Active Taylor Rules Still Breed Sunspots:
Sunspot Volatility, Risk-Premium, and the Business Cycle

Seung Joo Lee†
Oxford University-Saïd

Marc Dordal i Carreras‡
HKUST

October 21, 2022

Abstract
We develop a New-Keynesian framework with stock markets that features a potential for self-fulfilling
financial uncertainty arising from its interaction with risk-premium, wealth, and aggregate demand.
Our model remains tractable, providing closed-form expressions for higher-order moments tied to the
financial uncertainty and their relations to the rest of the economy. We re-examine the optimality of
conventional monetary policy rules and show that the ‘Taylor principle’ no longer guarantees determi-
nacy, with sunspots in aggregate financial volatility not precluded by aggressive targeting of inflation
and output gap alone. We characterize the joint dynamic evolution of financial volatility, risk-premium,
asset prices, and the business cycle in a rational expectations equilibrium with sunspots, and uncover
that variations in financial uncertainty generate reasonable crises and booms along the business cycle
that are consistent with our empirical estimates based on the US data. As this pitfall of the traditional
policy rules lies in their inability to target the expected return on aggregate wealth, the relevant rate
in stochastic environments, we then propose a ‘generalized’ Taylor rule that targets risk-premium and
asset price, and describe the necessary conditions that restore determinacy and achieve the ultra-divine
coincidence: the joint stabilization of inflation, output gap, and risk-premium.

Keywords: Monetary Policy, Financial Volatility, Risk-Premium

†seung.lee@sbs.ox.ac.uk, corresponding author
‡marcdordal@ust.hk
1 Introduction

How should monetary policy respond to stock market fluctuations? The current narrative posits that central banks (governments) need two separate sets of instruments: macroprudential policies and regulations to ensure the stability of financial markets, and monetary (-fiscal) policies to fulfill the traditional objective of macroeconomic stabilization. However, the debate on this issue is far from being settled for many reasons. For example, the stock market plays a dual role: it is a source of business cycle fluctuations (e.g., the Great Depression) and it is a propagation channel itself (e.g., stock prices merely reflect the collective wisdom on expected future business cycle conditions). Relatedly, resolving this debate has proven difficult because mainstream macroeconomic frameworks lack meaningful stock market fluctuations (if there is a stock market in such models) or rely on approximation techniques and numerical methods which can cloud the economic intuition.

In this paper, we shed some lights on this longstanding debate by proposing a New-Keynesian framework with stock markets and optimal portfolio decisions. We incorporate endogenous and time-varying second-order moments such as stock market volatility and risk-premium. Furthermore, our continuous-time framework allows intuitive analytic expressions which highlight the underlying mechanisms behind our results. The model features an important role of financial volatility and risk-premium for business cycle fluctuations: a more volatile financial market (with higher risk-premia) brings down aggregate financial wealth (through individual investor’s portfolio decisions), thereby affecting aggregate demand and output. Because endogenous second-order terms (financial volatility) feed back into the first-order moments (financial wealth and aggregate demand), we explore how monetary policy should be connected to financial stability issues (i.e., financial volatility). We claim that the current monetary policy framework based on two macroeconomic mandates (e.g., stable inflation and stable output gap) is not sufficient for macroeconomic stabilization. In addition to these two mandates, we call for targeting time-varying risk premium as a separate policy objective.

Our model solution uncovers that there exists a sunspot equilibrium that arises from aggregate volatility and risk-premium of financial markets: fear of a financial crisis possibly stemming from a rise in risk-premium and stock market volatility, for example, induces investors to reduce their demand for the stock market investment, bringing down the current asset price and wealth and thus generating self-fulfilling increases in the expected stock market return and risk-premium. In particular, we characterize rational expectations equilibria that follow self-fulfilling shocks to the financial volatility and risk-premium, where we derive a tractable expression for the joint dynamic

1 For example, at the press conference held on September 16, 2020, Federal Reserve chair Powell explicitly mentioned “Monetary policy should not be the first line of defense - is not the first line of defense on financial stability. We look to more appropriate tools in the first instance, as a first line of defense. And those would be regulation, supervision, high-capital, high-liquidity stress testing, all of those things, macroprudential tools.”.
evolution of financial volatility, risk-premium, and the business cycle variables after those sunspots appear, as a function of fundamentals and policy interventions. We prove that under these sunspot equilibria, monetary responses through Taylor rules ensure that the financial volatility gets almost surely stabilized in the long run, but a probability-zero event in which this volatility diverges in the long run leading to a severe recession makes the sunspot’s initial appearance possible. As it takes time for initial volatility sunspots to be eliminated by monetary policy response, our equilibrium features crisis periods (with spikes in stock market volatility and risk-premium and drops in wealth and output) and boom phases (with low financial volatility and buoyant wealth and production), depending on the directions of initial sunspots.

Even in the standard New-Keynesian model (e.g., Galí (2015)) without stock markets and households’ portfolio decisions, the economy’s time-varying aggregate risk can have a first-order impact on the aggregate consumption demand due to the precautionary savings channel. To be more specific, a higher aggregate volatility induces households to save more in a precautionary manner, reducing aggregate demand and output, while the aggregate volatility itself is determined by the fluctuation in output. Due to this isomorphic structure of how the aggregate risk lowers business cycle levels, we can show that the same sunspot equilibria arise in the standard non-linear New-Keynesian model under conventional Taylor rules that targets inflation and output gap in a sufficiently strong way.

We then study conventional monetary policy rules in regard to model determinacy and financial stability. Our analysis shows that traditional Taylor rules that focus on macroeconomic aggregates (i.e., inflation and output gap) cannot fully prevent the appearance of sunspots in aggregate financial volatility, but a stronger targeting of macroeconomic mandates shortens the time it takes for initial volatility sunspot to get stabilized in our rational expectations equilibrium. This stronger responsiveness of monetary policy comes with a side effect, however: a more aggressive targeting of inflation and output gap amplifies the financial market volatility following sunspot shocks, which generates stronger but short-lived boom and bust financial cycles. We argue that the failure of conventional policy rules to restore determinacy lies in their inability to adequately target the expected risky return of financial markets, which governs the agents’ intertemporal decision-making.

We then propose a generalized policy reaction function that restores determinacy in our stochastic environment. Specifically, we argue that optimal policy rules should target the risk-premium of financial markets in addition to their usual mandates. Intuitively, agents in our model optimally allocate their wealth between risky and riskless assets, and the return on aggregate financial wealth

2This result aligns with Basu et al. (2021), where they emphasize roles of fluctuations in risk-premia as a main driver of the business cycle driving movements and comovements among aggregate variables. In Appendix A, we estimate a simple vector autoregression (VAR) with real and financial uncertainty indexes developed by Ludvigson et al. (2015) and uncover that a 1-3% (5-10%) drop in industrial production (S&P-500 index) follows after a one standard deviation shock to financial uncertainty, which our calibrated model replicates.
becomes the relevant rate for their intertemporal consumption smoothing decisions. Therefore, the optimal monetary rule aims to control the return on the economy’s aggregate wealth, but in order to succeed, it must take into account the risky component of the portfolio return, which is summarized by risk-premium. Thus, our analysis suggests that aggregate wealth should be an intermediate target of the central bank for the purpose of macroeconomic stabilization. This new policy rule that targets risk-premium in a specific way achieves what we describe as ‘ultra-divine’ coincidence: the joint stabilization of inflation, output gap and risk-premium (equivalently, aggregate volatility).

Following this rule poses its own challenges though, as the central bank is required to target risk premium with just the right amount of responsiveness. If the policy response is too accommodating or strong, monetary policy is again unable to prevent the appearance of sunspots. Nonetheless, even when the central bank is unable to restore the equilibrium determinacy, targeting financial variables remains an optimal strategy as it enables a faster convergence back to the steady state following a sunspot shock.

Related Literature Our paper is related to a broad literature on the intersection between macroeconomics and finance. Our model builds on the idea that changes in financial wealth levels (usually housing and stock) affect aggregate outcomes, documented by Mian et al. (2013), Mian and Sufi (2014), Guerrieri and Iacoviello (2017), Berger et al. (2018), Caballero and Simsek (2020a,b), Di Maggio et al. (2020), Caramp and Silva (2020) and Chodorow-Reich et al. (2021), among others. In line with this literature, an endogenous stock price level shifts aggregate demand in our framework through its effect on aggregate financial wealth. In addition, our framework features endogenous risk-premium and financial volatility as key factors that drive fluctuations in financial markets and the business cycle, in line with arguments made by Gilchrist and Zakrajšek (2012), Brunnermeier and Sannikov (2014), Chodorow-Reich (2014), Stein (2014), Cúrdia and Woodford (2016), Guerrieri and Lorenzoni (2017), Di Tella and Hall (2020), and Basu et al. (2021) among others, that financial (and in particular, credit) disruptions have large impacts on aggregate demand, especially when monetary policy is constrained. Campbell et al. (2020) points out that New-Keynesian channels, through which a higher inflation pushes down bond returns while propping up aggregate output,

3 In their works, consumers with a high marginal propensity to consume (MPC) who experience large drops in their housing prices, reduce the consumption amounts due to both wealth effects and a binding credit constraint, the latter of which we do not consider in this paper.

4 Caramp and Silva (2020) introduced rare-disasters and positive private debt and characterized the roles of time-varying risk-premia and financial wealth in a linearized setting.

5 Basu et al. (2021) emphasize roles of fluctuations in risk-premia as a business cycle driver, showing that the shock that explains fluctuations in risk-premia can explain a large fraction of business cycle movements and co-movements. They rely on the third-order perturbation to solve their model. In addition, Kekre and Lenel (2021) provide an elegant framework which illustrates the transmission of monetary policy through its impacts on the equilibrium risk-premium level in the environment that features heterogeneity in households’ marginal propensity to take risk (MPR). While their dynamic model relies on global solution methods, their analytic counterpart relies on the third-order approximation.
dividends, and stock returns, can explain the correlation reversal between bond and stock returns which turned negative in recent years. Our framework shares the same intuitions and sheds lights on how stock market fluctuation can be embedded in conventional New-Keynesian models.\footnote{The previous literature usually focus on channels through which financial wealth and financial market disruptions affect business cycle fluctuations. The other direction, an asset pricing implication of the New-Keynesian model, is also addressed by~\cite{De2010, Weber2015} and~\cite{Gorodnichenko2016}.}

Our result that monetary policy must be systematically concerned with financial markets stability is related to prior literature including~\cite{Bernanek2000},~\cite{Stein2012},~\cite{Woodford2012},~\cite{Curdia2016},~\cite{Caballero2020},~\cite{Cieslak2020},~\cite{Kekre2021}, and~\cite{Gal2021}. In contrast to~\cite{Bernanek2000}'s findings that monetary policy should not target stock prices, which they concluded based on a model with ad-hoc bubbles, bubble components are omitted in our model and thus only the fundamental stock price level serves as the key factor that determines aggregate demand. Therefore, our specification with the stock price as an aggregate demand shifter leads to the equivalence of targeting of stock price `level' and more conventional mandates such as output gap, and allows us to connect our work with~\cite{Cieslak2020} which conclude that stock market performance is a powerful predictor of the policy rate. In particular,~\cite{Kekre2021} provide a beautiful theoretical framework in which an accommodation shock in monetary policy redistributes toward those with a higher marginal propensity to take risk (MPR), thereby reducing risk-premium levels and amplifying the monetary transmission. While their focus is on how monetary policy following the conventional Taylor rule affects the economy through its impacts on economy-wide risk-premia in the heterogenous agents New Keynesian (HANK) environment, our analytic approach allows us to spot new indeterminacy around the second-order financial variable (aggregate financial volatility) with conventional Taylor rules,\footnote{\textit{Woodford} (2012) and \textit{Curdia and Woodford} (2016), in particular, incorporate a friction in financial intermediation between agents with different marginal propensities to consume (MPC) and study how the optimal monetary policy rule must be adjusted.} thereby allowing us to provide a more generalized Taylor rule that targets risk-premium as a way to facilitate stabilization and (possibly) restore model determinacy. Our approach still aligns with their view in that aggregate wealth is to be managed through monetary policy, and our generalized Taylor rule illustrates that an internal rate of return on aggregate wealth, instead of just the risk-free policy rate, must be responding to fluctuations in business cycle variables for the model to restore determinacy and achieve perfect stabilization.

While~\cite{Giavazzi2010},~\cite{Stein2012}, and~\cite{Caballero2020} focus on the preemptive role of monetary policy in avoiding \textit{future} financial crises, our model features a monetary policy rule targeting the risk-premium of financial markets for the \textit{current} stabilization.
purposes, in addition to its traditional inflation and output gap targets. Our result that monetary accommodation props up the business cycle through its effect on the stock market level is in line with evidence provided by Rigobon and Sack (2003), Azali et al. (2013), and Kekre and Lenel (2021).

On top of the vast New-Keynesian macroeconomics literature, our work provides a fully analytic non-linear solution of the model and illustrates that monetary policy rules based on two mandates (e.g., inflation and output gap) do not prevent sunspots in volatility from arising and driving the business cycle. In addition, we emphasize declines in the aggregate demand for risky assets as the key driver behind financial recessions, a channel that has been documented by Caballero and Farhi (2017) and Caballero and Simsek (2020a,b).

Our paper is similar to Caballero and Simsek (2020a,b) in terms of how an endogenous asset market is interwoven with business cycle fluctuations. However, while their framework focuses on how behavioral biases can generate interesting crisis dynamics in light with the feedback loop between asset markets and the business cycle, our focus is on the traditional monetary policy rule under rational expectations, and the existence of sunspot equilibria coming from the higher-order moments. Our model’s equilibrium determinacy results are similar to Acharya and Dogra (2020) in terms of how countercyclical risks can lead to indeterminacy. While Acharya and Dogra (2020) focus on how determinacy conditions change in the presence of exogenous idiosyncratic risks that are functions of aggregate output, we investigate the existence of sunspots stemming from aggregate financial risk, which is countercyclical in nature and affects both financial markets and business cycle fluctuations, and study the monetary policy that restores determinacy and improves economic and financial stability.

Layout In Section 2, we provide a non-linear treatment to the standard New-Keynesian economy, through which we illustrate how non-linearity changes implications about equilibrium determinacy issues and proper monetary policy rules needed for stabilization purposes. In Section 3, we present the model with explicit stock markets and characterize the equilibrium conditions. Section 4 focuses on the proper monetary policy rules in lights with our framework’s new features. Section 5 concludes.

In Appendix A, we provide evidence on the importance of financial volatility as a driver of business cycle fluctuations, based on a structural Vector Autoregression (VAR) approach. Appendix B contains additional figures and tables. Appendix C contains derivations and proofs.

10 Caballero and Simsek (2020b) features optimists and pessimists who have different beliefs about the probability of an upcoming recession or boom. During ZLB episodes, an endogenous decline in the risky asset valuation due to a drop in optimists’ wealth generates a demand recession. We study relevant issues of the zero lower bound (ZLB) in a separate paper, Lee and Carreras (2022).
2 Standard Non-linear New Keynesian Model

In this Section 2, we consider a ‘standard’ New-Keynesian economy11 where firm profits are transferred in a lump-sum fashion to households. In Section 3, we present the main model of this paper where we instead assume that profits are capitalized into dividend-paying stocks traded in financial markets. Our objective in this Section 2 is to illustrate that a \textit{non-linear} characterization of the equilibrium enables higher-order moments tied to the aggregate business cycle volatility to have a first-order impact on the business cycle dynamics, even when stock markets are absent. This feature will have very important implications for equilibrium determinacy and the proper management of monetary policy needed to stabilize the business cycle.

The representative household owns the firms of this economy and receives the profit stream in a lump-sum fashion. For simplicity, we assume a perfectly rigid price level: $p_t = \bar{p}$, \forall t12 so there is no inflation in the economy. This assumption is not crucial but allows us to focus on the key mechanism we want to illustrate.

The representative household chooses her usual intertemporal consumption-savings decision by solving the following optimization problem:

$$\max_{\{B_t, C_t, L_t\}_{t \geq 0}} E_0 \int_{0}^{\infty} e^{-\rho t} \left[\log C_t - V(L_t) \right] dt \quad \text{s.t.} \quad \dot{B}_t = i_t B_t - \bar{p} C_t + w_t L_t + D_t,$$

where C_t and L_t are her consumption and labor supply, $V(L_t)$ is the disutility of labor, B_t is her nominal holding of bonds, and D_t are the entire firms’ profits and fiscal transfers from the government. w_t is the equilibrium wage, and i_t is the policy rate set by the central bank. We assume that there is no government spending, and therefore aggregate consumption determines output in this demand-determined environment: thus, $C_t = Y_t$, where Y_t is aggregate output.

The following equation is the optimality condition for the representative household’s intertemporal consumption-savings decision:

$$-i_t dt = E_t \left(\frac{d\zeta^N_t}{\zeta^N_t} \right), \quad \text{where} \quad \zeta^N_t = e^{-\rho t} \frac{1}{C_t} \frac{1}{p_t},$$

where $d\zeta^N_t/\zeta^N_t$ is the instantaneous (nominal) stochastic discount factor (SDF), and its expectation yields the nominal risk-free rate i_t. Due to the rigid price assumption $\pi_t = 0$, \forall t, the real and nominal risk-free rates of the economy are equal $r_t \equiv i_t - \pi_t = i_t$.

11See Woodford (2003) for the standard treatment of a textbook New-Keynesian model.

12This assumption can be micro-founded with price stickiness à la Calvo and a price resetting probability of zero.
We can rewrite equation (2) as
\[\mathbb{E}_t \left(\frac{dC_t}{C_t} \right) = (i_t - \rho) dt + \text{Var}_t \left(\frac{dC_t}{C_t} \right), \] (3)
where the last term \(\text{Var}_t \left(\frac{dC_t}{C_t} \right) \) arises from the endogenous volatility of the aggregate consumption process. Note that this volatility is usually a second-order term and therefore is typically dropped out in log-linearized models. In contrast to those models, our non-linear characterization properly accounts for consumption risk and allows it to affect the drift of the aggregate consumption process, where both aggregate risk and drift are endogenous objects. This additional term reflects the precautionary savings channel in which a more volatile business cycle leads to an increased demand for savings, lower consumption and a higher expected growth for the consumption process.

The ‘natural’\(^{13}\) (benchmark) economy’s output \(Y^n_t \) follows the stochastic process:
\[\frac{dY^n_t}{Y^n_t} = \left(r^n_t - \rho + (\sigma_t)^2 \right) dt + \sigma_t dZ_t, \] (4)
where \(r^n_t \) is the natural interest rate. Therefore, equation (4) is regarded a real exogenous process\(^{14}\) that monetary policy cannot affect nor control. Observe that, for a given process of \(\{Y^n_t\} \), an increase in the ‘natural’ volatility \(\sigma_t \) requires a lower natural rate \(r^n_t \) as agents’ precautionary savings demand increases.

Going back to the ‘rigid’ economy in equation (2), we define \(\sigma^s_t \) as the ‘excess’ volatility the rigid price output process \(\{Y_t\} \) features compared with the benchmark economy (equation (4)). Then:
\[\text{Var}_t \left(\frac{dY_t}{Y_t} \right) = (\sigma_t + \sigma^s_t)^2 dt \] (5)
holds. Note that \(\sigma_t \) is the ‘endogenous’ volatility to be determined later in equilibrium. By plugging equation (5) into equation (2), we obtain
\[\frac{dY_t}{Y_t} = \left(i_t - \rho + (\sigma_t + \sigma^s_t)^2 \right) dt + (\sigma_t + \sigma^s_t) dZ_t. \] (6)

With the usual definition of output gap \(\hat{Y}_t = \ln \left(\frac{Y_t}{Y^n_t} \right) \), we obtain the following dynamic IS equation

\(^{13}\)We define the ‘natural’ equilibrium of the economy as the equilibrium under fully flexible prices.

