 1,

φ3 = δ
1

1−ϵ (ρ+ δ),

φ4 =
ϵ

ϵ− 1
,

φ5 =

(
η + 1

η

)(
θy

θy + ϕy

)
µy +

(
η + 1

η

)(
1

θy + ϕy

)(
1

2
− ϕvol

)
σ2,

φ6 =

(
η + 1

η

)(
ϕπ − 1

θy + ϕy

)
,

φ7 =

(
η + 1

η

)(
1

θy + ϕy

)(
1

2
− ϕvol

)
.

Plugging equations (G.26) and (G.21) into (G.19), we obtain:

dŶt =
[
φ8 + φ9f(σ

s
t ) + φ10(σ + σst )

2
]
dt+ σstdZt, (G.28)

where the constants are defined as:

φ8 =

(
θyϕy
θy + ϕy

)
µy −

(
θy

θy + ϕy

)(
1

2
− ϕvol

)
σ2,

φ9 =

(
θy

θy + ϕy

)
(ϕπ − 1),

φ10 =

(
θy

θy + ϕy

)(
1

2
− ϕvol

)
.

Equation (G.26) can be rewritten as M
(
Ŷt, σ

s
t

)
= 0, where:

M
(
Ŷt, σ

s
t

)
≡ Ŷt−

(
θy

θy + ϕy

)
µy+

(
1

θy + ϕy

)[
(ϕπ − 1)f(σst ) +

(
1

2
− ϕvol

)[
(σ + σst )

2 − σ2
]]
,

which implicitly determines σst as a function of Ŷt. To compute the implicit derivatives, we
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compute the following, with MŶ = 1,MŶ Ŷ = 0,MŶ σs = 0:

Mσs =

(
1

θy + ϕy

)
[(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )] ,

Mσsσs =

(
1

θy + ϕy

)
[(ϕπ − 1)f ′′(σst ) + (1− 2ϕvol)] ,

from which we can compute the implicit derivative of σst with respect to Ŷt as:

∂σst

∂Ŷt
= −MŶ

Mσs

= −
[

θy + ϕy
(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )

]
, (G.29)

and the second-order implicit derivative as:

∂2σst

∂2Ŷt
= −(θy + ϕy)

2

[
(ϕπ − 1)f ′′(σst ) + (1− 2ϕvol)

[(ϕπ − 1)f ′(σst ) + (1− 2ϕvol)(σ + σst )]
3

]
. (G.30)

Using Ito’s lemma, together with equations (G.28), (G.29), and (G.30), we obtain the
following expression for the process of σst :

dσst =−
[
φ11

φ8 + φ9f(σ
s
t ) + φ10(σ + σst )

2

φ12f ′(σst ) + φ13(σ + σst )
+ φ14

φ12f
′′(σst ) + φ13

[φ12f ′(σst ) + φ13(σ + σst )]
3 (σ

s
t )

2

]
dt

−
[

φ11

φ12f ′(σst ) + φ13(σ + σst )

]
σstdZt,

(G.31)
where the constants are defined as:

φ11 = θy + ψy, φ12 = ϕπ − 1,

φ13 = 1− 2ϕvol, φ14 =
(θy + ψy)

2

2
.

Next, applying Ito’s lemma to (G.21) and using (G.31), we obtain:

dπt =−

[
φ11f

′(σst )
φ8 + φ9f(σ

s
t ) + φ10(σ + σst )

2

φ12f ′(σst ) + ψ13(σ + σst )
+ φ14

φ13 (σ
s
t )

2

[φ12f ′(σst ) + φ13(σ + σst )]
3 (f

′(σst )− f ′′(σst )(σ + σst ))

]
dt

−
[

φ11f
′(σst )

φ12f ′(σst ) + φ13(σ + σst )

]
σstdZt,

(G.32)
which expresses the process of inflation πt as a sole function of σst .
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Comparing the diffusion terms of (G.20) and (G.32), we find that:

σπt = −
[

φ11f
′(σst )

φ12f ′(σst ) + φ13(σ + σst )

]
σst . (G.33)

Comparing the drift terms of (G.20) and (G.32), and using (G.21), we obtain:

θπ [µπ − f(σs
t )] = −

[
φ11f

′(σs
t )
φ8 + φ9f(σ

s
t ) + φ10(σ + σs

t )
2

φ12f ′(σs
t ) + φ13(σ + σs

t )
+ φ14

φ13 (σ
s
t )

2

[φ12f ′(σs
t ) + φ13(σ + σs

t )]
3 (f ′(σs

t )− f ′′(σs
t )(σ + σs

t ))

]
.

