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Abstract

We develop a general-equilibrium model of endogenous technology adoption in
an economy with product-market search frictions. Under frictional search, the static
pricing game among heterogeneous firms producing the same variety yields variable
markups represented by a gamma hazard function, resulting in within-variety profit
dispersion that drives adoption incentives and economic growth—the mechanism ab-
sent under frictionless search. Strikingly, when imperfect search is the only friction, its
degree does not affect growth, as the partial-equilibrium effect on markups is exactly
offset by the general-equilibrium effect on demand. Incorporating additional features
such as entry, search effort, and creative destruction creates a wedge between the two
effects and allows search frictions to have dynamic implications. Our quantitative
analysis of the U.S. economy shows that structural changes in search efficiency and
the right tail of the productivity distribution over the past three decades have sub-
stantially raised welfare through technology adoption. The current U.S. productivity
growth slowdown thus implies a sizable increase in adoption barriers.
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1 Introduction

Since the seminal work by Aghion and Howitt (1992), creative destruction has become

a key framework for understanding economic growth fueled by technological progress:1

The monopoly rents of an incumbent motivate potential entrants to pursue breakthrough

innovation, thereby advancing the technology frontier. However, in this winner-take-all

environment, firms that fall behind remain inactive in the market and have little incentive

to narrow the gap with the leader through costly technology adoption. As a result, mod-

els grounded in creative destruction have difficulty accounting for endogenous adoption

decisions of firms. Technology adoption, however, is increasingly recognized as a crucial

driver of economic growth.2

This paper studies a setting in which adoption incentives of within-variety firms arise

naturally: an economy with search frictions between buyers and sellers. Frictional search

allows heterogeneous firms producing an identical variety to coexist in the market while

charging different prices, thereby generating profit dispersion across firms with different

productivity levels,3 which in turn incentivizes technology laggards to engage in costly

adoption. We characterize this process in a general-equilibrium growth model that inte-

grates search frictions and endogenous technology adoption decisions. Our framework is

parsimonious and tractable, yet flexible enough to accommodate rich heterogeneity. We

then take U.S. data to different model variants and quantify changes in welfare over the

past three decades attributable to structural changes in search efficiency and the right tail

of the productivity distribution.

Our model comprises a static and a dynamic block. In the static block, there is a unit

continuum of differentiated varieties, where each variety is produced by a continuum

of firms with Pareto-distributed productivity. For each variety, buyers and sellers face

search frictions characterized by Poisson arrivals of encounters, restricting each buyer to a

randomly drawn subset of sellers in the economy. Given the subset of sellers encountered,

the buyer matches with and purchases from the seller offering the lowest price, under

1 For recent works on creative destruction and its implications on growth, see, e.g., Klette and Kortum
(2004), Aghion et al. (2005), Lentz and Mortensen (2008), Aghion et al. (2019), Garcia-Macia et al. (2019),
Peters (2020), and De Ridder (2024).

2 See, e.g., Perla et al. (2021), Akcigit and Ates (2023), and Kalyani et al. (2025).
3 For foundational theoretical works on market structures with search frictions, see, e.g., Stigler (1961),

Butters (1977), Varian (1980), and Burdett and Judd (1983). For empirical evidence on within-variety
price dispersion, see, e.g., Sorensen (2000), Baye et al. (2004), and Hortaçsu and Syverson (2004).
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constant elasticity of substitution (CES) preferences.

Firms engage in price competition à la Bertrand, choosing optimal prices to maximize

expected profits before the realization of encounters and matches. For analytical tractabil-

ity, we follow the creative destruction literature in assuming unit elasticity of substitution

across varieties.4 Under this assumption, the pricing problem of firms reduces to a Riccati

equation that characterizes the trade-off between profit margin and the expected number

of buyers. Solving this equation yields variable markups represented by a gamma hazard

function. We show that this markup representation is a strictly decreasing function of

marginal cost, translates into an easily interpretable decomposition of incomplete pass-

through, and generates firm profits that strictly increase with productivity.

The static results naturally give rise to a distinct within-variety technology adoption

incentive for less productive firms in the search economy. At the extensive margin, search

frictions result in strictly positive market power and profits for all firms producing the

same variety. Meanwhile, at the intensive margin, buyer-seller matching based on the

lowest price preserves the importance of technological advantage in determining firm

profits.

The dynamic block of our model characterizes a firm’s adoption decision as a trade-off

between continuing production and paying a fixed labor cost to draw a new technology

from the current productivity distribution. The monotonicity of firm profits reduces this

decision to an optimal stopping problem, in which only firms at the lower bound of the

within-variety productivity distribution choose to adopt. Specifically, the expected gain

in production value stimulates the adoption incentive of the least productive firms. Their

adoption, in turn, shifts the lower bound of the productivity distribution upward. As the

lower bound rises, firms that continue production face diminishing technological advan-

tages. The resulting decline in their production value then feeds back into the expected

payoff from adoption and reshapes the adoption incentives. The economy’s aggregate

growth rate along the balanced growth path (BGP) is determined by this process.