\(^{14}\)Given \(\{\sigma_t\} \) process, equation (4) is derived from equation (2) with \(i_t = r^n_t \) with \(Y_t = Y^n_t \). Therefore, we regard \(dZ_t \) as an aggregate shock that drives the natural output \(Y^n_t \) (e.g., a technology shock).
written in \hat{Y}_t:

$$d\hat{Y}_t = \left(i_t - \left(r^n_t - \frac{1}{2}(\sigma_t + \sigma^\gamma_t)^2 + \frac{1}{2}(\sigma_t)^2 \right) \right) dt + \sigma^\gamma_t dZ_t. \tag{7}$$

Equation (7) features an interesting feedback effect that is omitted in log-linearized equations: given the policy rate i_t, a rise in the endogenous volatility σ^γ_t pushes up the drift of equation (7) and lowers output gap \hat{Y}_t. The intuition for this result follows from the precautionary behavior of households, that respond to higher economic volatility with increased savings and lower consumption, thereby inducing a recession.

Define the risk-adjusted natural rate as

$$r^T_t = r^n_t - \frac{1}{2}(\sigma_t + \sigma^\gamma_t)^2 + \frac{1}{2}(\sigma_t)^2. \tag{8}$$

and note that r^T_t is itself endogenous: it negatively depends on the endogenous aggregate volatility σ^γ_t. The risk-adjusted natural rate can be regarded a new reference risk-free rate of the economy at which i_t completely eliminates the drift of the output gap.

We now turn our attention towards monetary policy and study the implications of following a conventional Taylor rule in this environment, as well as possible alternatives.

2.1 Taylor rules and Indeterminacy

In this section, we study the conventional Taylor rule and its capacity to guarantee model determinacy and economic stabilization. We assume that the central bank sets the risk-free rate i_t of the economy according to:

$$i_t = r^n_t + \phi_y \hat{Y}_t, \text{ where } \phi_y > 0. \tag{9}$$

Condition $\phi_y > 0$ is the ‘Taylor principle’ that prevents the appearance of sunspot equilibria in the conventionally log-linearized models that omit the first-order effects of volatility. Here, we ask whether this condition retains the capacity to prevent sunspot equilibria in the non-linear economy featuring the feedback relationship between output gap volatility and its drift explained above.

15For illustrative purposes, compare equation (7) with the conventional linearized IS equation given by:

$$d\hat{Y}_t = (i_t - r^n_t) dt + \sigma^\gamma_t dZ_t,$$

where the endogenous aggregate volatility σ^γ_t has no first-order effect on the drift of output gap.
Plugging equation (9) into equation (7), we get the following \hat{Y}_t dynamics.

$$d\hat{Y}_t = \left(\phi_y \hat{Y}_t - \frac{(\sigma_t)^2}{2} + \frac{(\sigma_t + \sigma_i^s)^2}{2} \right) dt + \sigma_i^s dZ_t.$$ \hspace{1cm} (10)

Multiple equilibria Omitting the new volatility terms from the drift of equation (10), we obtain the usual log-linearized version of the \hat{Y}_t dynamics as

$$d\hat{Y}_t = (\phi_y \hat{Y}_t) dt + \sigma_i^s dZ_t.$$ \hspace{1cm} (11)

With dynamics described by equation (11), Blanchard and Kahn (1980) proves the existence of a unique rational expectations equilibrium when the Taylor principle $\phi_y > 0$ is satisfied: $\hat{Y}_t = 0$, $\forall t$, which corresponds to a fully stabilized economy.

We now claim that this result does not hold in this non-linear version of the $\{\hat{Y}_t\}$ process. The feedback effect from the endogenous volatility σ_i^s of the output gap to its drift (see equation (10)) enables the appearance of multiple sunspot equilibria in σ_i^s. We provide one rational expectations equilibrium that supports an initial sunspot $\sigma_0^s > 0$ in aggregate excess volatility, by constructing an equilibrium path where the $\{\hat{Y}_t\}$ process follows a ‘martingale’. The case for negative volatility sunspot ($\sigma_0^s < 0$) can be similarly constructed. This equilibrium path should (i) support an initial sunspot $\sigma_0^s > 0$, and (ii) not diverge on expectation in the long-run (see Blanchard and Kahn (1980)).

Martingale equilibrium We provide the explicit equilibrium in which a sunspot $\sigma_0^s > 0$ appears and \hat{Y}_t follows a martingale process consistent with the dynamics in equation (10). To satisfy the latter, the drift of the $\{\hat{Y}_t\}$ process must be zero, which gives us the following formula for \hat{Y}_t:

$$\hat{Y}_t = -\frac{(\sigma_t + \sigma_i^s)^2}{2\phi_y} + \frac{(\sigma_t)^2}{2\phi_y}.$$ \hspace{1cm} (12)

The martingale equilibrium guarantees the rationality of the equilibrium, as on average the path of $\{\hat{Y}_t\}$ stays at the same level, satisfying $\mathbb{E}_0(\hat{Y}_t) = \hat{Y}_0$. The last step is to show the existence of a stochastic path for $\{\sigma_i^s\}$ starting from σ_0^s that supports this equilibrium.

Using equation (10) and equation (12), we obtain the stochastic process of σ_i^s starting from σ_0^s.
\[d\sigma_t^s = -\left(\phi_y\right)^2 \frac{(\sigma_t^s)^2}{2(\sigma_t + \sigma_t^s)^3} dt - \phi_y \frac{\sigma_t^s}{\sigma_t + \sigma_t^s} dZ_t. \] (13)

Therefore, equation (12) and equation (13) constitute the dynamics of this particular rational expectations equilibrium supporting \(\sigma_0^s > 0 \). The following Proposition 1 sheds light on the behavior of \(\{\hat{Y}_t, \sigma_t^s\} \) paths under this equilibrium and finds that the business cycle almost surely converges to the perfectly stabilized path in the long run. Nonetheless, a few paths that occur with tiny probability do not converge and explode asymptotically, sustaining the initial sunspot \(\sigma_0^s > 0 \) due to the forward-looking nature of the economy.

Proposition 1 (Taylor Rules and Indeterminacy) For any value of \(\phi_y > 0 \):

1. **Indeterminacy:** there is always a rational expectations equilibrium (REE) that supports initial sunspot \(\sigma_0^s > 0 \) and is represented by \(\hat{Y}_t \) dynamics in equation (12), and \(\sigma_t^s \) process in equation (13)

2. **Properties:** the rational expectations equilibrium that supports an initial sunspot \(\sigma_0^s > 0 \) satisfies:

 (i) \(\sigma_t^s \xrightarrow{a.s.} \sigma_\infty^s = 0 \),
 (ii) \(\hat{Y}_t \xrightarrow{a.s.} 0 \), and
 (iii) \(\mathbb{E}_0 \left(\max_t (\sigma_t^s)^2 \right) = \infty \)

The results that \(\sigma_t^s \xrightarrow{a.s.} \sigma_\infty^s = 0 \) and \(\hat{Y}_t \xrightarrow{a.s.} 0 \) imply that the equilibrium paths starting from an initial sunspot \(\sigma_0^s > 0 \) are almost surely stabilized in the long run. Still, almost sure stabilization of paths is compatible with a martingale sunspot equilibrium by the latter result of the Proposition, \(\mathbb{E}_0 \left(\max_t (\sigma_t^s)^2 \right) = \infty \), which implies that an initial spike in \(\sigma_0^s \) is sustained by a tiny probability of an infinite large equilibrium volatility in some future paths.

Intuition Here we explain in a detailed manner the intuition for (i) how an initial sunspot \(\sigma_0^s \) in the aggregate volatility can appear, and (ii) the results in Proposition 1. For that purpose, we simplify the economic environment and make the following assumptions:

A.1 A shock \(dZ_t \) at each period takes one of two values: \(\{+1, -1\} \) with equal probability \(\frac{1}{2} \)

A.2 Martingale equilibrium: an aggregate demand \(\hat{Y}_t \) equals the conditional expected value of the next-period aggregate demand \(\hat{Y}_{t+1} \). Therefore, if \(\hat{Y}_{t+1} \) takes either \(\hat{Y}_{t+1}^{(1)} \) or \(\hat{Y}_{t+1}^{(2)} \), then

\[\hat{Y}_t = \frac{1}{2}(\hat{Y}_{t+1}^{(1)} + \hat{Y}_{t+1}^{(2)}) \]

\[\text{When } \sigma_i = 0, \forall t, \text{ equation (13) becomes the following Bessel process:} \]

\[d\sigma_t^s = -\left(\phi_y\right)^2 \frac{(\sigma_t^s)^2}{2\sigma_t^s} dt - \phi_y dZ_t. \]

which stops when \(\sigma_t^s \) hits zero, \(\sigma_{0,t}^s = 0 \). For general properties of Bessel process, see Lawler (2019).
A.3 Aggregate demand \hat{Y}_t falls, as the conditional variance of the next-period’s \hat{Y}_{t+1} rises (precautionary saving). Both $\{\hat{Y}_t\}$ and $\{\sigma_s\}$ are set to be zero on the stabilized path.

Since we have two possible realizations of the shock at each period, we can draw a tree diagram as in Figure 1. In Figure 1, the thick vertical line represents the stabilized path, with areas at its left and right representing recessions and booms, respectively. The key to build a rational expectations equilibrium supporting a sunspot $\sigma_0^s > 0$ is to construct the path-dependent consumption strategy for the economy’s intertemporal agents. First, let us imagine that the current period agents (Agents$_0$) suddenly believe that future agents will choose the path-dependent consumption demand17 so that the next-period’s \hat{Y}_1 becomes $\hat{Y}_1^{(1)}$ after $dZ_0 = +1$ is realized and $\hat{Y}_1^{(2)}$ after $dZ_0 = -1$ is realized, with $\hat{Y}_1^{(1)} > \hat{Y}_1^{(2)}$. Then the current output \hat{Y}_0 becomes $\hat{Y}_0 = \frac{1}{2}(\hat{Y}_1^{(1)} + \hat{Y}_1^{(2)})$ with \hat{Y}_0 below the stabilized path, as Agents$_0$ believe there exists dispersion in next-period outcomes, which is given as $\sigma_0^{s,(1)} = \hat{Y}_1^{(1)} - \hat{Y}_1^{(2)}$.

Assume that $dZ_0 = -1$ is realized. For Agents$_0$’s belief $\hat{Y}_1 = \hat{Y}_1^{(2)}$ to be consistent, Agents$_1$ must believe that future agents will choose consumption paths in a way that the next period’s \hat{Y}_2 becomes $\hat{Y}_2^{(3)}$ with $dZ_1 = +1$ and $\hat{Y}_2^{(4)}$ with $dZ_1 = -1$, with conditional volatility $\sigma_2^{s,(2)} = \hat{Y}_2^{(3)} - \hat{Y}_2^{(4)}$ higher than $\sigma_1^{s,(1)}$, since $\hat{Y}_1^{(2)}$ is lower than the initial output \hat{Y}_0.

17Remember, agents’ consumption demand determines output in this demand-determined environment.

Figure 1: A sunspot in σ_0^s as a rational expectations equilibrium
After dZ_1 is realized, Agents$_1$’s belief about \hat{Y}_2 can be made consistent by future agents’ $\{\text{Agents}_{n \geq 2}\}$ coordination in a forward looking fashion. Observe that all the nodes in Figure 1 satisfy assumptions A.2 and A.3, with distance between adjacent nodes getting progressively narrower (wider) as output gap gets closer (farther) to the stabilized path. This results in divergent and attraction paths balancing each other out, and in expectation, output gap $\{\hat{Y}_t\}$ follows a martingale process.

In sum, Agents$_0$’s initial doubt (sunspot) that the next-period’s outcome will be volatile is made consistent by coordination between intertemporal agents (the representative household) at each node.18

Note that (i) we obtain an equilibrium with stochastic aggregate volatility: i.e., σ_t^s is dependent on the path of shocks, as output gap $\{\hat{Y}_t\}$ is stochastic and negatively depends on the conditional volatility of its next-period level. Equation (13) specifies the exact stochastic process of $\{\sigma_t^s\}$ starting from $\sigma_0^s > 0$, (ii) since volatility σ_t^s decreases as output gap \hat{Y}_t approaches the stabilized path, this path becomes an attraction point for the set of alternative paths in its neighborhood, justifying the result of Proposition 1 that σ_t^s almost surely converges to zero over time. Nonetheless, as volatility σ_t^s rises whenever output \hat{Y}_t deviates farther from the stabilized level, this also aligns with the result of Proposition 1 that a maximal σ_t^s diverges, $\mathbb{E}_0(\max_t (\sigma_t^s)^2) = \infty$.

The conclusion in terms of monetary policy is that a conventional Taylor rule almost surely stabilizes the disruption caused by a $\sigma_0^s > 0$ sunspot in the long-run, but does not prevent the economy from entering a crisis phase with low aggregate demand and higher business cycle volatility.

Escape clause If central bank and/or government credibly commit to prevent \hat{Y}_t from going below a predetermined threshold through interventions,19 these sunspot equilibria arising from the aggregate financial volatility σ_0^q supported by the paths in Figure 1 (martingale equilibrium) are not sustained anymore as a possible rational expectations equilibrium (REE). This escape clause illustrates how the credible commitment of the government entity to intervene whenever the economy (probabilistically) enters a big recession actually precludes a possibility of the crisis phase initiated by the positive sunspot shock $\sigma_0^s > 0$.

Whether this type of commitment from government and central bank is credible is important, as here we need a 100% credibility to kill the sunspot equilibrium supporting $\sigma_0^s > 0$.

18This equilibrium is completely feasible since all future agents share a common knowledge of their consumption strategies and there is no behavioral friction blocking communications between agents in intertemporal periods (perfect recall). Our sunspot equilibrium is closely related to notion of ‘self-confirming equilibrium’. See Fudenberg and Levine (1993) for this issue. For how limited recall (friction in memory) removes indeterminacy, see Angeletos and Lian (2021).

19For example, government might commit to incur huge fiscal deficits whenever the economy undergoes a severe recession. This prescription entails similar implication about what government can do to restore determinate equilibrium to Benhabib et al. (2002). Benhabib et al. (2002) deals with the role of monetary-fiscal regimes in regards to eliminating indeterminacy posed by ZLB. In a similar way, Obstfeld and Rogoff (2021) illustrates how a probabilistic (and small) fiscal backing to the currency by government rules out speculative hyper-inflations in monetary models.
Negative sunspot We can similarly construct a rational expectations equilibrium that supports an initial downward sunspot $\sigma_0 < 0$. This equilibrium features a boom phase with buoyant aggregate demand and low business cycle volatility. Therefore, our non-linear characterization of the model generates a reasonable prediction of (i) appearance of sunspot boom/crisis phases, and (ii) the joint evolution of the first (level) and second (volatility) order moments of the model variables during crisis and booms.\footnote{Our sunspot equilibrium can be interpreted as capturing the occurrence of animal spirit shocks. For the neoclassical treatment of this topic, see Angeletos and La’O (2013).}

Next, we study a monetary policy rule that restores model determinacy.

2.2 A New Monetary Policy

Let’s assume, instead, that the central bank follows this alternative policy rule:

$$i_t = r^n_t + \phi_y \hat{Y}_t - \frac{1}{2} \left((\sigma_t + \sigma^s_t)^2 - (\sigma_t)^2 \right), \quad \text{where } \phi_y > 0,$$

where r^n_t is the risk-adjusted natural rate defined in equation (8). Therefore, an alternative interpretation is that monetary policy in a risky environment should target the risk-adjusted, and not simply the natural, interest rate.

A problem with this new policy rule is that it seems very difficult to implement in practice, as neither the output volatility components $\{\sigma_t, \sigma^s_t\}$ nor the risk-adjusted rate r^n_T are directly observable. In the next Section 3, we offer an alternative theoretical framework that explicitly incorporates stock markets, and show that commonly observed measures of financial volatility or market risk-
premium serve as a proxy that can be used to effectively implement the rule.

3 The Model with Stock Markets

In this Section 3, we consider a slightly different theoretical framework, which enables us to analyze the effects of higher-order moments tied to the aggregate financial volatility on aggregate demand, and provides us the practical implications about monetary policy rules.

3.1 Setting

Time is continuous, and a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}}, \mathbb{P})\) is given. The economy consists of a measure one of capitalists, who we regard as neoclassical agents, and the same measure of hand-to-mouth workers, who we regard as Keynesian agents. There is a single source of exogenous variation in the aggregate production technology \(A_t\), which is adapted to the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}}\) and evolves according to a geometric process with a possibly time-varying volatility \(\sigma_t\):

\[
\frac{dA_t}{A_t} = g \, dt + \sigma_t \, dZ_t.
\] (16)

We regard the aggregate TFP’s volatility \(\sigma_t\) as the economy’s fundamental risk. We assume it to be constant in most scenarios, but later, as in Caballero and Simsek (2020a,b), we will allow \(\sigma_t\) to jump and analyze how it affects the equilibrium dynamics. For convenience, we also assume the average growth rate \(g\) to be constant over time.

Finally, there is a standard set of intermediate good producers that face nominal price rigidities, thus making the economy New-Keynesian in nature. Next, we describe roles of each type of agents (capitalists and workers) and firms.

3.1.1 Firms and Workers

There are a measure one of monopolistically competitive firms, each producing a differentiated intermediate good \(y_t(i), i \in [0, 1]\). There also exists a competitive representative firm which transforms intermediates into a final consumption good \(y_t\) according to a Dixit-Stiglitz aggregator with an elasticity of substitution \(\epsilon > 0\) in the following way.

\[
y_t = \left(\int_0^1 y_t(i) \, \frac{\epsilon - 1}{\epsilon} \, di \right)^{\frac{\epsilon}{\epsilon - 1}}.
\] (17)
Each intermediate good firm i has the same production function $y_t(i) = A_t(N_{W,t})^\alpha n_t(i)^{1-\alpha}$, where $N_{W,t}$ is the economy’s aggregate labor and $n_t(i)$ is the labor demand of an individual firm i at time t. The reason that we introduce a production externality à la Baxter and King (1991) is that it helps us match empirical regularities on asset price and wage co-movements, and it does not affect other qualitative implications of our framework. Each firm i faces the downward-sloping demand curve $y_t(p_t(i)\|p_t, y_t)$, where $p_t(i)$ is the price of its own intermediate good and p_t, y_t are the aggregate price index and output, respectively:

$$y_t(p_t(i)\|p_t, y_t) = y_t\left(\frac{p_t(i)}{p_t}\right)^{-\epsilon}. \quad (18)$$

The set of prices charged by intermediate good firms, $\{p_t(i)\}$, is aggregated into the price index p_t as

$$p_t = \left(\int_0^1 p_t(i)^{1-\epsilon} \, di\right)^{\frac{1}{1-\epsilon}}. \quad (19)$$

We also impose a nominal price rigidity à la Calvo (1983), and firms can change prices of their own intermediate goods with δdt probability in a given time interval dt. In the cross-section, this implies that a total δdt portion of firms reset their prices during a given dt time interval.