(G.34)
We must identify a function f(·) that satisfies the differential equation in (G.34) while
also meeting the condition in (G.27). Note that (G.27) contains the term θπ [µπ − f(σst )].
By substituting (G.33) and (G.34) into (G.27), we obtain an ordinary differential equation
(ODE) that fulfills all requirements simultaneously:

φ1 [δ − φ2f(σ
s
t )] =−

[
φ11f

′(σs
t )
φ8 + φ9f(σ

s
t ) + φ10(σ + σs

t )
2

φ12f ′(σs
t ) + φ13(σ + σs

t )
+ φ14

φ13 (σ
s
t )

2

[φ12f ′(σs
t ) + φ13(σ + σs

t )]
3 (f ′(σs

t )− f ′′(σs
t )(σ + σs

t ))

]

+
ϵ

2

(
1

δ − φ2f(σs
t )

)[
φ11f

′(σs
t )

φ12f ′(σs
t ) + φ13(σ + σs

t )

]2
(σs

t )
2

+ φ3 [δ − φ2f(σ
s
t )]

φ4 eφ5−φ6f(σ
s
t )−φ7(σ+σs

t )
2

,

which can be rearranged as

f ′′(σst ) =

(
f ′(σst )

σ + σst

)
+

[φ12f
′(σst ) + φ13(σ + σst )]

3

φ14φ13(σst )
2(σ + σst )

·


φ1 [δ − φ2f(σ

s
t )] + φ11f

′(σst )
φ8 + φ9f(σ

s
t ) + φ10(σ + σst )

2

φ12f ′(σst ) + φ13(σ + σst )

− ϵ

2

(
1

δ − φ2f(σst )

)[
φ11f

′(σst )

φ12f ′(σst ) + φ13(σ + σst )

]2
(σst )

2

− φ3 [δ − φ2f(σ
s
t )]

φ4 eφ5−φ6f(σs
t )−φ7(σ+σs

t )
2


︸ ︷︷ ︸

≡J(σs
t ,f(σ

s
t ),f

′(σs
t ))

.

(G.35)
Define the following vector of variables x(σst ) = [x1(σ

s
t ), x2(σ

s
t )]

′, with elements de-
fined as:

x1(σ
s
t ) = f(σst ),

x2(σ
s
t ) = f ′(σst ).

Then the ordinary differential equation (ODE) in (G.35) can be rewritten as the following

42



Online Appendix: For Online Publication Only

first-order system: x′1(σst ) = x2(σ
s
t )

x′2(σ
s
t ) = J (σst , x1(σ

s
t ), x2(σ

s
t ))

.

In vectorized form, we can define J̃ (σst , x(σ
s
t )) = [x2(σ

s
t ), J (σst , x1(σ

s
t ), x2(σ

s
t ))]

′, so that:

x′(σst ) = J̃ (σst , x(σ
s
t )) .

As J̃(σst , x1, x2) is continuous in a closed “box” (or “rectangle”) around any (σs0, x1(σ
s
0), x2(σ

s
0)),

we can apply Peano’s theorem (Walter, 1973), which guarantees that there exists at least
one local solution

(
x1(σ

s
t ), x2(σ

s
t )
)

that satisfies the ordinary differential equation (G.35).
Therefore, f(σst ) = x1(σ

s
t ) is a local solution to the original second-order ordinary differ-

ential equation (G.35). Since this proof holds over the entire domain of σst , it guarantees
the existence of a function f(·) such that the output gap and inflation follow the processes
in (G.19) and (G.20) for any value of σst .

This solution differs from the perfectly stabilized path, defined by σst = πt = Ŷt = 0 for
all t. In particular, setting πt = σst = 0 contradicts equation (G.31), which implies that dσqt
generally exhibits a nonzero drift when evaluated at zero excess volatility. This contradicts
our assumption that σst = 0 for all t. Hence, the conjectured equilibrium in (G.19) and
(G.21) is distinct from the perfectly stabilized path.
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