A representative hand-to-mouth worker supplies labor to intermediate good producers, gets an equilibrium wage income, and spends every dollar he earns on final good consumption. We assume that each worker solves the following optimization at every moment t, where $C_{W,t}$, $N_{W,t}$ and w_t are his consumption, labor supply and wage at time t, respectively.

$$\max_{C_{W,t}, N_{W,t}} \frac{\left(C_{W,t}\right)^{1-\varphi}}{A_t \left(1 - \varphi\right)} - \frac{(N_{W,t})^{1+\chi_0}}{1 + \chi_0} \quad \text{s.t.} \quad p_tC_{W,t} = w_tN_{W,t}, \quad (20)$$

where χ_0 is the inverse Frisch elasticity of labor supply. Note that we normalize consumption $C_{W,t}$ by technology A_t, which governs the economy’s size. As wage w_t is homogeneous across firms, labor demanded by each firm i, $\{n_t(i)\}$, are simply combined into aggregate labor $N_{W,t}$ in a linear
manner as

\[N_{W,t} = \int_0^1 n_t(i) di. \]

(21)

Final good output \(y_t \) can be written as a function of total labor \(N_{W,t} \) by the following aggregate production function with price dispersion \(\Delta_t \) defined below. Due to the Baxter and King (1991) externality, the aggregate production function becomes linear in \(N_{W,t} \) as

\[y_t = \frac{A_t N_{W,t}}{\Delta_t}, \text{ where } \Delta_t \equiv \left(\int_0^1 \left(\frac{p_t(i)}{p_t} \right)^{-\frac{\epsilon}{1-\epsilon}} di \right)^{1-\alpha}. \]

(22)

3.1.2 Financial Market and Capitalists

Unlike conventional New-Keynesian models where a representative household owns the intermediate goods sector and receives rebated profits in a lump sum way, we assume that firm profits are capitalized in the financial market as a representative stock fund. Capitalist then face an optimal portfolio decision problem involving the allocation of their wealth between a risk-free bond and the risky stock at every instant \(t \).

The total nominal financial wealth of the economy is \(p_t A_t Q_t \), where \(Q_t \) is the normalized (or TFP detrended) real asset price. \(Q_t \) is an endogenous variable adapted to filtration \((\mathcal{F}_t)_{t \in \mathbb{R}} \) and assumed to evolve according to the process in equation (23), with both endogenous drift \(\mu^q_t \) and volatility \(\sigma^q_t \) terms. In particular, we regard \(\sigma^q_t \) as a measure of financial uncertainty or disruption, as we usually observe spikes in asset price volatility during financial crises. Like \(Q_t \), we assume that the price aggregator \(p_t \) follows the general stochastic process in equation (24), in which drift \(\pi_t \) and volatility \(\sigma^p_t \) are endogenous. Thus, it follows that total financial market wealth \(p_t A_t Q_t \) evolves as a geometric Brownian motion with volatility \((\sigma_t + \sigma^q_t + \sigma^p_t) \). Intuitively, if some capitalist invests in the stock market, they have to bear all three risks: inflation risk, technology (fundamental) risk, and (detrended) real asset price risk.

\[
\frac{dQ_t}{Q_t} = \mu^q_t dt + \sqrt{\sigma^q_t} dZ_t, \\
\frac{dp_t}{p_t} = \pi_t dt + \sqrt{\sigma^p_t} dZ_t.
\]

(23)

(24)

Here, \(\sigma^q_t \) is determined in equilibrium and can be either positive or negative. \(\sigma^q_t < 0 \) corresponds to the case where total real wealth \(A_t Q_t \) is less volatile than the TFP process \(\{A_t\} \). The nominal

\[\sigma^q_t \text{ is determined in equilibrium and can be either positive or negative. } \sigma^q_t < 0 \text{ corresponds to the case where total real wealth } A_t Q_t \text{ is less volatile than the TFP process } \{A_t\}. \]
price process has inflation rate π_t as its drift, and in general has a volatility part σ^p_t, which we call an inflation risk. In most cases other than the flexible price benchmark, we show that $\sigma^p_t = 0$ holds and we do not need to concern ourselves with this term.

In addition to the stock market, we assume that there is a risk-free bond with an associated nominal rate i_t that is controlled by the central bank. Bonds are in zero net supply in equilibrium because all capitalists are equal. A measure one of identical capitalists chooses the portfolio allocation between a risk-free bond and a risky stock, where in the latter case, they earn the profits of the intermediate goods sector as dividends, as well as the nominal price revaluation of the stock due to changes in p_t, A_t and Q_t. Financial markets are competitive, thus each capitalist takes the nominal risk-free rate i_t, expected stochastic stock market return i^{m}_t, and the risk level $\sigma_t + \sigma^q_t + \sigma^p_t$ as given when choosing her portfolio decision.\footnote{This competitive market assumption is related to the reason we initially assume a measure one of identical capitalists. This assumption turns out to be an important aspect of the framework for explaining inefficiencies caused by the aggregate demand externality that individual capitalist’s financial investment decision imposes on the aggregate economy.} If a capitalist invests a share θ_t of her wealth a_t in the stock market, she bears a total risk $\theta_t a_t (\sigma_t + \sigma^q_t + \sigma^p_t)$ between t and $t + dt$. Therefore, the riskiness of her portfolio increases proportionally to the investment share θ_t in the stock. Capitalists are risk-averse, and ask for a risk-premium compensation $i^{m}_t - i_t$ when they invest in the risky stock, which must also be determined in equilibrium.

Each capitalist with nominal wealth a_t has log-utility and solves the following optimization:

\[
\max_{C_t, \omega_t} \mathbb{E}_0 \int_0^\infty e^{-\rho t} \log C_t dt \quad \text{s.t.} \quad da_t = (a_t (i_t + \theta_t (i^{m}_t - i_t)) - p_t C_t) dt + \theta_t a_t (\sigma_t + \sigma^q_t + \sigma^p_t) dZ_t,
\]

where ρ is her time discount rate and C_t is final good consumption. At every instant, she earns returns out of both the risk-free bond and the risky stock investments, and spends on final good consumption. From Merton (1971), we know that the solution of the problem features an optimal consumption expenditure rate which is exactly a ρ portion of her wealth a_t, thus satisfying

\[
p_t C_t = \rho a_t. \tag{26}
\]

Note that a less patient capitalist (higher ρ) increase her instantaneous consumption rate in a proportional manner.

3.2 Equilibrium and Asset Pricing

In equilibrium, every agent with the same type (either worker or capitalist) is identical and chooses the same decisions. Because in equilibrium bonds are in zero net supply, each capitalist’s wealth
share θ_t in the stock market must satisfy $\theta_t = 1$, which pins down the equilibrium risk-premium value demanded by capitalists. Due to the log-preference of capitalists, risk-premium is given by $(\sigma_t + \sigma_q^P + \sigma_q^T)^2$, as in equation (27). In equilibrium, capitalists hold a wealth amount that equals the total financial market wealth. These equilibrium conditions can be summarized as follows.

\[
\rho_p^t \equiv i_m^t - i_t = (\sigma_t + \sigma_q^P + \sigma_q^T)^2 \quad \text{and} \quad a_t = \frac{p_tA_tQ_t}{\Delta_t}, \tag{27}
\]

where the risk-premium ρ_p^t demanded by capitalists increases with either of the three volatilities $\{\sigma_t, \sigma_q^P, \sigma_q^T\}$. As the financial volatility σ_q^P is endogenous, the risk-premium ρ_p^t term is endogenous as well and needs to be determined in equilibrium. Note also that by the previous expression, the wealth gain/loss of the capitalist is equal to the nominal revaluation of the stock.

We can characterize the good’s market equilibrium and the equilibrium asset pricing condition of the expected stock return i_m^t as follows: Since capitalists spends ρ portion of their wealth a_t on consumption expenditure and they hold the entire wealth, $C_t = \rho A_t Q_t$ holds in equilibrium. Thus we can write the equilibrium condition for the final good market as follows.\(^{26}\)

\[
\rho A_t Q_t + \frac{w_t}{p_t} N_{W,t} = \frac{A_t N_{W,t}}{\Delta_t}. \tag{28}
\]

Due to the log-utility of capitalists, their nominal state-price density $\bar{\zeta}_t^{N}$\(^{27}\) is given in the following way, where the stochastic discount factor between time t (now) and s (future) is by definition given as $\frac{\bar{\zeta}_s^{N}}{\bar{\zeta}_t^{N}}$.

\[
\bar{\zeta}_t^{N} = e^{-\rho_t} \frac{1}{C_t} \frac{1}{p_t}. \tag{29}
\]

Total stock market wealth $(p_t A_t Q_t)$ is by definition the sum of discounted profit streams from the intermediate goods sector, which are priced by the above $\bar{\zeta}_t^{N}$ because capitalists are natural stock market investors in equilibrium. Thus we can price the entire stock market value as in the following relation, where we discount future profits with the stochastic discount factor generated by the state-price density $\{\bar{\zeta}_t^{N}\}$. We know that the entire profit of the intermediate goods sector is given as:

\[
D_t \equiv \int (p_t(i) y_t(i) - w_t n_t(i)) \text{d}i = \int p_t(i) y_t(i) \text{d}i - w_t N_{W,t} = p_t y_t \quad \text{and} \quad p_t y_t = p_t C_{W,t} = p_t C_t, \tag{30}
\]

where we use the Dixit-Stiglitz aggregator properties (total expenditure equals the sum of expendi-

\(^{26}\)Here $N_{W,t}$ is the solution of the worker’s optimization problem in equation (20).

\(^{27}\)A superscript N means it is a nominal state-price density, where a superscript r means a real-state-price density.
turers on each good) and linear aggregation of labor (equation (21)). Regardless of price dispersion across firms, the aggregate dividend D_t is equal to the consumption expenditure of capitalists, who are the natural stock investors in equilibrium as hand-to-mouth workers spend all their income on consumption.

Plugging the above expressions into the fundamental asset pricing equation yields the following condition.

$$p_t A_t Q_t = E_t \frac{1}{\xi_t} \int_t^\infty \sigma_s^N \left(D_s \right) \left(\frac{p_t C_s}{p_s C_s} \right) ds = \frac{p_t C_t}{\rho},$$

(31)

which becomes $C_t = \rho A_t Q_t$, the same expression as capitalist’ optimal consumption (equation (26)) when a_t is given by equation (27). Thus, in order to determine the asset price and close the model, we need an additional condition. 28 Usually, a monetary policy rule takes this role in the New-Keynesian literature.

The nominal expected return on the risky stock i^m_t in equilibrium consists of the dividend yield from the intermediate goods sector profits and the nominal stock price re-valuation (capital gain) due to fluctuations in $\{p_t, A_t, Q_t\}$. Within our specifications, the dividend yield always equals ρ, the discount rate of capitalists. Therefore, when i^m_t changes, only nominal stock prices can adjust endogenously, as the dividend yield is fixed.

With $\{I^m_t\}$ as the cumulative stock market return process, the following equation (32) shows the decomposition of i^m_t into dividend yield and stock revaluation:

$$dI^m_t = \left(\rho + \pi_t + \mu^q + \sigma^p \sigma^q + \sigma_t (\sigma^p + \sigma^q) \right) dt + (\sigma_t + \sigma^q + \sigma^p) dZ_t.$$

(32)

The equilibrium conditions we have obtained consist of the worker’s optimization (solution of
equation (20)), labor aggregation (equation (21)), total output (equation (22)), capitalist’s optimization (equation (27)), the good market equilibrium (equation (28)), and determination of the risky stock return (equation (32)). To close the model, we also have to derive the supply block of the economy (pricing decisions of intermediate good firms à la Calvo (1983)) and define the monetary policy rule, which is the most important topic of our interest.

Before we characterize the benchmark case without nominal rigidities, the following Lemma 1 adapts the Fisher equation when there is a correlation between the (aggregate) price process and the wealth process. The Lemma 1 shows that the inflation premium should be added to the original Fisher relation.

Lemma 1 (Inflation Premium) Real interest rate is given by the following variant of the Fisher identity.

\[
 r_t = i_t - \pi_t + \sigma_t^P \left(\sigma_t^P + \sigma_t^\rho \right)
\]

Wealth volatility

Inflation premium

Lemma 1 is useful when we characterize the flexible price equilibrium of the model where the nominal price process is arbitrary and does not affect the real economy.

3.3 Flexible Price Equilibrium

As a benchmark case, we study the flexible price equilibrium. When firms can freely reset their prices \((\delta \rightarrow \infty)\) case), the real wage becomes proportional to aggregate technology \(A_t\). The following proposition summarizes the real wage, asset price process, natural rate of interest \(r^n_t\) (the real, risk-free rate that prevails in this benchmark economy), and consumption process of the capitalist in the flexible price equilibrium. Before we proceed, we define the following parameter, which is the effective labor supply elasticity of workers taking their optimal consumption decision into account.

Definition 1 Effective labor supply elasticity of workers \(\chi^{-1} = \frac{1 - \phi}{\chi_0 + \phi}\)

Proposition 2 (Flexible Price Equilibrium) In the flexible price equilibrium, the following conditions for real wage \(\frac{w_t^n}{p_t^n}\), asset price \(Q^n_t\), natural rate of interest \(r^n_t\), and consumption of capitalists \(C^n_t\), hold.

\(i\) Every firm charges the same price \((\Delta_t = 1, \forall t)\), and the real wage is proportional to aggregate technology \(A_t\).

\[
 p_t(i) = p_t, \forall i \in [0, 1] \quad \text{and} \quad \frac{w_t^n}{p_t^n} = \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon}A_t
\]

\(^{29}\)We assign a superscript \(n\) to denote variables in the flexible price (natural) equilibrium of the economy.
(ii) Equilibrium (detrended) asset price Q^n_t is constant and given as follows.

$$Q^n_t = \frac{1}{\rho} \left(\frac{e - 1}{e} \right)^{1/3} \left(1 - \frac{(e - 1)(1 - \alpha)}{e} \right)$$

and $\mu^q_t = \sigma^q_t = 0$ \hspace{0.5cm} (35)

(iii) Natural interest rate r^n_t depends on parameters ρ, g, σ_t in the following way.

$$r^n_t = \rho + g - \sigma^2_t$$ \hspace{0.5cm} (36)

(iv) Consumption of capitalists evolves with the following stochastic process, which depends on $r^n_t, \rho, \sigma_t, \chi$.

$$\frac{dC^n_t}{C^n_t} = \left(r^n_t - \rho + \sigma^2_t \right) dt + \sigma_t \, dZ_t$$ \hspace{0.5cm} (37)

In flexible price equilibrium, proposition 2 shows that we can characterize closed-form expressions of the real wage w^n_t / p^n_t, (detrended) stock price Q^n_t and natural rate r^n_t. A few points are worth mentioning. In the flexible price economy, $\sigma^q_t = 0$ holds, which implies that there is no additional financial risk running in the economy, in addition to the TFP risk, σ_t. This feature arises because our economy features no explicit frictions (other than nominal rigidity, which is absent for now) and thus every variable other than the labor supply $N^{w^n_t}(t)$ becomes proportional to A_t. This means that real wealth $A_t Q^n_t$ has the exact same volatility as A_t itself, and the financial market imposes no additional risk on the economy.

A higher ϵ increases competition among firms, raising the real wage w^n_t / p^n_t. It also has two competing effects on the asset price Q^n_t. A higher real wage pushes down the profit of the intermediate sector and reduces the stock price Q^n_t. On the other hand, a higher wage induces workers to supply more labor to firms, raising output and stock price Q^n_t. The effective labor supply elasticity χ^{-1} matters in this second effect, thus equation (35) features χ^{-1} exponent on the term that increases with ϵ. As Q^n_t is constant, its drift μ^q_t also satisfies $\mu^q_t = 0$ for all t.

The natural real interest rate r^n_t consists of two parts with countervailing forces. A higher growth rate g induces capitalists to engage in more intertemporal substitution (into both bonds and stocks) and raises the value of r^n_t. A higher σ_t pushes down the natural rate r^n_t in two ways: with higher σ_t, capitalists engage more in precautionary savings, bringing down the natural rate r^n_t. This effect is well documented in the literature.\(^{30}\) Another channel in which a higher σ_t pushes down r^n_t works through the risk-premium. A higher σ_t raises the equilibrium risk-premium level, inducing capitalists to pull their wealth out of the stock market, forcing r^n_t to go down in order to prevent a

\(^{30}\)For example, see Acharya and Dogra (2020) for the recent treatment of precautionary saving in the New-Keynesian environment.
fall in the financial wealth. The second channel is present in our framework as we explicitly model the portfolio decision of each capitalist, which collectively pins down the equilibrium wealth and thus the aggregate demand level.

With the flexible price equilibrium as a benchmark, we move on to the sticky price equilibrium and show how our framework differs from the usual New-Keynesian models.

3.4 Sticky Price Equilibrium

When price resetting is sticky à la Calvo (1983), we obtain the Phillips curve that describes inflation dynamics. Since a fixed portion δdt of firms changes their prices on a given infinitesimal interval dt, we have no stochastic fluctuation in the price process in equation (23), thus $\sigma_p^t = 0$ holds. Now, we just need a monetary policy rule to close the model. Before analyzing the proper monetary rule in this framework, we first describe the ‘gap’ economy, which is defined as the economy where every variable is a log-deviation from the corresponding level in the flexible price economy. That is, we define any business cycle variable x_t’s gap, \hat{x}_t, to be the log-deviation of x_t from its natural level x_t^n, which is the level of the variable in the flexible price equilibrium.

$$\hat{x}_t \equiv \ln \frac{x_t}{x_t^n}.$$ \hfill (38)

Because the asset price acts as an endogenous aggregate demand shifter, we first write every other variable’s gap in terms of the asset price gap. The following Assumption 1 is the first step.\footnote{Assumption 1 ensures our framework matches the empirical regularities observed in the data, and holds under a standard calibration of the model (see Table 3). Even without Assumption 1, the main qualitative features of our model remain unchanged.}

Assumption 1 (Labor Supply Elasticity) $\chi^{-1} > \frac{(\epsilon - 1)(1 - \alpha)}{1 - \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon}}.$

Assumption 1 is needed to guarantee the positive co-movement between the asset price and business cycle variables (e.g., real wage and consumptions of both capitalists and workers) observed in the data. With a large ϵ, firms’ mark-ups decrease as competition between them intensifies, and real wage level rises as a result. This has a negative impact on the stock price as firm profits decrease, making it harder to satisfy a positive co-movement between the asset price and real wage gaps.\footnote{When the demand elasticity ϵ is larger, profits of firms per unit revenue decrease, as firms face a fiercer competition. In those cases, a drop in profits can lead to decreases in both the asset price and capitalists’ consumption, while hand-to-mouth workers enjoy a rise in wage income, and hence consumption. A higher χ^{-1} means a higher output elasticity with respect to aggregate technology, which tends to generate a positive correlation between consumption of capitalists and workers.}
larger α amplifies the effect of the Baxter and King (1991) externality, and an increase in asset price gap can result in higher labor demand and real wage. Without Assumption 1, a positive gap in the asset price depresses wages, labor, and consumption of workers, which might explain a portion of the observed long-run trend towards increased wealth inequality and income stagnation.

The following Lemma 2 argues that given Assumption 1, gaps in consumptions of capitalists and workers, asset price, employment, and real wage are all linearly dependent and co-move with one another up to a first-order. Therefore, for stabilization purposes, the central bank only needs to deal with the asset price gap \hat{Q}_t. From $C_t = \rho A_t Q_t$, we infer that $\hat{Q}_t = \hat{C}_t$ holds. Thus from now on we can interchangeably use \hat{Q}_t or \hat{C}_t to denote gaps of asset price Q_t and consumption of capitalists C_t.

Lemma 2 (Co-movement) Given assumption 1, gaps in consumption of capitalists C_t and workers ($C_{W,t}$), employment ($N_{W,t}$), and real wage ($\frac{w_t}{p_t}$) co-move with a positive correlation. Up to a first-order, the following approximation holds.

$$
\hat{Q}_t = \hat{C}_t = \left(\chi^{-1} - \frac{(\epsilon - 1)(1 - \alpha)}{1 - (\epsilon - 1)(1 - \alpha)} \right) \frac{\hat{w}_t}{p_t} = \frac{\chi^{-1} - \frac{\epsilon}{1 - (\epsilon - 1)(1 - \alpha)}}{1 + \chi^{-1}} \hat{C}_{W,t}.
$$

(39)

Using Lemma 2, we can actually get the following relation between \hat{Q}_t and \hat{y}_t.

$$
\hat{y}_t = \zeta \hat{Q}_t, \text{ where } \zeta \equiv \frac{\chi^{-1} - \frac{\epsilon}{1 - (\epsilon - 1)(1 - \alpha)}}{\chi^{-1} - \frac{\epsilon}{1 - (\epsilon - 1)(1 - \alpha)}} > 0,
$$

(40)

where Assumption 1 implies $\varphi > 0$.

Demand block Now we formulate one of the key building blocks of this paper, a dynamic $\{\hat{Q}_t\}$

33For example, see Saez and Zucman (2020) for the trend on rising wealth and income inequality in the US. Also, see Autor et al. (2020) for evidence on a decreasing labor share and effects from the rise of market concentration. Especially, growth in pre-tax income for bottom 50% has been only 0.2% on average per year since 1980s, while S&P-500 index has risen almost by 8% per year.

34In this demand-determined environment, a positive asset price gap induces stronger economic activities in general, resulting in positive gaps in real wage, employment, and consumption.

35Since aggregate production is linear in aggregate labor up to a first-order, aggregate mark up gap becomes negation of the real wage gap.
process. This \{\hat{Q}_t\} process serves as the demand block of the model, while the Phillips curve will serve as a supply block.

The dynamic IS equation in our model features some important modifications from the canonical New-Keynesian model. Before we characterize it, we define the risk-premium level \(r_p \equiv (\sigma_i + \sigma_q)^2\) and its natural level in the flexible price economy \(r_p^n \equiv (\sigma_i)^2\) with \(\sigma_q^nn = 0\), as we characterized in equation (35). By subtracting \(r_p^n\) from the current risk-premium level \(r_p\), we define risk-premium gap \(\hat{r}_p \equiv r_p - r_p^n\). Basically, as the risk-premium gap rises, capitalists ask for a higher compensation to bear financial risks, which causes asset prices to fall below its natural level. We also define the risk-adjusted natural rate \(r_T\) as we defined similarly in the standard non-linear New-Keynesian setting (equation (8)), which is related to its natural correspondent as follows.

\[
\rho_T = r_n - \frac{1}{2}\hat{r}_p. \tag{41}
\]

\(r_T\) serves as a real rate anchor for monetary policy. A positive risk-premium gap \((\hat{r}_p > 0)\), for example, lowers the demand of capitalists for the risky stock compared with the benchmark economy, and thus decreases the risk-free rate \(r_T\) that supports the equilibrium dynamics.

In the following proposition, we characterize an asset price gap \(\hat{Q}_t\) process, which is similar to the usual dynamic IS equation in textbook New-Keynesian models but different in a very important aspect: the natural rate \(r^n\) is replaced with the risk-adjusted natural rate \(r_T\).

Proposition 3 (Asset Price Gap Process (Dynamic IS Equation)) With inflation \(\{\pi_t\}\), we have the following \(\hat{Q}_t\) process, where \(r_T\) takes the role of \(r^n\) in the conventional IS equation.

\[
d\hat{Q}_t = (i_t - \pi_t - r_T)dt + \sigma_q dZ_t. \tag{42}
\]

Thus, endogenous financial volatility \(\sigma_t\) directly affects the drift of the \(\{\hat{Q}_t\}\) process, which governs how all other gap variables fluctuate over time.

With \(\sigma_q = 0\) due to the nature of staggered pricing à la Calvo (1983), when capitalists invest in the stock market they bear \((\sigma_i + \sigma_q)\) amount of risk. We know that the log-preference of capitalists determines the risk-premium level to be \((\sigma_i + \sigma_q)^2\). In flexible price equilibrium, the natural rate is given as \(r^n\) and \(\sigma_t^n\) equals \(\sigma_q^nn = 0\). Thus, the level of expected (instantaneous) real return in stock market investment becomes \(r^n + (\sigma_i)^2 - \frac{1}{2}(\sigma_i)^2\), where the factor \(\frac{1}{2}(\sigma_i)^2\) is from the quadratic variation factor that arises from the second-order Taylor expansion. In a sticky price equilibrium with asset price volatility \(\sigma_t\), risk premium changes from \((\sigma_i)^2\) to \((\sigma_i + \sigma_q)^2\). Therefore, with monetary policy rate \(i_t\) and inflation \(\pi_t\), the real expected stock market return becomes \(i_t - \pi_t + \frac{1}{2}(\sigma_t + \sigma_q)^2\).

If this value differs from \(r^n + \frac{1}{2}(\sigma_i)^2\), then asset price gap \(\hat{Q}_t\) endogenously adjusts, and this adjustment creates a real distortion from its effect on aggregate demand.
Equation (42) has the same mathematical structure as equation (7) in the standard New-Keynesian model. In Section 2, the endogenous business cycle volatility has a first-order impact on aggregate demand through precautionary savings channel, whereas in the current model with stock markets, an aggregate financial market volatility affects risk-premium and financial wealth, thereby affecting stock prices and aggregate demand. Due to this isomorphic structure between two frameworks, we will show that novel findings in Section 2 continue to hold here, with important implications about monetary policy.

Thus we get the lesson that the monetary policy i_t should take deviation in risk-premium from its natural level into account as well as the natural rate of interest r^*_n, since otherwise asset price Q_t will deviate from its natural level and generate business cycle fluctuation. r^*_T can be interpreted as the real risk-free rate that ensures that the real return on stock market investment is equal to its level in the benchmark economy, as shown in the following equation (43).

$$r^*_n + \frac{1}{2} (\sigma_t)^2 = r^*_T + \frac{1}{2} (\sigma_t + \sigma^d_t)^2. \quad (43)$$

When $\sigma^q_t = \sigma^q_{n,t} = 0$ holds, the risk-adjusted rate r^*_T equals the natural rate r^*_n and equation (42) becomes the canonical New-Keynesian IS equation in equation (44).

$$d\hat{C}_t = (i_t - \pi_t - r^*_n)dt. \quad (44)$$

The crux of the problem is that σ^q_t is itself an endogenous variable to be determined in equilibrium, with no guarantee that it will equate its natural level $\sigma^q_{n,t} = 0$.

The endogenous financial volatility σ^q_t can be interpreted a measure of financial disruption, as its rise, given monetary policy rate i_t, reduces stock prices and thus aggregate demand, dragging the economy into recession. This channel has been pointed out by many authors including Gilchrist and Zakrajšek (2012), Stein (2014), Chodorow-Reich (2014), Guerrieri and Lorenzoni (2017), Di Tella and Hall (2020) among others, with different aspects of financial disruption affecting economic activity. Woodford (2012) and Cúrdia and Woodford (2016) especially introduced a friction in credit intermediation between borrowers and savers to the New-Keynesian framework and derived similar dynamics for output gap, but their friction is exogenous and relies on ad-hoc assumptions.

The existence of this new stock market volatility channel invites us to re-think the traditional monetary policy framework, to which we devote Section 4. Before we jump on to the next topic, if we plug equation (36) into equation (41), we get the following expression for r^*_T:

$$r^*_T = \rho + g - \frac{\sigma^2_t}{2} - \frac{(\sigma_t + \sigma^q_t)^2}{2}. \quad (45)$$
Figure 2a represents r^T_t as a function of σ_t^q given σ_t level. Intuitively, when σ_t^q jumps up, a rise in risk-premium r^p_t ensues and the rate r^T_t falls. We see r^T_t aligns with the natural rate r^n_t when $\sigma_t^q, n = 0$. Figure 2b illustrates the effect of a spike in σ_t. When σ_t rises, the curve in Figure 2a uniformly shifts down. The formula $\sigma_t^q, n = 0$ in equation (35) implies that σ_t^q, n remains unchanged, but the natural rate of interest r^n_t still falls due to equation (36).

Supply block We follow the standard literature on pricing à la Calvo (1983) to determine inflation dynamics. The above Lemma 2 allows us to express the firms’ aggregate marginal cost gap in terms of the asset price gap up to a first order, as asset price determines aggregate demand, which in turn determines such variables as the aggregate marginal cost.

The following Phillips curve in Proposition 4 describes π_t dynamics, and is of the same form as in many New-Keynesian models.

Proposition 4 (Phillips Curve) Inflation π_t evolves according to the following stochastic process with \dot{Q}_t entering in the position of output gap in conventional New-Keynesian models.\(^{36}\)

$$
\mathbb{E}_t d\pi_t = (\rho \pi_t - \frac{\kappa}{\zeta} \hat{y}_t) dt \text{ where, } \kappa \equiv \frac{\delta(\delta + \rho) \Theta}{(\epsilon - 1)(1 - \alpha)}, \Theta = \frac{1 - \alpha}{1 - \alpha + \alpha \epsilon}.
$$

\(^{36}\)The coefficient $\chi^\delta(\delta + \rho)\Theta$ is attached to the output gap \hat{y}_t in equation (46). In standard New-Keynesian models with a representative agent whose utility is of the same form as our workers’, the coefficient becomes $(\chi_0 + \varphi)\delta(\delta + \rho)\Theta$, which is different from $\chi^\delta(\delta + \rho)\Theta$ as $\chi \neq \chi_0 + \varphi$.

26
Plugging equation (40) into the Phillips curve, we get $\mathbb{E}_t d\pi_t = (\rho\pi_t - \kappa \hat{Q}_t)dt$, which is expressed in terms of \hat{Q}_t. Under Assumption 1, a higher asset price gap \hat{Q}_t means the economy is over-heated, and thus inflation rates would jump up. Note that: as price resetting probability increases ($\delta \to \infty$), then we have $\kappa \to \infty$ and $\hat{Q}_t = 0$ in equilibrium. Thus, we achieve the flexible price equilibrium when $\delta \to \infty$.

Now that we characterize the model’s demand block (the IS equation for \hat{Q}_t (equation (42))) and supply block (Phillips curve in equation (46)), we need to specify the policy reaction function i_t to close the model. Before we move on to the analysis of policy rules, we briefly discuss the traditional approach to the problem of financial and macroeconomic stabilization in the literature.

Macroprudential policies and regulations There are in general two goals in short (and/or medium)-run macroeconomics: macro-stabilization and financial stability. Many policymakers (including central bankers) and academic economists believe that financial stability should be dealt with by regulations and macroprudential policies imposed on banks and financial institutions, with business cycle stabilization being the sole focus of monetary policy. Because our model is parsimonious and does not include any complex financial market participants, those macroprudential regulations that tackle potential financial instabilities can be regarded as a policy avenue to prevent $\sigma^q_{t} \neq \sigma^q_{n} = 0$. If $\sigma^q_{t} = \sigma^q_{n} = 0$, then as in equation (44), our model features exactly the same dynamics as conventional New Keynesian models. Therefore, in that case a conventional monetary policy rule can solely focus on business cycle stabilization.

One interesting aspect built in our model is that financial stability (volatility and risk-premium) issues are intertwined with macro-stabilization. The more volatile financial markets features higher risk-premium levels, thereby driving down aggregate financial wealth and aggregate demand. Our view is that even without perfect macroprudential policies to guarantee $\sigma^q_{t} = \sigma^q_{n} = 0$, monetary policy might be able to tackle both concerns simultaneously, as stabilization in one dimension might help stabilize the other.

Now we move onto the analysis of distinct monetary policy rules and revisit the classical question on the role of monetary policy as a financial stabilizer.

4 Monetary Policy

In this Section 4, we study the monetary policy’s roles of macroeconomic stabilization in the context of our model. First, we analyze conventional Taylor rules with inflation and output gap as policy targets. After showing limitations of such policies and how sunspot equilibria can arise, we propose a generalized version of the Taylor rule for stochastic environments that successfully achieve twin
objectives of financial and economic stability.

For simplicity, we assume throughout Section 4 the constant TFP volatility \(\sigma_t = \sigma \) for all \(t \) such that the real natural rate \(r^*_n = \rho + g - \sigma^2 > 0 \) and the natural risk-premium \(r^*_n = \sigma^2 \) are constants.

4.1 Old Monetary Rule

4.1.1 Conventional Taylor rule and Bernanke and Gertler (2000) rule

We start with a conventional Taylor rule with a constant intercept equal to the natural rate \(r^*_n \), and standard inflation and output gap targets.

\[
i_t = r^*_n + \phi^*_\pi \pi_t + \phi^*_y \hat{y}_t,
\]

where \(\hat{y}_t \) is the output gap, \(\pi_t \) inflation and note we implicitly assume a zero trend inflation target, \(\bar{\pi} = 0 \). As output gap \(\hat{y}_t \) is positively correlated with the asset price gap \(\hat{Q}_t \) as in equation (40), we can express equation (47) as the monetary policy rule that targets asset price \(\hat{Q}_t \) as well as inflation:

\[
i_t = r^*_n + \phi^*_\pi \pi_t + \phi^*_q \hat{Q}_t.
\]

Bernanke and Gertler (2000), by adding stochastic ad-hoc bubbles to the fundamental asset price in a model based on Bernanke et al. (1999), conducted an analysis on whether monetary rules that directly target asset price as in equation (48) can effectively stabilize the economy. They conclude that such rules are undesirable as they deter real economic activity when the ‘bubble’ appears and bursts.\(^{37}\) In contrast, our framework features no irrational asset price bubble: here, fluctuations in \(\hat{Q}_t \) reflect rational expectation about future business cycle fluctuations, and thus from central bank’s perspective, targeting the asset price gap \(\hat{Q}_t \) is equivalent to targeting the output gap \(\hat{y}_t \), as the two gaps are perfectly correlated up to a first-order. Therefore in our model, a conventional monetary policy rule is equivalent to the rule of Bernanke and Gertler (2000).

Now we study whether equation (48) achieves divine coincidence as in textbook New-Keynesian models. Our objective now is to show that this rule cannot guarantee equilibrium determinacy even if it satisfies the so-called Taylor principle. Let us assume the monetary authority relies on Bernanke and Gertler (2000) rule in equation (48) that targets two factors, \(\pi_t \) and \(\hat{Q}_t \). We define the coefficient \(\phi \equiv \phi_q + \frac{\kappa(\phi_\pi - 1)}{\rho} > 0 \), which is the total responsiveness of monetary policy to inflation and asset

\(^{37}\)Galí (2021) introduces rational bubbles in a New-Keynesian model with overlapping generations. He argues that ‘leaning against the bubble’ monetary policy, if properly specified, can insulate the economy from the aggregate bubble fluctuations, as only rational bubbles shift the aggregate output in his framework.
price gap. $\phi > 0$ corresponds to the conventional Taylor principle that excludes the possibility of sunspot in inflation. Thus, i_t follows

$$i_t = r^n + \phi \pi_t + \phi q \hat{Q}_t, \text{ where } \phi \equiv \phi_q + \frac{\kappa(\phi - 1)}{\rho} > 0. \tag{49}$$

Plugging equation (49) into equation (42), we get the following \hat{Q}_t dynamics.

$$d\hat{Q}_t = \begin{pmatrix} (\phi - 1)\pi_t + \phi q \hat{Q}_t - \left(\frac{\sigma^2}{2} + \left(\frac{\sigma + \sigma^q}{2}\right)^2 \right) \end{pmatrix} dt + \sigma^q dZ_t. \tag{50}$$

Multiple Equilibria Instead of equation (50), if \hat{Q}_t dynamics is represented by

$$d\hat{Q}_t = ((\phi - 1)\pi_t + \phi q \hat{Q}_t) dt + \sigma^q dZ_t, \tag{51}$$

then, with the Taylor principle $\phi > 0$ satisfied we achieve divine coincidence: $\hat{Q}_t = \pi_t = 0$ is the unique possible rational expectations equilibrium from the Blanchard and Kahn (1980). In contrast, now that the financial volatility σ^q_t affects the drift of equation (50), we have multiple equilibria and sunspots in σ^q_t can possibly appear. The reason is similar to the reason why we might have sunspots in aggregate business cycle volatility in the standard New-Keynesian model in Section 2. Here, the dynamic IS equation in (50) features a countercyclical financial volatility σ^q_t. Since an increase in σ^q_t raises the risk-premium, it brings down financial wealth and aggregate demand (thus, raising the drift of equation (50)). For example, imagine that capitalists fear of a possible financial crisis arising from higher levels of risk-premium and financial volatility: they respond by reducing the demand for the risky stock, which leads to the collapse of the asset price, and self-justifies a higher expected return in the stock market investment and a rise in risk-premium. This result is related to Acharya and Dogra (2020)'s findings about equilibrium determinacy issues in models with countercyclical income risks, even though their paper focuses on idiosyncratic risks and effects from precautionary savings, while ours centers on the sunspot equilibria stemming from aggregate endogenous risk.

We now formalize the multiple equilibrium intuition presented above by constructing a rational expectations equilibrium that supports an initial sunspot σ^0_q. For simplicity, we focus on the case in which σ^0_q jumps off from $\sigma^{q,n} = 0$ (thus, $\sigma^0_q > 0$), and study how the sunspot σ^0_q can be rationally sustained in equilibrium. For that purpose, a rational expectations equilibrium must: (i) support an initial hike $\sigma^0_q > 0$, and (ii) not diverge (on expectation) in the long-run, following Blanchard

38 Monetary policy in equation (48) responds when its mandates \hat{Q}_t and π_t are affected by a sunspot in σ^q_t, but does not directly target the sunspot or volatility σ^q_t.

29
Martingale equilibrium39 In particular, we study one rational expectations equilibrium that supports an initial sunspot σ_0^q: the equilibrium in which asset price gap \hat{Q}_t follows a martingale after the initial sunspot σ_0^q happens. As \hat{Q}_t is martingale, we get the following formula for π_t by iterating equation (46) over time.

\[
\pi_t = \kappa \int_t^\infty e^{\rho(s-t)} E_t(\hat{Q}_s) \, ds = \frac{\kappa}{\rho} \hat{Q}_t, \tag{52}
\]

which implies inflation closely follows the trajectory of \hat{Q}_t. Plugging equation (52) into equation (50) and imposing a martingale condition, we obtain

\[
\hat{Q}_t = -\frac{(\sigma + \sigma_t^q)^2}{2\phi} + \frac{\sigma^2}{2\phi} \text{ and } \pi_t = \frac{\kappa}{\rho} \left(-\frac{(\sigma + \sigma_t^q)^2}{2\phi} + \frac{\sigma^2}{2\phi} \right). \tag{53}
\]

Our martingale equilibrium does not diverge (on expectation) in the long-run, as the paths of $\{\hat{Q}_t, \pi_t\}$ stay, on expectation, at the initial values of the variables, thus satisfying $E(\pi_t) = \pi_0$ and $E(\hat{Q}_t) = \hat{Q}_0, \forall t \geq 0$. The last step is to show that there exists a stochastic path of $\{\sigma_t^q\}$ starting from σ_0^q that supports this equilibrium. This equilibrium then both (i) supports an initial sunspot $\sigma_0^q > 0$ and (ii) does not diverge in the long-run. Using equation (50) and equation (53),40 we obtain the stochastic process of σ_t^q as42

\[
d\sigma_t^q = -\frac{\sigma^2 \sigma_t^q}{2(\sigma + \sigma_t^q)^3} \, dt - \phi \sigma_t^q \, dZ_t. \tag{55}
\]

Both equation (53) and equation (55) constitute the dynamics of this particular rational equilibrium supporting $\sigma_0^q > 0$. What does this equilibrium look like? The next Proposition 5 sheds light on the behavior of \hat{Q}_t and π_t paths and argues that business cycles almost surely converge to a perfectly stabilized path in the long run. The very few paths that do not converge can blow up asymptotically.

39Under some regularity conditions dictating how the expected risk-premium evolves in the long run, our martingale equilibrium becomes a ‘unique’ rational expectations equilibrium that supports an initial sunspot $\sigma_0^q > 0$. A martingale process for \hat{Q}_t is consistent with the previous findings of the literature on the ‘Efficient Market Hypothesis (EMH)’ (For example, see Fama (1970)).

40Thus in this particular equilibrium, $\sigma_t^q > \sigma_q^{0, u} = 0$ causes \hat{Q}_t to drop below zero, causing a recession.

41Since \hat{Q}_t process is a martingale, the drift part in equation (50) must be 0.

42When $\sigma = 0$, this process becomes the following Bessel process:

\[
d\sigma_t^q = -\frac{\sigma^2 \sigma_t^q}{2\sigma_t^q} \, dt - \phi dZ_t. \tag{54}
\]

which stops when σ_t^q reaches $\sigma_q^{0, u} = 0$. For general properties of Bessel processes, see Lawler (2019).
and, together with the forward-looking nature of the economy, help sustain the initial crisis.

Proposition 5 (Bernanke and Gertler (2000) Rule and Indeterminacy) For any value of Taylor responsiveness \(\phi > 0 \):

1. **Indeterminacy:** there is always a rational expectations equilibrium (REE) that supports initial sunspot \(\sigma_0^q > 0 \) and is represented by \(\dot{Q}_t \) and \(\pi_t \) dynamics in equation (53), and \(\sigma_t^q \) process in equation (55)

2. **Properties:** the rational expectations equilibrium that supports an initial sunspot \(\sigma_0^q > 0 \) satisfies:

 \[
 (i) \quad \sigma_t^q \xrightarrow{a.s.} \sigma_\infty^q = \sigma^{q,n} = 0, \quad (ii) \quad \dot{Q}_t \xrightarrow{a.s.} 0 \text{ and } \pi_t \xrightarrow{a.s.} 0, \quad \text{and } (iii) \quad \mathbb{E}_0 (\max_t (\sigma_t^q)^2) = \infty
 \]

The conditions \(\sigma_t^q \xrightarrow{a.s.} \sigma_\infty^q = \sigma^{q,n}, \dot{Q}_t \xrightarrow{a.s.} 0, \) and \(\pi_t \xrightarrow{a.s.} 0 \) imply that equilibrium paths supporting an initial sunspot \(\sigma_0^q > 0 \) are almost surely stabilized in the long run. Then, how is it possible for a sunspot \(\sigma_0^q > 0 \) to appear at first? The finding \(\mathbb{E}_0 (\max_t (\sigma_t^q)^2) = \infty \) implies that an initial spike in \(\sigma_0^q \) and the ensuing crisis is sustained by the tiny probability of an \(\infty \)-severe financial disruption in the future. This result has similar implications to Martin (2012) in a sense that our framework does not assume the existence of specific disasters but disaster risk is always present even if monetary authority satisfies the Taylor principle and actively stabilizes the business cycle. Martin (2012) applied a similar logic to pure asset pricing contexts and showed that the pricing of a broad class of long-dated assets is driven by the possibility of extraordinarily bad news in the future. The intuitions we derived here continue to hold in our simple discrete-time framework in Lee and Carreras (2021).

Calibration and Simulation For the rest of the paper, we calibrate the parameters of our model to values commonly found in the literature: see Table 3 in Appendix B for further details. A few points are worth mentioning. For worker’s risk-aversion parameter \(\phi \), we use \(\phi = 0.2 \) following Gandelman and Hernández-Murillo (2014). For individual firm’s labor share in production, we use \(1 - \alpha = 0.6 \) following Alvarez-Cuadrado et al. (2018), as we regard the aggregate labor in the production function as a proxy for the capital in conventional macroeconomic models. With this calibration, our co-movement condition (Assumption 1) is satisfied.

Figure 3 illustrates the martingale equilibrium’s dynamic paths of \(\{\sigma_t^q, \dot{Q}_t\} \) supporting \(\sigma_0^q = 0.9 > \sigma^{q,n} = 0 \). Normalization shows that as \(\sigma_0^q \) jumps off by \(\sigma \), stock price falls by \(2 - 10\% \), which is consistent with our empirical findings in Appendix A (Figure 5b). Figure 3 also explores the effects on the martingale equilibrium of a change in policy responsiveness to inflation \(\phi_\pi \). The right

43Their estimates of \(\phi \) range between 0.2 and 10. In our environment, a higher risk-aversion of workers makes their labor supply (and therefore, output) less responsive to business cycle fluctuations. In that scenario, a higher asset price tends to translate into less wage income distributed to workers, making it harder to satisfy the co-movement condition (Assumption 1). Thus, we pick a value on the lower end of the acceptable range and set \(\phi = 0.2 \).
panel 3b uses the default calibration value $\phi_\pi = 2.5$, while the left panel 3a assumes a more accommodating stance $\phi_\pi = 1.5$. As we raise ϕ_π, the average sample path converges faster towards full stabilization, but at the expense of an increased likelihood of a more severe crisis path in a given period of time. We obtain similar results when looking at changes in policy responsiveness to the asset price gap ϕ_q (alternatively, output gap ϕ_y), and find that a change in $\phi \equiv \phi_q + (\phi_\pi - 1)^{\frac{\kappa}{\rho}}$, the measure of combined responsiveness of monetary policy i_t, brought by any combination $\{\phi_\pi, \phi_q\}$ follows the same patterns depicted in Figure 3.

Booms In an analogous way, we can construct a rational expectations equilibrium that supports an initial downward sunspot $\sigma_0^q < \sigma_{i_t}^q \equiv 0$. The equilibrium paths feature a boom phase with buoyant production and consumption with lower levels of financial volatility and risk-premium. A higher ϕ value speeds up the stabilization process, but increases the likelihood of an equilibrium path with an overheated economy.

44 We have two singular points in the $\{\sigma_t^q\}$ process (equation (55)): as σ_t^q hits $-\sigma$, the drift and volatility of the process diverge, and $\{\sigma_t^q\}$ process features a jump. When σ_t^q hits 0, it stays there forever. Thus, when σ_0^q is below $-\sigma$, we might end up in paths where we have a jump in σ_t^q to a positive value, which eventually converges to 0.
4.2 Modified Monetary Rule

A modified monetary policy rule includes risk-premium as a separate factor in the following way:

\[
i_t = r^n + \phi\pi_t + \phi_q\hat{Q}_t - \frac{1}{2}r\hat{p}_t, \quad \text{where } r\hat{p}_t \equiv \hat{r}_p - r^n. \tag{56}
\]

Thus, the above monetary policy rule contains a ‘risk-premium gap term’ as a factor in addition to inflation and asset price gap. It also can be written in terms of the risk-adjusted natural rate \(r^T_t \) as

\[
i_t = r^T_t + \phi\pi_t + \phi_q\hat{Q}_t, \tag{57}
\]

where a higher \(\hat{r}_p \) brings down \(r^T_t \), forcing \(i_t \) to fall. The next Proposition 6 establishes that a monetary policy rule consistent with equation (56) and that satisfies the Taylor principle (corresponding to \(\phi > 0 \)) restores equilibrium determinacy and fully stabilizes the economy.

Proposition 6 (Ultra-Divine Coincidence with Risk-Premium Targeting) The monetary policy rule

\[
i_t = r^n + \phi\pi_t + \phi_q\hat{Q}_t - \frac{1}{2}r\hat{p}_t, \quad \text{where } \phi = \phi_q + \frac{\kappa(\phi\pi - 1)}{\rho} > 0, \tag{58}
\]

achieves \(\hat{Q}_t = \pi_t = \hat{r}_p = 0 \). Therefore, the monetary policy rule in equation (58) attains (i) output (asset price) stabilization, (ii) price level (inflation) stabilization, and (iii) financial market (financial volatility and risk-premium) stabilization. We call it a ultra-divine coincidence.

This result is a direct consequence of Blanchard and Kahn (1980) and Buiter (1984). The reason central banks must target risk-premium as a separate factor is that this term directly appears in the drift part of our dynamic IS equation (equation (42)). According to the rule in equation (58), a central bank lowers the policy rate \(i_t \) when \(\hat{r}_p > \hat{r}_p^n \) to boost \(\hat{Q}_t \) and \(\hat{C}_t \), since a higher risk-premium drags down asset price and business cycle levels. If monetary policy kills an initial excess volatility (or excess risk-premium) with this additional target in its rule, it precludes the possibility of sunspots in financial volatility that we discussed. Since the Taylor principle (\(\phi > 0 \)) guarantees there is no sunspot inflation, the policy rule in equation (58) restores equilibrium determinacy and achieves both macro stability (with \(\hat{Q}_t = \pi_t = 0 \)) and financial stability (with \(\hat{r}_p = 0 \), which implies \(\hat{r}_p = \hat{r}_p^n \) and \(\sigma_{\hat{q}}^2 = \sigma_{\hat{q},n}^2 = 0 \)). The equilibrium interest rate then becomes \(i_t = r^n \), which is the same level as in the equilibrium path of a canonical New-Keynesian model. Therefore, the ultra-divine coincidence result implies: one policy tool (\(i_t \) rule) achieves an additional objective (financial

\(^{45}\)Even with Bernanke and Gertler (2000) rule, monetary policy responds to a rise in risk-premium since it negatively affects the asset price gap \(\hat{Q}_t \) and inflation \(\pi_t \). Our point here is that the policy rate must systematically respond to deviations of \(r\hat{p}_t \) from its natural level \(r^n \) given \(\hat{Q}_t \) and \(\pi_t \) levels.
stability) in addition to the two usual mandates (output gap and inflation stability). This is possible in our framework because financial markets and the business cycle are tightly interwoven and real and financial instabilities are equivalent to each other.

A common view in the literature holds that monetary policy must respond to financial market disruptions only when they affect (or to the degree that they affect) the original central bank mandates of inflation stability and full employment (or full output). This premise is at odds with the results of our paper: the failure to target the risk-premium of financial markets subjects the economy to the apparition of sunspot shocks and the corresponding recessions and overheating episodes that ensue. Only by targeting risk-premium in the particular way characterized in equation (56), the monetary authority can re-establish equilibrium determinacy and achieve the ultra-divine co-incidence outlined in the previous paragraphs.

Interpretation We can rewrite our modified Taylor rule (equation (58)) as

\[
i_t + r p_t = \frac{1}{2} r p_t - \frac{1}{2} r p^n_t - \frac{1}{2} r p^n_t + \phi \pi_t + \phi q \hat{Q}_t,
\]

or equivalently as

\[
\rho + \frac{\mathbb{E}_t (d \log a_t)}{dt} = \rho + \frac{\mathbb{E}_t (d \log a^n_t)}{dt} + \phi \pi_t + \phi q \hat{Q}_t,
\]

where \(a_t\) is the economy’s aggregate financial wealth and \(a^n_t\) is the aggregate wealth of the natural (flexible price) economy. Our modified monetary policy that targets a risk-premium as prescribed in equation (58) thus can be interpreted as the rule on the rate of change of log-aggregate wealth as a function of traditional inflation and output gap (asset price) targets.

In the standard linearized New-Keynesian model (or alternatively, a model under perfect foresight), the economy’s risk-free rate (i.e., policy rate) equals the rate of change in log-wealth, whereas the expected stock market return takes that role in our model with risk. Therefore, equation (60) restores determinacy and attains divine coincidence both in the standard linearized model and in our framework where the endogenous volatility of stocks (equivalently, the risk premium) affects expected asset returns. We interpret equation (60) as the **generalized Taylor rule** that holds in both linearized and risk-centric environments. With this rule, the central bank uses the aggregate wealth and its rate of return as *intermediate* targets towards achieving business cycle stabilization, as wealth
itself affects aggregate demand, and its internal rate of return changes how a demand-driven economy evolves along the cycle.

Practicality Some issues exist about the feasibility to implement this new policy rule. First, the risk-premium gap \hat{r}_t in equation (56) depends on the natural risk-premium level, which is a counterfactual variable by definition, and therefore its observation is subject to some form of measurement error. Second, there are multiple kinds of risk-premia in financial markets that can be possibly targeted through monetary policy, and the construction of an aggregate risk-premium index as featured in our model might be subject to error as well.\(^{46,47}\)

More importantly, and related to the previous two points, the coefficient attached to the risk-premium in equation (56) is exactly $\frac{1}{2}$. Given the potential for measurement error in \hat{r}_t, it might be impossible for the central bank to target the risk-premium with the exact strength demanded by (56).\(^{48}\) To understand the consequences of deviating from the $\frac{1}{2}$ risk-premium target, we consider the following alternative rule:

$$i_t = r^n + \phi_{\pi} \pi_t + \phi_{\hat{Q}} \hat{Q}_t - \phi_{r_p} \hat{r}_t,$$ \hfill (61)

where ϕ_{r_p} is a constant term potentially different from $\frac{1}{2}$. We have the following $\{\hat{Q}_t\}$ process with the policy rule in (61):

$$d\hat{Q}_t = \left((\phi_{\pi} - 1) \pi_t + \phi_{\hat{Q}} \hat{Q}_t + \left(\frac{1}{2} - \phi_{r_p} \right) \hat{r}_t \right) dt + \sigma_{\hat{Q}} dt.$$

With $\phi_{r_p} = \frac{1}{2}$, we return to determinacy (i.e., Proposition 6). With $\phi_{r_p} \neq \frac{1}{2}$, the martingale equilib-

\(^{46}\)Our framework features only an ‘index’ of the stock market as a feasible vehicle to invest in, but there are multiple risk-premia (including term-premia) covering stocks and bonds in the real world.

\(^{47}\)There have been long-standing debates about whether monetary authorities should adjust policy rates in response to fluctuations in risk-premia of financial markets. For example, Doh et al. (2015) argued “adjusting short-term interest rates in response to various estimated risk premium levels could be appropriate, especially if the risk premiums are low for a sustained period. In contrast, if policymakers are predominantly concerned about the most likely macroeconomic outcome, monitoring estimated risk premiums and adjusting the monetary policy stance accordingly may be of little benefit.”. This argument is based on the fact that information about possible tail risks is summarized by the risk-premia levels in financial markets.

\(^{48}\)As an example, consider a multiplicative measurement error ϵ_t such that $\hat{r}_t^{\text{obs}} = \epsilon_t \cdot \hat{r}_t$, where \hat{r}_t^{obs} stands for the observed risk-premium. It is easy to see that the central bank following the policy rule in (56) will target the ‘true’ risk-premium with a coefficient $\neq \frac{1}{2}$.
which had different approaches to the economy-wide banking panics and depressions. That the state of Mississippi is divided by the Federal Reserve act between the 6th (Atlanta) and 8th (St. Louis) districts arise stabilized faster by policy responses, and some paths must feature more extreme behavior to support an initial sunspot given initial sunspot \(\sigma_0 \) appears, which was a popular idea during the first half of the 20th century. Basically, the doctrine advocated for the Fed discount rate to track the average interest rate of the financial markets, as a means of stabilization. Thus, the volatility of \(\{ \sigma_t^q \} \) process in equation (64) must rise to ensure that the initial sunspot \(\sigma_0^q \) is supported, as on average the economy is better stabilized with a higher \(\phi_{\text{rp}} \). \(\{ \hat{Q}_t \} \) eventually is stabilized, which results, on average, on shorter but more amplified sample paths.

\(\phi_{\text{rp}} < 0 \) case is interesting since it implies central bank raises the policy rate when risk-premias rise in financial markets. It is consistent with the Real Bills Doctrine which was a popular idea during the first half of the 20th century. Basically, the doctrine advocated for the Fed discount rate to track the average interest rate of the financial markets, as a means of stabilization. In our framework, \(\phi_{\text{rp}} < 0 \) pushes down \(\phi_{\text{tp}} \) from \(\phi \), thereby effectively slowing down the pace of stabilization after sunspots hit the stock market. So we confirm the Real Bills Doctrine with \(\phi_{\text{rp}} < 0 \) is not suitable for stabilization purposes, as empirically documented by Richardson and Troost (2009).

With \(\phi_{\text{rp}} > \frac{1}{2} \), monetary policy responds too strongly to fluctuations in risk-premium, thus with an initial positive sunspot \(\sigma_0^q > 0 \), policy rate drops excessively and creates an artificial boom instead of a crisis. A higher \(\phi_{\text{rp}} \) reduces \(|\phi_{\text{tp}}| \) and slows down stabilization since a higher \(\phi_{\text{rp}} \) means monetary policy deviates more from determinacy (the case of \(\phi_{\text{rp}} = \frac{1}{2} \)), and therefore becomes less

\[\hat{Q}_t = \frac{-\left(\sigma + \sigma_t^q \right)^2}{2\phi_{\text{tp}}} + \frac{\sigma_t^2}{2\phi_{\text{tp}}} \quad \text{and} \quad \pi_t = \frac{\kappa}{\rho} \left(-\frac{(\sigma + \sigma_t^q)^2}{2\phi_{\text{tp}}} + \frac{\sigma_t^2}{2\phi_{\text{tp}}} \right) \quad \text{with} \quad \phi_{\text{tp}} \equiv \frac{\phi}{1 - 2\phi_{\text{rp}}}, \]

where \(\{ \sigma_t^q \} \)'s stochastic process after an initial sunspot \(\sigma_0^q \) appears is given as

\[d\sigma_t^q = -\frac{\phi_{\text{tp}}^2 \left(\sigma_t^q \right)^2}{2 \left(\sigma + \sigma_t^q \right)^3} dt - \phi_{\text{tp}} \frac{\sigma_t^q}{\sigma + \sigma_t^q} dZ_t. \]

When \(\phi_{\text{rp}} < \frac{1}{2} \), including the case of \(\phi_{\text{rp}} = 0 \) in Proposition 5, a rise in \(\phi_{\text{rp}} \) leads to an increase in \(\phi_{\text{tp}} \) in equation (63). From equation (64), we observe that a higher \(\phi_{\text{tp}} \) accelerates the convergence of sample paths while creating more amplified paths after the initial sunspot \(\sigma_0^q \) appears. As far as \(\phi_{\text{rp}} < \frac{1}{2} \), a higher \(\phi_{\text{rp}} \) means monetary policy responds more strongly to fluctuations in \(r^p_t \), which allows faster stabilization. As \(\phi_{\text{rp}} \) goes up from 0 to \(\frac{1}{2} \), fluctuations in \(r^p_t \) have less direct effects on dynamics (i.e., (62)). Thus, the volatility of \(\{ \sigma_t^q \} \) process in (64) must rise to ensure that the initial sunspot \(\sigma_0^q \) is supported, as on average the economy is better stabilized with a higher \(\phi_{\text{rp}} \). \(\{ \hat{Q}_t \} \) eventually is stabilized, which results, on average, on shorter but more amplified sample paths.

\(\phi_{\text{rp}} < 0 \) case is interesting since it implies central bank raises the policy rate when risk-premia rise in financial markets. It is consistent with the Real Bills Doctrine which was a popular idea during the first half of the 20th century. Basically, the doctrine advocated for the Fed discount rate to track the average interest rate of the financial markets, as a means of stabilization. In our framework, \(\phi_{\text{rp}} < 0 \) pushes down \(\phi_{\text{tp}} \) from \(\phi \), thereby effectively slowing down the pace of stabilization after sunspots hit the stock market. So we confirm the Real Bills Doctrine with \(\phi_{\text{rp}} < 0 \) is not suitable for stabilization purposes, as empirically documented by Richardson and Troost (2009).

With \(\phi_{\text{rp}} > \frac{1}{2} \), monetary policy responds too strongly to fluctuations in risk-premium, thus with an initial positive sunspot \(\sigma_0^q > 0 \), policy rate drops excessively and creates an artificial boom instead of a crisis. A higher \(\phi_{\text{rp}} \) reduces \(|\phi_{\text{tp}}| \) and slows down stabilization since a higher \(\phi_{\text{rp}} \) means monetary policy deviates more from determinacy (the case of \(\phi_{\text{rp}} = \frac{1}{2} \)), and therefore becomes less

49 The equations (equation (61) and equation (63)) are easily derived in a similar way to the proof of Proposition 5 in Appendix C.

50 Here, with the monetary policy in (61), \((\frac{1}{2} - \phi_{\text{rp}}) r^p_t \) appears in the drift of \(\{ \hat{Q}_t \} \) process (i.e., (62)). When \(\phi_{\text{rp}} < \frac{1}{2} \), given initial sunspot \(\sigma_0^q \), a higher \(\phi_{\text{rp}} \) implies that \(\{ \sigma_t^q \} \) path, on average, features a higher volatility, as sample paths are stabilized faster by policy responses, and some paths must feature more extreme behavior to support an initial sunspot rise \(\sigma_0^q \). Eventually, \(\hat{Q}_t \) and \(\pi_t \) adjust as they are jump variables.

51 Richardson and Troost (2009) studied the effects of such policy during the Great Depression era, exploiting the fact that the state of Mississippi is divided by the Federal Reserve act between the 6th (Atlanta) and 8th (St. Louis) districts which had different approaches to the economy-wide banking panics and depressions.

52 With \(\phi_{\text{rp}} > \frac{1}{2} \), we have \(\phi_{\text{tp}} < 0 \) from (63), thus \(\sigma_t^q > 0 \) is equivalent to the boom phase with \(\pi_t > 0 \) and \(\hat{Q}_t > 0 \).
efficient at stabilization. Figure 4 illustrates that with $\phi_{rp} > \frac{1}{2}$, a spike in financial volatility, $\sigma_t^q > 0$, actually acts as a boon to the economy, as we have $\dot{Q}_t > 0$ and $\pi_t > 0$ along sample paths. Moreover, with $\phi_{\pi} = 2.5$ fixed, as we raise ϕ_{rp} from 1 to 1.5, stabilization slows down\(^{53}\) as we further deviate from the determinacy case, $\phi_{rp} = \frac{1}{2}$.

These results are summarized in Table 1. In Figure 3, we observe that an initial sunspot $\sigma_0^q > 0$ can be amplified endogenously through monetary policy’s responses to the business cycle fluctuation, which might drag the economy into zero lower bound (ZLB) episodes when the $\{\sigma_t^q\}$ path hits some threshold from below. When monetary policy is constrained at those episodes, both asset market and business cycle would collapse, which we observed in the 2007-2009 Global Financial Crisis (GFC). We study this issues in a follow-up paper, Lee and Carreras (2022).

\(^{53}\)Also, a higher ϕ_{rp} causes less amplification from the initial sunspot $\sigma_0^q > 0$.

37
\(\phi_{rp} < 0 \) (Real Bills Doctrine)

(i) With \(\phi_{rp} \downarrow \), convergence speed \(\downarrow \) and less amplified paths

(ii) \(\sigma_t^d > \sigma_t^{q,n} = 0 \) means a crisis
\((\dot{Q}_t < 0 \text{ and } \pi_t < 0) \)

\(\phi_{rp} = \frac{1}{2} \)

No sunspot
(ultra-divine coincidence)

(i) With \(\phi_{rp} \uparrow \), convergence speed \(\uparrow \) and less amplified paths

(ii) \(\sigma_t^d > \sigma_t^{q,n} = 0 \) means a crisis
\((\dot{Q}_t < 0 \text{ and } \pi_t < 0) \)

\(0 \leq \phi_{rp} < \frac{1}{2} \)

(i) With \(\phi_{rp} \uparrow \), convergence speed \(\uparrow \) and more amplified paths

(ii) \(\sigma_t^d > \sigma_t^{q,n} = 0 \) means a crisis
\((\dot{Q}_t < 0 \text{ and } \pi_t < 0) \)

\(\phi_{rp} > \frac{1}{2} \)

As \(\phi \uparrow \), convergence speed \(\uparrow \) and \(\exists \) more amplified paths

Table 1: Effects of different parameters \(\{\phi_{rp}, \phi\} \) on stabilization

<table>
<thead>
<tr>
<th>Parameter Conditions</th>
<th>(\phi_{rp})</th>
<th>(\phi_{rp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{rp} < 0)</td>
<td>0 ≤ (\phi_{rp} < \frac{1}{2})</td>
<td>0 ≤ (\phi_{rp} < \frac{1}{2})</td>
</tr>
<tr>
<td>(\phi_{rp} = \frac{1}{2})</td>
<td>(\phi_{rp} > \frac{1}{2})</td>
<td>(\phi_{rp} \uparrow), convergence speed (\uparrow) and more amplified paths</td>
</tr>
<tr>
<td>No sunspot (ultra-divine coincidence)</td>
<td>(\sigma_t^d > \sigma_t^{q,n} = 0) means a crisis ((\dot{Q}_t < 0 \text{ and } \pi_t < 0))</td>
<td>(\sigma_t^d > \sigma_t^{q,n} = 0) means a crisis ((\dot{Q}_t < 0 \text{ and } \pi_t < 0))</td>
</tr>
<tr>
<td>As (\phi \uparrow), convergence speed (\uparrow) and (\exists) more amplified paths</td>
<td>(\sigma_t^d > \sigma_t^{q,n} = 0) means a crisis ((\dot{Q}_t < 0 \text{ and } \pi_t < 0))</td>
<td>(\sigma_t^d > \sigma_t^{q,n} = 0) means a crisis ((\dot{Q}_t < 0 \text{ and } \pi_t < 0))</td>
</tr>
</tbody>
</table>

Figure 4: \(\{\sigma_t^d, \dot{Q}_t\} \) dynamics when \(\sigma_t^{q,n} = 0 \) and \(\sigma_0^d = 0.9 \), with varying \(\phi_{rp} > \frac{1}{2} \)

(a) With \(\phi_{rp} = 1 \)

(b) With \(\phi_{rp} = 1.5 \).
5 Conclusion

In this paper, we illustrate that properly accounting for higher-order moments related to the business cycle and stock markets changes the business cycle dynamics of the New-Keynesian framework and provides new implications about monetary policy. To that end, we develop both the standard non-linear New-Keynesian model and a model with stock markets that features higher-order stock market variables including time-varying aggregate financial volatility and risk-premium. This setup allows us a tractable analytical characterization of the equilibrium conditions and uncovers interesting dynamics stemming from the role of aggregate financial volatility: a rise in aggregate financial volatility raises the risk-premium, reducing wealth and aggregate demand. This feedback structure from higher-order terms (aggregate volatility and risk-premium) to the first-order ones (wealth and aggregate demand) opens up the possibility of second-order sunspot equilibria, which require a different set of monetary policy rules for stabilization purposes.

Our analysis reveals that conventional monetary policy rules, even with aggressive targeting of traditional macroeconomic measures, cannot guarantee determinacy. This failure of conventional rules in ensuring determinacy lies in their inability to adequately target the ‘expected risky return’ of financial markets, the relevant rate for the households’ intertemporal substitution in a stochastic environment. We then propose a generalized Taylor rule that restores determinacy, under which central banks target not only conventional mandates (i.e., inflation and output gap), but also the risk-premium in a specific way, thus effectively managing the expected rate of return on aggregate financial wealth. This new policy rule achieves what we describe as the ultra-divine coincidence: joint stabilization of inflation, output gap and risk-premium.

Our framework opens new avenues for future research focused on understanding the interaction of the real economy and the higher-order variables of financial markets. For example, in our model we largely abstract from wealth inequality and potentially heterogenous sensitivity of economic players to financial volatility. We view future work aiming to incorporate these realistic features as a particularly fruitful direction to pursue. Our follow-up paper, Lee and Carreras (2022), studies relevant issues of the zero lower bound (ZLB) constraint faced by central banks with regards to our current environment, which we largely abstract from in this paper.
References

Ludvigson, Sydney C, Sai Ma, and Serena Ng, “Uncertainty and business cycles: exogenous impulse or endogenous response?,” 2015.

Appendices

A Suggestive Evidence

Stock market volatility is commonly viewed in the literature as a proxy of financial and economic uncertainty, which Bloom (2009) and later Gilchrist and Zakrajšek (2012), Bachmann et al. (2013), Jurado et al. (2015), Caldara et al. (2016), Baker et al. (2020), Coibion et al. (2021) further studied as a driving force behind business cycles fluctuations. In this Section, we will evaluate these claims and present interesting empirical results. Figure 7 provides the first piece of supportive evidence in that direction. Panel 7a depicts several variables commonly used in the literature to measure financial uncertainty. The correlation between series is remarkably high and they all display positive spikes at the beginning and/or initial months following an NBER-dated recession, which is consistent with the evidence that many of these episodes were financial in nature.\(^{54}\) Panel 7b plots Ludvigson et al. (2015) (henceforth, LMN) financial and real (i.e. non-financial) uncertainty series. These variables are positively correlated and display a similar propensity to increase around recessions, though a different type of crisis (e.g. financial or not) is correlated with a different type of uncertainty playing the dominant role. For example, the massive spike in real vis-à-vis financial uncertainty following the recent Covid-19 recession, which initially was a health crisis that spilled into the real economy, can be observed in Panel 7b.

The patterns displayed in Figure 7 do not yet constitute a proof of the importance of financial uncertainty as a driver of the business cycle, as we still should worry about the possibility of reverse causation running from unfavorable economic conditions towards uncertainty. We tackle this issue by proposing a simple Vector Autoregression (VAR) with the structural identification strategy based on the timing of macroeconomic shocks similar to Bloom (2009). Equation (65) presents the variables considered and their ordering, with non-financial series first and financial variables last.\(^{55}\)

\[
\text{VAR-11 order:} \begin{bmatrix}
\log (\text{Industrial Production}) \\
\log (\text{Employment}) \\
\log (\text{Real Consumption}) \\
\log (\text{CPI}) \\
\log (\text{Wages}) \\
\text{Hours} \\
\text{Real Uncertainty (LMN)} \\
\text{Fed Funds Rate} \\
\log (\text{M2}) \\
\log (\text{S&P-500 Index}) \\
\text{Financial Uncertainty (LMN)} \\
\end{bmatrix}
\]

(65)

Both LMN real and financial uncertainty measures are included to differentiate the effects of financial volatility shocks from the effects from real uncertainty. For similar reasons, we include the S&P-500

\(^{54}\)See Reinhart and Rogoff (2009) and Romer and Romer (2017) for classification of the past recessions. Their analysis showed many recessions had roots in financial markets.

\(^{55}\)The ordering is also used by Ludvigson et al. (2015), which, using identification strategy based on event constraints, find that the uncertainty of financial markets tends to be an exogenous source of business cycle fluctuations, while real uncertainty tends to be an endogenous response to the business cycle fluctuations. We also have considered alternative specifications and orderings that produced qualitatively similar results (not reported, provided upon request).
index in our VAR to empirically distinguish between shocks affecting the level of financial markets and shocks affecting their volatility. In order to ameliorate possible concerns about the validity of the structural identification strategy, we estimate our VAR using monthly data, where the identification assumptions are more likely to hold. Figure 5 presents the impulse responses to the orthogonalized financial uncertainty shock. Panel 5a plots the response of industrial production, which falls by up to 2.5% and displays moderate persistence following a one standard deviation shock to financial uncertainty. Panel 5b plots the response of the S&P-500 Index, which drops up to 12% within the first four months before gradually recovering. Together, both pictures imply that an increase of financial uncertainty tends to depress both industrial activity and financial markets.

![Figure 5: Impulse Response Functions (IRFs), selected series. Figures 5a and 5b display the response to a one standard deviation financial uncertainty shock of monthly (log) Industrial Production and (log) S&P-500 Index series, respectively, using a VAR-11 with equation (65) variable composition and ordering. Shaded area indicates 95% confidence interval around preferred financial uncertainty measure computed using standard bootstrap techniques.](image)

Figure 5 also features alternative estimates using common financial uncertainty proxies such as Bloom (2009) stock market volatility index and 10-years premium on Baa-rated corporate bonds. The responses are generally more muted, and take the opposite sign in the case of the S&P Index. These results can be explained by the fact that standard proxies contain information unrelated to financial uncertainty that distorts our estimates (see Jurado et al. (2015) for a discussion), and therefore we choose LMN as our preferred financial uncertainty measure. In Appendix B, we report additional impulse response estimates. Especially, the Figure 9 shows that monetary authorities respond with accommodating interest rate movements to financial uncertainty shocks, while real uncertainty has no statistically significant effect on either interest rates or stock market fluctuations. We will further discuss optimal monetary policy response to financial volatility shocks in Section 4.

Finally, we can further explore the contribution of financial uncertainty to business cycles fluctuations by looking at Table 2 in Appendix B, which reports the Forecast Error Variance Decomposition (FEVD) of Industrial Production and the S&P-500 Index. Financial uncertainty shocks explain close to 5% of the fluctuations in both series, while real uncertainty explains an additional 2-4% of movements in industrial
activity in the medium run. Figure 6 provides a more graphical illustration of these results by plotting the historical decomposition of the series. We observe the contribution of financial uncertainty rivals that of shocks to the level of financial variables captured by the S&P-500 shock, and is especially important in driving industrial production boom-bust patterns during and in the preceding months of recessionary episodes, as it can be seen during the Global Financial Crisis (2007).

Figure 6: Historical Decomposition, selected series. Figures 6a and 6b display historical decomposition of monthly Industrial Production and S&P-500 Index series, respectively, based on the VAR-11 with equation (65) variable composition and ordering. Shaded areas indicate NBER dated recessions (peak trough through). Variables of interest are de-trended by subtracting the contribution of initial conditions and constant terms after series decomposition. Columns report a contribution of each shock to the fluctuations around trend of the variable considered.

In this Appendix A, we have revisited the empirical evidence on financial market volatility and shown that it acts as a major driving force of the business cycle.
B Additional Figures and Tables

Figure 7: Uncertainty series. Figure 7a displays common measures of financial uncertainty. Figure 7b displays Ludvigson et al. (2015) (henceforth, LMN) measures of financial and real economic uncertainty. Shaded areas indicate NBER dated recessions (peak trough the through). LMN financial and real economic uncertainty series are constructed as the average volatility of the residuals from predictive regressions on financial and real economic variables, respectively (See Ludvigson et al. (2015) for the series construction). Bloom (2009)’s stock market volatility variable is constructed using VXO data from 1987 onward and the monthly volatility of the S&P 500 index normalized to the same mean and variance in the overlapping interval for the 1960-1987 period (See Bloom (2009) for the series construction). The bond risk-premia series is the Moody’s seasoned Baa corporate bond yield relative to the yield on a 10-year treasury bond at constant maturity. For graphical comparison purposes, the depicted series have a normalized zero mean and one standard deviation.
Table 2: Forecast Error Variance Decomposition (FEVD). The table presents the variance contribution (in percentage) of financial and real uncertainty shocks to selected series at different time horizons (in months). The FEVD is constructed using a VAR-11 with equation (65) variable composition and ordering. The first two columns report the contribution of LMN financial and real uncertainty shocks, respectively. The last two columns report alternative VAR specifications where the preferred LMN financial uncertainty measure (column one) is replaced by common proxies employed in the literature, either Bloom (2009) stock market volatility measure or the Baa 10-years corporate bond premia, respectively.

(i) Industrial Production

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h=1</td>
<td>0</td>
<td>0.30</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>h=6</td>
<td>1.27</td>
<td>3.37</td>
<td>2.98</td>
<td>1.36</td>
</tr>
<tr>
<td>h=12</td>
<td>4.28</td>
<td>4.38</td>
<td>3.16</td>
<td>1.94</td>
</tr>
<tr>
<td>h=36</td>
<td>3.24</td>
<td>1.67</td>
<td>1.98</td>
<td>0.64</td>
</tr>
</tbody>
</table>

(ii) S&P-500 Index

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h=1</td>
<td>0.11</td>
<td>0.08</td>
<td>0.39</td>
<td>0.06</td>
</tr>
<tr>
<td>h=6</td>
<td>3.30</td>
<td>0.25</td>
<td>3.26</td>
<td>0.62</td>
</tr>
<tr>
<td>h=12</td>
<td>4.77</td>
<td>0.54</td>
<td>10.03</td>
<td>2.16</td>
</tr>
<tr>
<td>h=36</td>
<td>6.50</td>
<td>0.91</td>
<td>12.16</td>
<td>2.40</td>
</tr>
</tbody>
</table>

(iii) Fed Funds Rate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h=1</td>
<td>0.01</td>
<td>0.98</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>h=6</td>
<td>0.42</td>
<td>0.84</td>
<td>3.11</td>
<td>1.66</td>
</tr>
<tr>
<td>h=12</td>
<td>1.47</td>
<td>0.91</td>
<td>4.69</td>
<td>2.30</td>
</tr>
<tr>
<td>h=36</td>
<td>2.81</td>
<td>2.05</td>
<td>5.02</td>
<td>3.17</td>
</tr>
</tbody>
</table>
Figure 8: Impulse Response Functions (IRFs), selected series. Figures 8a and 8b display the response to one standard deviation real uncertainty shock by monthly (log) Industrial Production and (log) S&P-500 Index series, respectively, using a VAR-11 with equation (65) variable composition and ordering. Shaded area indicates 95% confidence interval around preferred financial uncertainty measure computed using standard bootstrap techniques.
Figure 9: Impulse Response Functions (IRFs), Fed Funds Rate. This Figure displays the response to a one standard deviation uncertainty (financial or real) shock by monthly Fed Funds Rate series, using a VAR-11 with equation (65) variable composition and ordering. Panel 9a plots the response to a financial uncertainty shock, and Panel 9b to a real uncertainty shock. Shaded area indicates 95% confidence interval around preferred financial/real uncertainty measure computed using standard bootstrap techniques. Additional lines display alternative impulse responses obtained by substituting preferred LMN financial uncertainty measure with common proxies employed in the literature.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>0.2</td>
<td>Relative Risk Aversion</td>
</tr>
<tr>
<td>χ_0</td>
<td>0.25</td>
<td>Inverse Frisch labor supply elasticity</td>
</tr>
<tr>
<td>ρ</td>
<td>0.020</td>
<td>Subjective time discount factor</td>
</tr>
<tr>
<td>σ</td>
<td>0.0090</td>
<td>TFP volatility</td>
</tr>
<tr>
<td>g</td>
<td>0.0083</td>
<td>TFP growth rate</td>
</tr>
<tr>
<td>α</td>
<td>0.4</td>
<td>$1 -$ Labor income share</td>
</tr>
<tr>
<td>ϵ</td>
<td>7</td>
<td>Elasticity of substitution intermediate goods</td>
</tr>
<tr>
<td>δ</td>
<td>0.45</td>
<td>Calvo price resetting probability</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>2.50</td>
<td>Policy rule inflation response</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>0.11</td>
<td>Policy rule output gap response</td>
</tr>
<tr>
<td>ϕ_{rp}</td>
<td>0</td>
<td>Policy rule risk premium response</td>
</tr>
<tr>
<td>$\bar{\pi}$</td>
<td>0</td>
<td>Steady state trend inflation target</td>
</tr>
</tbody>
</table>

Table 3: The table presents the baseline parameter calibration used in Sections 4 of the paper.
C Derivations and Proofs for Sections 2, 3, and 4

C.0. Section 2

Derivation of equation (3): From the definition of (nominal) state-price density \(\xi_t^N = e^{-\rho t \frac{1}{C_t} \frac{1}{p_t}} \), we get:

\[
\frac{d\xi_t^N}{\xi_t^N} = -\rho dt - \frac{dC_t}{C_t} - \frac{dp_t}{p_t} + \left(\frac{dC_t}{C_t} \right)^2 + \left(\frac{dp_t}{p_t} \right)^2 + \frac{dC_t}{C_t} \frac{dp_t}{p_t}.
\]

(I.1)

Since we have a perfectly rigid price (\(p_t = \bar{p} \) for \(\forall t \)), the above expression becomes:

\[
\frac{d\xi_t^N}{\xi_t^N} = -\rho dt - \frac{dC_t}{C_t} + \frac{1}{2} \left(\frac{dC_t}{C_t} \right)^2
\]

(I.2)

\[
= -\rho dt - \frac{dC_t}{C_t} + \text{Var}_t \left(\frac{dC_t}{C_t} \right).
\]

(I.3)

Plugging equation (I.2) into equation (2), we get the following equation (3):

\[
E_t \left(\frac{dC_t}{C_t} \right) = (i_t - \rho) dt + \text{Var}_t \left(\frac{dC_t}{C_t} \right).
\]

(I.4)

Derivation of equation (7): From equation (6), we obtain

\[
d \ln Y_t = \left(i_t - \rho + \frac{1}{2} (\sigma_t + \sigma^s_t)^2 \right) dt + (\sigma_t + \sigma^s_t) dZ_t.
\]

(I.5)

From equation (4), we obtain

\[
d \ln Y^n_t = \left(r^n_t - \rho + \frac{1}{2} (\sigma_t)^2 \right) dt + \sigma_t dZ_t.
\]

(I.6)

Therefore, by subtracting equation (I.6) from equation (I.5), we obtain

\[
d \hat{Y}_t = \left(i_t - \left(r^n_t - \frac{1}{2} (\sigma_t)^2 + \frac{1}{2} (\sigma^s_t)^2 \right) \right) dt + \sigma^s_t dZ_t,
\]

(I.7)

which is equation (7).

Proof of Proposition 1. From equation (13), \(\{ \sigma^s_t \} \) process can be written as

\[
d \sigma^s_t = -\left(\phi_y \right)^2 (\sigma^s_t)^2 \frac{1}{2(\sigma_t + \sigma^s_t)^3} dt - \phi_y \frac{\sigma^s_t}{\sigma_t + \sigma^s_t} dZ_t.
\]

Using Ito’s lemma, we get the process for \((\sigma + \sigma^s_t)^2 \) which is a martingale, as
\[\text{Thus equation (I.10) proves } \sigma^s_t \xrightarrow{a.s} \sigma^s_\infty = 0. \] From equation (12) \(\sigma^s_t \xrightarrow{a.s} \sigma^s_\infty = 0 \) leads to \(\hat{Y}_t \xrightarrow{a.s} 0 \). Finally, we must have \(\mathbb{E}_0(\max_t(\sigma^s_t)^2) = \infty \), since otherwise the uniform integrability says \(\mathbb{E}_0((\sigma + \sigma^s_0)^2) = (\sigma + \sigma^s_0)^2 \), which is a contradiction to our earlier result \(\sigma^s_t \xrightarrow{a.s} 0 \) since \(\sigma^s_\infty = 0 \) and \(\sigma^s_0 > 0 \) by assumption in Proposition 1.

C.1. Section 3

C.1.1. Section 3.1

Here we solve the optimization problems of workers (equation (20)) and capitalists (equation (25)).

Worker's Optimization : Workers solve the following optimization problem in equation (20).

\[
\begin{align*}
\max_{C_{W,t}, N_{W,t}} & \quad \left(\frac{C_{W,t}}{A_t} \right)^{1-\varphi} \left(\frac{(N_{W,t})^{1+\chi_0}}{1+\chi_0} \right) \\
\text{s.t.} & \quad p_tC_{W,t} = w_t N_{W,t}.
\end{align*}
\]

If we let \(\lambda_t A_t^{\varphi-1} \) be the multiplier on the budget constraint, then solution is easy to compute as follows.

\[
\begin{align*}
C_{W,t}^{-\varphi} &= \lambda_t p_t, \quad A_t^{1-\varphi} (N_{W,t})^{\chi_0} = \lambda_t w_t = \frac{w_t}{p_t} C_{W,t}^{-\varphi} = \left(\frac{w_t}{p_t} \right)^{1-\varphi} N_{W,t}^{-\varphi}, \\
\therefore N_{W,t} &= \left(\frac{w_t}{p_t} \right)^{1-\varphi} \frac{1}{A_t^{1-\varphi}} 1 = \left(\frac{w_t}{p_t} \right)^{1-\varphi} \frac{1}{A_t^{\frac{1}{\chi}}}, \quad \text{with } \chi \equiv \chi_0 + \varphi, \quad C_{W,t} = \frac{w_t}{p_t} N_{W,t} = \left(\frac{w_t}{p_t} \right)^{1+\frac{1}{\chi}} \frac{1}{A_t^{\frac{1}{\chi}}}.
\end{align*}
\]

Capitalist's Optimization : Each capitalist with wealth \(a_t \) solves the following optimization in equation (25).

\[
\begin{align*}
\max_{C_t, a_t} & \quad \mathbb{E}_0 \int_0^\infty e^{-\rho t} \log C_t \ dt \text{ s.t. } da_t = (a_t (i_t + \theta_t (i_t^m - i_t)) - p_tC_t) dt + \theta_t a_t (\sigma_t + \sigma^q_t + \sigma^p_t) dZ_t.
\end{align*}
\]
Putting all the state variables \((i_t, p_t, i^m_t, \sigma_t, \sigma^q_t, \sigma^p_t)\) into the vector \(S_t\), then Hamilton-Jacobi-Bellman (HJB) equation can be written in the following way:

\[
\rho V(a_t, S_t, t) = \max_{C_t, \theta_t} \log C_t + \frac{\partial V}{\partial a_t} (a_t (i_t + \theta_t (i^m_t - i_t)) - p_tC_t) + \frac{1}{2} \theta^2 t \frac{\partial^2 V}{\partial a^2} (\sigma_t + \sigma^q_t + \sigma^p_t)^2 + \frac{\partial V}{\partial t} \tag{I.14}
\]

Following Merton (1971), we know the value function has the following form.

\[
V(a_t, S_t, t) = \frac{1}{\rho} \log a_t + f(S_t, t). \tag{I.15}
\]

The first-order conditions for \(C_t\) and \(\theta_t\) are easy to compute as follows.

\[
p_t C_t = \rho a_t \quad \text{and} \quad \frac{i^m_t - i_t}{\sigma_t + \sigma^q_t + \sigma^p_t} = \frac{\theta_t (\sigma_t + \sigma^q_t + \sigma^p_t)}{\text{Sharpe ratio}} \tag{I.16}
\]

If we plug the guessed value function form (equation (I.15)) into HJB equation, we get the following partial differential equation (PDE) for the function \(f(S_t, t)\), verifying our form in equation (I.15) is a reasonable guess.

\[
\rho f(S_t, t) = \log \frac{\rho}{p_t} + \frac{1}{\rho} (i_t + \theta_t (i^m_t - i_t) - \rho) - \frac{1}{2} \theta^2 t \frac{\partial^2 f}{\partial a^2} (\sigma_t + \sigma^q_t + \sigma^p_t)^2 + \frac{\partial f}{\partial t} \tag{I.17}
\]

Thus solving the partial differential equation in equation (I.17) restores the functional form \(f(S_t, t)\).

C.1.2. Section 3.2

We can easily derive the equilibrium condition in equation (27) by plugging in \(\theta_t = 1\) to equation (I.16). \(a_t = p_t A_t Q_t\) holds since all capitalists are identical both ex-ante and ex-post. Now we prove Lemma 1.

Proof of Lemma 1. First we start by stating capitalist’s nominal state-price density \(\xi^N_t\) and real state-price density \(\xi^R_t\). Nominal state-price density will be relevant to the nominal interest rate, while real state-price density matters when we calculate the real interest rate.

\[
\xi^N_t = e^{-\rho t} \frac{1}{C_t} \frac{1}{p_t}, \quad \xi^R_t = e^{-\rho t} \frac{1}{C_t} = p_t \xi^N_t. \tag{I.18}
\]

If \(\lambda_t\) is price of risk \((\sigma_t + \sigma^q_t + \sigma^p_t)\) in this model), the nominal pricing kernel evolves with the following...
Thus we get the following Fisher identity with the inflation premium in equation (33).

\[d\xi_t^N = -i_t dt - \lambda_t dZ_t, \quad \xi_t^N = \exp \left(-\int_0^t \left(i_s + \frac{1}{2} \lambda_s^2 \right) ds - \int_0^t \lambda_s dZ_s \right). \quad (I.19) \]

If we apply Ito’s lemma to the relation \(\xi_t^r = p_t \xi_t^N \) in equation (I.18), we get the following process for real pricing kernel \(\xi_t^r \).

\[\frac{d\xi_t^r}{\xi_t^r} = \left(\pi_t - i_t - \sigma_t \lambda_t \right) dt - (\sigma + \sigma_t^q) dZ_t. \quad (I.20) \]

Thus we get the following Fisher identity with the inflation premium in equation (33).

\[r_t = i_t - \pi_t + \sigma_t (\alpha + \sigma_t^q + \sigma_t^p). \quad (I.21) \]

C.1.3. Section 3.3

Here we prove the Proposition 2 based on the results above.

Proof of Proposition 2. We start from intermediate firms’ pricing decisions. As we have the externality à la Baxter and King (1991), we need to go through additional steps to aggregate across firms. Let firm \(i \) take his demand as given and choose the optimal price \(p_t(i) \) at given moment \(t \). With \(E_t \equiv (N_{W,t})^{\alpha} \), we can get the following conditions for \((n_t(i), y_t(i)) \).

\[n_t(i) = \left(\frac{y_t(i)}{A_t E_t} \right)^{\frac{1}{1-\alpha}}, \quad y_t(i) = y_t \left(\frac{p_t(i)}{p_t} \right)^{-\frac{1}{\alpha}}. \quad (I.22) \]

Each firm \(i \) chooses \(p_t \) that maximizes its profit, solving the following optimization.

\[\max_{p_t(i)} \left(p_t(i) \right)^{-\frac{1}{\alpha}} y_t - w_t \left(\frac{y_t}{A_t E_t} \right)^{\frac{1}{1-\alpha}} \left(\frac{p_t(i)}{p_t} \right)^{-\frac{1}{\alpha}}. \quad (I.23) \]

Here, all firms charge the same price \((p_t(i) = p_t \) holds for \(\forall i \). The solution of equation (I.23) combined with this condition yields the following solution. In equilibrium, we also know \(n_t(i) = N_{W,t} \) for \(\forall i \).

\[\frac{w_t^n}{p_t^n} = \frac{\epsilon - 1}{\epsilon} (1 - \alpha) y_t^{\frac{1}{1-\alpha}} (A_t E_t)^{\frac{1}{1-\alpha}} \]

\[= \frac{\epsilon - 1}{\epsilon} (1 - \alpha) y_t^{\frac{1}{1-\alpha}} (A_t)^{\frac{1}{1-\alpha}} N_{W,t}^{\frac{-\alpha}{1-\alpha}} = \frac{\epsilon - 1}{\epsilon} (1 - \alpha) y_t^{\frac{-\alpha}{1-\alpha}} (A_t)^{\frac{1}{1-\alpha}} \left(\frac{w_t^n}{p_t^n} \right)^{\frac{\alpha}{(1-\alpha)}} A_t^\frac{\alpha}{1-\alpha}. \quad (I.24) \]

Thus we get the following condition for the real wage.

\[\frac{w_t^n}{p_t^n} = \left(\frac{\epsilon - 1}{\epsilon} (1 - \alpha) \right)^{\frac{-\alpha}{(1-\alpha)-\alpha}} y_t^{\frac{-\alpha}{(1-\alpha)-\alpha}} A_t^\frac{\alpha}{1-\alpha}. \quad (I.25) \]
And then we know the aggregate production is linear, thus \(y_t = A_t N_{W,t} \) due to the externality. Thus we have:

\[
y_t = A_t N_{W,t} = A_t \left(\frac{w^n_t}{p^n_t} \right)^{\frac{1}{\bar{\chi}}} \frac{1}{A_t^{\frac{1}{\bar{\chi}}}} = A_t \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}} A_t \left(\frac{y_t^1}{A_t} \right)^{\frac{1}{\bar{\chi}}} A_t^{\frac{1}{\bar{\chi}}}. \tag{I.26}
\]

Thus we get the natural level of output \(y^n_t \) and the natural level of real wage \(w^n_t / p^n_t \).

\[
y^n_t = \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}} A_t, \quad \frac{w^n_t}{p^n_t} = \frac{e - 1}{e} (1 - \bar{\alpha}) A_t, \tag{I.27}
\]

from which we get the following consumption and labor for workers.

\[
N^n_{W,t} = \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}}, \quad C^n_{W,t} = \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{1 + \frac{1}{\bar{\chi}}} A_t. \tag{I.28}
\]

In equilibrium, consumptions of capitalists and workers add up to the amount of final good output. If we plug the real wage in equation (I.24) into workers’ consumption and the labor supply decision in equation (I.12), we get the following good-market equilibrium condition, where we define \(Q^n_t \) to be the natural level of detrended stock price. Also from equation (I.16), we see the consumption of capitalists would be \(C_t = \rho A_t Q_t \) in equilibrium.

\[
\rho A_t Q^n_t + \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{1 + \frac{1}{\bar{\chi}}} A_t = \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}} A_t. \tag{I.29}
\]

Thus we get the following expression for \(Q^n_t \) and \(C^n_t \), a natural asset price level and capitalists’ consumption in the flexible price equilibrium:

\[
Q^n_t = \frac{1}{\rho} \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}} A_t \left(1 - \frac{(e - 1)(1 - \bar{\alpha})}{e} \right), \quad \tag{I.30}
\]

\[
C^n_t = A_t \left(\frac{e - 1}{e} (1 - \bar{\alpha}) \right)^{\frac{1}{\bar{\chi}}} A_t \left(1 - \frac{(e - 1)(1 - \bar{\alpha})}{e} \right).
\]

Since \(Q^n_t \) is constant, there should be no drift and volatility for its process in the flexible price economy, thus we have \(\mu_{i,n}^q = \sigma_{i,n}^q = 0 \). To calculate the natural interest rate \(r^n_t \), we start from the capital gain component in equation (32). If we apply Ito’s lemma, we get the following capital gain formula.

\[
\mathbb{E}\frac{d(p_t A_t Q_t)}{p_t A_t Q_t} dt = \pi_t + \underbrace{\mu_t^q}_{=0} + g + \underbrace{\sigma_t^q}_{=0} \sigma_t^p + \sigma_t \left(\sigma_t^p + \sigma_t^q \right) = 0. \tag{I.31}
\]

As dividend yield is always \(\rho \), imposing expectation on both sides of equation (32) and combining with
the equilibrium condition in equation (27) yield the following relation:

\[\mathbb{E}(\tilde{i}_t) = \rho + \pi_t + g + \sigma_t \sigma_t^p = i_t + (\sigma_t + \sigma_t^p)^2. \]

(I.32)

Using Lemma 1, we finally express natural rate of interest \(r_t^n \) as a function of structural parameters and \(\sigma_t \), which proves (iii) of Proposition 2.

\[r_t^n = i_t - \pi_t + \sigma_t^p \left(\sigma_t + \sigma_t^{q,n} + \sigma_t^p \right) = \rho + g - \sigma_t^2. \]

(I.33)

For the capitalist’s consumption process in the flexible price case, since their consumption \(C_t^n \) is directly proportional to TFP \(A_t \), we know

\[\frac{dC_t^n}{C_t^n} = g dt + \sigma_t dZ_t = \left(r_t^n - \rho + \sigma_t^2 \right) dt + \sigma_t dZ_t, \]

(I.34)

where we use \(r_t^n - \rho + \sigma_t^2 = g \) from equation (I.33).

\[\text{C.1.4. Section 3.4} \]

Proof of Lemma 2. First from \(C_t = \rho A_t Q_t \), we get \(\hat{C}_t = \hat{Q}_t \). We start from the flexible price case’s good market equilibrium condition, where we use equation (I.12). Here \(\frac{w_t^n}{p_t^n} \) is the real wage level in the flexible price economy. The market equilibrium condition can be written as

\[A_t \left(\frac{w_t^n}{p_t^n} \right)^\frac{1}{\lambda} \frac{1}{\lambda} = \rho A_t Q_t^n + \left(\frac{w_t^n}{p_t^n} \right)^{1 + \frac{1}{\lambda}} \frac{1}{\lambda}. \]

(I.35)

We subtract equation (I.35) from the same good market equilibrium condition in sticky price economy to obtain

\[A_t \left(\left(\frac{w_t}{p_t} \right)^\frac{1}{\lambda} - \left(\frac{w_t^n}{p_t^n} \right)^\frac{1}{\lambda} \right) \frac{1}{\lambda} = C_t - C_t^n + \left(\frac{w_t}{p_t} \right)^{1 + \frac{1}{\lambda}} - \left(\frac{w_t^n}{p_t^n} \right)^{1 + \frac{1}{\lambda}} \frac{1}{\lambda}, \]

(I.36)

where we divide both sides of equation (I.36) by \(A_t^{1 - \frac{1}{\lambda}} \left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}} \) and obtain

\[\frac{w_t}{p_t} = \left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}} = \frac{C_t}{A_t} \left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}} \hat{C}_t + \frac{\left(\frac{w_t}{p_t} \right)^{\frac{1}{\lambda}}}{A_t^{1 - \frac{1}{\lambda}} \left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}}} \frac{\left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}}}{A_t^{1 - \frac{1}{\lambda}}} \frac{\left(\frac{w_t^n}{p_t^n} \right)^{\frac{1}{\lambda}}}{A_t^{1 - \frac{1}{\lambda}}} = \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon} \frac{w_l}{p_l}, \]

(I.37)

which can be written more clearly as:

58
\[
\frac{1}{\chi} \hat{w}_t = \left(1 - \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon} \right) \hat{C}_t + \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon} \left(1 + \frac{1}{\chi} \right) \frac{\hat{w}_t}{p_t}. \tag{I.38}
\]

We finally obtain

\[
\hat{Q}_t = \hat{C}_t = \left(\chi^{-1} - \frac{(\epsilon - 1)(1 - \alpha)}{\epsilon} \right) \frac{\hat{w}_t}{p_t} = \frac{\chi^{-1} - \frac{(\epsilon - 1)(1 - \alpha)}{1 - (\epsilon - 1)(1 - \alpha)}}{1 + \chi^{-1}} \hat{C}_{W,t}. \tag{I.39}
\]

We see that Assumption 1 guarantees that all gaps (asset price, consumptions for both capitalists and workers, employment, and real wage) co-move with positive correlations. Now we can use \(\hat{Q}_t\) and \(\hat{C}_t\) interchangeably, and if one gap variable becomes 0, then all other gap variables become also stabilized and 0.

Proof of Proposition 3. In the sticky price equilibrium, we would have \(\sigma_i^p = 0\), since over the small time period \(dt\), a \(\delta dt\) portion of firms get to change their prices and there is no stochastic change in aggregate price level \(p_t\). Thus capitalist’s consumption \(C_t\) has the following process, where we use the equilibrium condition \(i^m_t = i_t + (\sigma_t + \sigma_q^q)^2\):

\[
\frac{dC_t}{C_t} = (i^m_t - \pi_t - \rho) \, dt + (\sigma_t + \sigma_q^q) \, dZ_t
\]

\[
= \left(i_t + (\sigma_t + \sigma_q^q)^2 - \pi_t - \rho \right) \, dt + (\sigma_t + \sigma_q^q) \, dZ_t. \tag{I.40}
\]

Thus we have the following two process for \(\ln C_t\) and \(\ln C_t^p\):

\[
d\ln C_t = \left(i_t - \pi_t + \frac{(\sigma_t + \sigma_q^q)^2}{2} - \rho \right) \, dt + (\sigma_t + \sigma_q^q) \, dZ_t, \quad d\ln C_t^p = \left(r_t^p - \rho + \frac{\sigma_q^2}{2} \right) \, dt + \sigma_q^q \, dZ_t. \tag{I.41}
\]

of which the latter is from equation (I.34). We get the following \(\hat{C}_t = \hat{Q}_t\) gap from equation (I.41):

\[
d\hat{Q}_t = d\hat{C}_t = \left(i_t - \pi_t - \left(r_t^p - \frac{(\sigma_t + \sigma_q^q)^2}{2} + \frac{\sigma_q^2}{2} \right) \right) \, dt + \sigma_q^q \, dZ_t \tag{I.42}
\]

\[
= \left(i_t - \pi_t - r_t^p \right) \, dt + (\sigma_t^q - \sigma_q^{q,n}) \, dZ_t.
\]
As we have risk-premium levels \(\text{rp}_t = (\sigma_t + \sigma^q_t)^2 \) in the sticky price case and \(\text{rp}''_t = (\sigma_t)^2 \) in the flexible price economy, we can express \(r^T_t \) as

\[
r^T_t = r''_t - \frac{1}{2}(\text{rp}_t - \text{rp}''_t) = r''_t - \frac{1}{2} \text{rp}_t,'
\]

where we know that when \(\sigma^q_t = \sigma^q_{t,t} = 0 \) holds, then we have \(\hat{\text{rp}}_t = 0 \) and \(r^T_t = r''_t \).

Proof of Proposition 4. We assume that firms change their prices with instantaneous probability \(\delta dt \) à la Calvo (1983). If there is price dispersion \(\Delta_t \), as defined in (22), across intermediate goods firms, then labor market equilibrium condition can be written as

\[
N_{W,t} = \int_0^1 n_t(i)di = \left(\frac{y_t}{A_t(N_{W,t})^\alpha} \right)^{\frac{1}{1-\alpha}} \int_0^1 \left(\frac{p_t(i)}{p_t} \right)^{-\frac{\epsilon}{1-\alpha}} di, \quad y(t) = \frac{A_t N_{W,t}}{\Delta_t} = C_t + C_{W,t}.
\]

Plugging equation (I.12) and equation (I.16) (optimal consumption decisions of workers and capitalists) into equation (I.44), we obtain

\[
\rho A_t Q_t + A_t \left(\frac{w_t}{p_t A_t} \right)^{1+\frac{1}{\alpha}} = A_t \left(\frac{w_t}{p_t A_t} \right)^{\frac{1}{\alpha}} 1. \quad (I.45)
\]

Since a price level (i.e., nominal side) does not matter for the allocation of resources in the flexible price economy, we can regard \(\hat{x}_t \) to be the log-deviation of \(x_t \) from the constant price flexible price equilibrium value of itself. From price aggregator in equation (19), we get the log-linearize version easily as

\[
p^{1-\epsilon}_t = \int_0^1 p_t(i)^{1-\epsilon} di, \quad \text{thus} \quad \hat{p}_t = \int_0^1 \hat{p}(i)di. \quad (I.46)
\]

To get a sense of price dispersion \(\Delta_t \), we illustrate Woodford (2003)’s treatment of \(\Delta_t \) up to first-order. Up to the first-order we can regard \(\Delta_t \simeq 1 \) because \(\Delta_t \) is in nature the second order variable, as the following relation shows:

\[
\frac{1}{1-\alpha} \hat{\Delta}_t = \frac{1}{1-\alpha} \ln \frac{\Delta_t}{\Delta_t^0 (= 1)} = \ln \int_0^1 \exp \left(-\frac{\epsilon}{1-\alpha} \left(p_t(i) - \hat{p}_t \right) \right) di
\]

\[
\simeq \ln \int_0^1 \left(1 - \frac{\epsilon}{1-\alpha} \left(p_t(i) - \hat{p}_t \right) + \frac{1}{2} \left(\frac{\epsilon}{1-\alpha} \right)^2 \left(p_t(i) - \hat{p}_t \right)^2 \right) di \simeq \frac{1}{2} \left(\frac{\epsilon}{1-\alpha} \right)^2 \text{Var}_i \left(p_t(i) \right).
\]

Pricing is standard, except that our model is in continuous time. For \(dt \) period from \(t \) to \(t + dt \), individual firm \(i \) can change the price with \(\delta dt \) probability. From time-0 perspective, a probability that firm can reset its price for the first time at time \(t \) is

\[
\delta e^{-\delta t} dt = \delta dt, \quad e^{-\delta t} dt.
\]

60
At time t, price-changing firm i solves the following optimization to choose p_{it}:

$$
\max_{p_{i}(t)} \frac{1}{\xi_{t}^{N} p_{t}} \mathbb{E}_{t} \int_{t}^{\infty} e^{-\delta(s-t)} \xi_{s}^{N} p_{s} \left(\frac{p_{i}(s)}{p_{s}} y_{i}(s|t) - \frac{1}{p_{s}} C(y_{i}(s|t)) \right) ds,
$$

where $y_{i}(s|t) = \left(\frac{p_{i}(s)}{p_{s}} \right)^{-e} y_{s}$,

$$
= \frac{1}{\xi_{t}^{N} p_{t}} \mathbb{E}_{t} \int_{t}^{\infty} e^{-\delta(s-t)} \xi_{s}^{N} p_{s} \left(\frac{p_{i}(s)}{p_{s}} \right)^{1-e} y_{s} - \frac{1}{p_{s}} C \left(\frac{p_{i}(s)}{p_{s}} \right)^{-e} y_{s} \right) ds,
$$

where $C(\cdot)$ is the nominal cost function for each firm. Let $MC_{s|t}$ and $q_{s|t}$ be the nominal and real marginal cost at time s conditional on price resetting at prior time t. The nominal pricing kernel has following simple formula due to log-preference of capitalists:

$$
\xi_{s}^{N} = e^{-\rho s} \frac{1}{p_{s} C_{s}}, \quad \xi_{s}^{N} p_{s} = e^{-\rho(s-t)} \frac{C_{t}}{C_{s}}.
$$

(1.50)

Thus optimal adjusted price $p_{t}^{*}(t)$ is given as the following first-order condition. Here $q_{s|t}$, a real marginal cost of firms at time s given time t price resetting, appears, where $\hat{\phi}$ is flexible-price (natural) equilibrium level of real marginal cost, which is $\frac{e^{-1}}{e}$.

$$
p_{t}^{*}(t) = \frac{\mathbb{E}_{t} \int_{t}^{\infty} e^{-(\delta+\rho)(s-t)} \frac{y_{s} q_{s|t}}{C_{s}} \frac{p_{s}}{C_{s}} \frac{1}{p_{s}^{e-1}} ds}{\mathbb{E}_{t} \int_{t}^{\infty} e^{-(\delta+\rho)(s-t)} \frac{y_{s} p_{s}^{e-1}}{C_{s}} ds}.
$$

(1.51)

If we log-linearize this equation around the steady state equilibrium with the constant price as in equation (1.46), we obtain the following log-linearized \hat{p}_{t}^{*} expressed as

$$
\hat{p}_{t}^{*} = (\delta + \rho) \mathbb{E}_{t} \int_{t}^{\infty} e^{-(\delta+\rho)(s-t)} \left(\hat{\phi}_{s|t} + \hat{\rho}_{s} \right) ds.
$$

(1.52)

We know that the total conditional real cost and real marginal cost can be written as

$$
\frac{1}{p_{s}} C(y_{s|t}) = \frac{w_{s}}{p_{s}} \left(\frac{y_{s|t}}{A_{s}(N_{W,s})^{\alpha}} \right)^{\frac{1}{1-\alpha}}, \quad q_{s|t} = \frac{w_{s}}{p_{s}} \left(\frac{y_{s|t}}{A_{s}(N_{W,s})^{\alpha}} \right)^{\frac{1}{1-\alpha}} \frac{1}{A_{s}(N_{W,s})^{\alpha}}.
$$

(1.53)

A conditional real marginal cost gap at time s conditional on price resetting at time t can be written as

$$
\hat{\phi}_{s|t} = \frac{\hat{w}_{s}}{p_{s}} - \frac{\alpha e}{1-\alpha} \left(\hat{p}_{t}^{*} - \hat{\rho}_{s} \right) = \hat{\phi}_{s} - \frac{\alpha e}{1-\alpha} \left(\hat{p}_{t}^{*} - \hat{\rho}_{s} \right).
$$

(1.54)

Here $\hat{\phi}_{s}$ is the aggregate marginal cost index: since production becomes linear in aggregate level, it equals the real wage gap. Using (1.46), we then characterize the change in aggregate price gap $\hat{\rho}_{t}$ as

$$
d\hat{\rho}_{t} = \delta dt \left(\hat{p}_{t}^{*} - \hat{\rho}_{t} \right) = \delta dt (\delta + \rho) \mathbb{E}_{t} \int_{t}^{\infty} e^{-(\delta+\rho)(s-t)} \left(\Theta \hat{\phi}_{s} + \hat{\rho}_{s} - \hat{\rho}_{t} \right) ds,
$$

where $\Theta \equiv \frac{1 - \alpha}{1 - \alpha + \alpha e}$.

(1.55)

We log-linearize around the steady state equilibrium with constant price. As \hat{p}_{t} changes with a rate of
Now that we have (I.56) for the instantaneous inflation π_t, we manipulate this equation as:

$$
\pi_t + \delta \hat{\pi}_t = \delta(\hat{\pi} + \rho) \mathbb{E}_t \int_t^\infty e^{-(\hat{\pi} + \rho)(s-t)} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds = \delta(\hat{\pi} + \rho) e^{(\hat{\pi} + \rho)t} \mathbb{E}_t \int_t^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds
$$

where we can rewrite the first line of equation (I.58) at time $t + dt$ instead of t as

$$
\pi_{t+dt} + \delta \hat{\pi}_{t+dt} = \delta(\hat{\pi} + \rho) e^{(\hat{\pi} + \rho)(t+dt)} \mathbb{E}_{t+dt} \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds = \delta(\hat{\pi} + \rho) e^{(\hat{\pi} + \rho)t} (1 + (\hat{\pi} + \rho) dt) \mathbb{E}_{t+dt} \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds.
$$

Due to the martingale representation theorem (e.g., Oksendal (1995)), there exists a measurable process H_t such that following holds.

$$
\mathbb{E}_{t+dt} \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds = \mathbb{E}_t \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds + H_t dZ_t,
$$

which we plug into equation (I.58) to obtain

$$
\pi_{t+dt} + \delta \hat{\pi}_{t+dt} = \delta(\hat{\pi} + \rho) \left(e^{(\hat{\pi} + \rho)t} \mathbb{E}_t \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds + e^{(\hat{\pi} + \rho)t} H_t dZ_t
ight)
$$

We subtract equation (I.57) from equation (I.60) to get the following expression. We use $dZ_t dt = 0$ to get the second equality. Also $\sigma_{\pi,t}$ is defined as an instantaneous volatility of inflation fluctuation.

$$
d\pi_t + \delta \pi_t dt = \delta(\hat{\pi} + \rho) \left(e^{(\hat{\pi} + \rho)t} (\hat{\pi} + \rho) dt \cdot \mathbb{E}_t \int_{t+dt}^\infty e^{-(\hat{\pi} + \rho)s} (\Theta \hat{\phi}_s + \hat{\rho}_s) ds + e^{(\hat{\pi} + \rho)t} H_t dZ_t - (\Theta \hat{\phi}_t + \hat{\rho}_t) dt \right)
$$

$$
\equiv \sigma_{\pi,t}
$$

$$
+ \delta(\hat{\pi} + \rho) \left((\hat{\pi} + \rho) dt \mathbb{E}_t \int_t^\infty e^{-(\hat{\pi} + \rho)(s-t)} (\Theta \hat{\phi}_s + \hat{\rho}_s - \hat{\rho}_t) ds \right).
$$

56 According to Woodford (2003) and Yun (2005), this assumption is reasonable as it becomes a part of optimal monetary policy in the presence of price dispersion Δ_t. In the case of positive inflation targets, see Coibion et al. (2012).
Thus from equation (I.61) we get the continuous time version of New Keynesian Phillips curve (NKPC), written as:

\[d\pi_t = \rho \pi_t dt - \delta(\delta + \rho)\Theta \phi_t dt + \sigma_{\pi,t} dZ_t. \]

(I.62)

We know in flexible price equilibrium, a real marginal cost is given as \(\bar{\phi} \), thus \(\hat{\phi}_t \) can be thought of log-deviation of the marginal cost from the flexible price case, which equals the log-deviation of real wage from the flexible price real wage. Therefore, we obtain:

\[\hat{\phi}_t = \frac{\hat{\omega}_t}{p_t} = \frac{\hat{Q}_t}{\chi^{-1} - \frac{\epsilon}{1 - (\epsilon - 1) \alpha}} \equiv \frac{\kappa}{\delta(\delta + \rho)\Theta} \hat{Q}_t. \]

(I.63)

Finally plugging equation (I.63) into equation (I.62), we represent New-Keynesian Phillips curve in terms of asset price gap \(\hat{Q}_t \). We know \(\kappa > 0 \) due to the Assumption 1.

\[d\pi_t = (\rho \pi_t - \kappa \hat{Q}_t) dt + \sigma_{\pi,t} dZ_t, \quad \text{and} \quad \mathbb{E}d\pi_t = (\rho \pi_t - \kappa \hat{Q}_t) dt, \]

(I.64)

which proves the proposition 4.

C.2. Section 4

C.2.1. Section 4.2

Proof of Proposition 6. This result is a direct consequence of Blanchard and Kahn (1980) and Buiter (1984).

B.2.2. Section 4.1

Proof of Proposition 5. From equation (55), \(\{\sigma_i^q\} \) process can be written in the following way.

\[d\sigma_i^q = -\frac{\phi^2(\sigma_i^q)^2}{2(\sigma + \sigma_i^q)^3} dt - \phi \frac{\sigma_i^q}{\sigma + \sigma_i^q} dZ_t. \]

(I.65)

Using Ito’s lemma, we get the process for \((\sigma + \sigma_i^q)^2 \) which is a martingale, as seen below.

\[d(\sigma + \sigma_i^q)^2 = 2(\sigma + \sigma_i^q) d\sigma_i^q + (d\sigma_i^q)^2 \]

\[= 2(\sigma + \sigma_i^q) \left(-\frac{\phi^2(\sigma_i^q)^2}{2(\sigma + \sigma_i^q)^3} dt - \phi \frac{\sigma_i^q}{\sigma + \sigma_i^q} dZ_t\right) + \phi^2 \frac{(\sigma_i^q)^2}{(\sigma + \sigma_i^q)^2} dt \]

(I.66)

\[= -2\phi (\sigma_i^q) dZ_t. \]

57 This form is exactly the same as the Phillips curve in Werning (2012) and Cochrane (2017) if we take expectation.

58 We use Lemma 2’s log-linearization result to represent the real aggregate marginal cost gap \(\hat{\omega}_t \) as a function of capitalists’ consumption gap \(\hat{C}_t = \hat{Q}_t \).

59 Since \(\hat{y}_t = \xi \hat{Q}_t \), Phillips curve can be represented in terms of output gap \(\hat{y}_t \) as in Proposition 4.
Therefore, we would have $E_0((\sigma + \sigma_0^q)^2) = (\sigma + \sigma_0^q)^2$ where E_0 is an expectation operator with respect to the $t = 0$ filtration. By the famous Doob’s martingale convergence theorem (as $(\sigma + \sigma_0^q)^2 \geq 0, \forall t$), we know $\sigma_t^q \xrightarrow{a.s.} \sigma_\infty^q = \sigma_{q,n} = 0$ since:

$$d\sigma_t^q = -\frac{\phi^2 (\sigma_t^q)^2}{2(\sigma + \sigma_t^q)^3} dt - \phi \frac{\sigma_t^q}{\sigma + \sigma_t^q} dZ_t. \tag{1.67}$$

Thus, (1.67) proves $\sigma_t^q \xrightarrow{a.s.} \sigma_\infty^q = 0$. From (53) $\sigma_t^q \xrightarrow{a.s.} \sigma_\infty^q = 0$ leads to $\hat{Q}_t \xrightarrow{a.s.} 0$ and $\pi_t \xrightarrow{a.s.} 0$. Finally, we must have $E(\max_t(\sigma_t^q)^2) = \infty$, since otherwise, the uniform integrability implies $E((\sigma + \sigma_\infty^q)^2) = (\sigma + \sigma_0^q)^2$, which is a contradiction to our earlier result $\sigma_t^q \xrightarrow{a.s.} \sigma_{q,n} = 0$ since $\sigma_\infty^q = 0$ and $\sigma_0^q > \sigma_{q,n} = 0$ by assumption in Proposition 5.

\blacksquare