Closing the model in general equilibrium delivers the central insight of the paper. In

particular, with only exogenous search frictions, our baseline model exhibits a sharp dis-

continuity in the effects of search frictions on technology adoption and growth: While

4 For previous works that impose this assumption, see, e.g., Aghion et al. (2005), Peters (2020), Aghion
et al. (2023), Akcigit and Ates (2023), and De Ridder (2024).
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the presence of search frictions gives rise to adoption incentives, the magnitude of those

frictions does not affect the adoption decisions of firms as long as it is strictly positive.

The tractability of our model makes it possible to pinpoint this result as the consequence

of the offsetting partial- and general-equilibrium forces. On the one hand, higher search

frictions increase overall market power and raise variable markups, thereby strengthen-

ing adoption incentives for low-productivity firms. On the other hand, they exacerbate

within-variety labor misallocation and depress aggregate demand, thereby discouraging

adoption.

Therefore, for search frictions to affect technology adoption and economic growth, it

is essential to incorporate additional features that create a wedge between the two forces.

We explore three different scenarios. The first scenario allows potential firms to decide

whether to enter a product market, factoring in a fixed entry cost. The second allows sell-

ers of each variety to endogenously choose their optimal search effort, subject to a convex

search cost function. The third introduces a Pareto productivity distribution bounded

both above and below, which allows technology adoption and creative destruction to co-

exist. Our analytical results reveal that search frictions have dynamic implications across

all three extensions, with the underlying mechanisms closely tied to the particular sce-

nario in question.

As a final step, we take U.S. data to different model variants to quantify the BGP wel-

fare effects of two notable structural changes over the past three decades: the improving

search efficiency and the thickening right tail of the productivity distribution. The closed-

form representation of variable markups, together with its isomorphic structure across

all model extensions, allows us to efficiently estimate these parameter changes using the

generalized method of moments (GMM).

Consistent with the analytical results, our quantitative analysis shows that the wel-

fare effect of the secular reduction in search frictions largely depends on the mechanisms

driving its dynamic impact on technology adoption and growth. In the baseline economy

where search frictions have no dynamic impact, the welfare effect is only 3.03%, entirely

driven by static consumption gains. When entry is endogenous, the decline in search fric-

tions discourages within-variety firm entry, raising demand faced by incumbent firms.

This channel, in turn, incentivizes low-productivity firms to adopt better technologies,

leading to faster economic growth and a much larger welfare gain of 30.91%. By con-
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trast, when search comes at a labor cost, the improvement in search technology induces

all firms to allocate more labor to search, including those with low productivity. This

channel diverts labor away from production, contracts demand, and weakens adoption

incentives, resulting in a 15.85% decline in BGP welfare. Finally, when creative destruction

is introduced, the decrease in search frictions only slightly weakens incentives to adopt.

Combined with the static impact, the implied welfare gain is 1.10%.

As for the fatter right tail of the productivity distribution, it raises aggregate demand

by reallocating within-variety production labor from low- to high-productivity firms. We

find that this general-equilibrium effect substantially strengthens the adoption incentives

of low-productivity firms, generating quantitatively large increases in aggregate growth

and welfare across all model variants. To reconcile this effect with the observed slow-

down in U.S. productivity growth, our model implies a sizable increase in the technology

adoption cost over the past three decades, ranging from 44.73% to 120.61%.

Related literature. This paper contributes to the theoretical literature on search frictions

in product markets. This literature typically relies on search frictions between buyers and

sellers to microfound imperfectly competitive market structures and characterize the re-

sulting static equilibrium price dispersion (Stigler, 1961; Butters, 1977; Varian, 1980; Bur-

dett and Judd, 1983; Janssen and Moraga-González, 2004; Ellison and Ellison, 2009; Choi

et al., 2018; Menzio, 2024a,b). Recent studies that incorporate market dynamics focus on

product design and targeted advertising driven by consumers’ idiosyncratic preferences

(Cavenaile et al., 2023; Menzio, 2023). We instead shift the focus to production technology,

highlighting how search frictions give rise to endogenous technology adoption decisions

of heterogeneous firms within the same product market.

The static block of our model builds on Menzio (2024a,b), who studies how search fric-

tions shape the equilibrium markup distribution for a single good in a partial-equilibrium

framework. We differ from Menzio (2024a,b) in four aspects. First, we allow for a con-

tinuum of imperfectly substitutable varieties, with each variety served by a continuum

of firms. Second, we parameterize firm heterogeneity using a Pareto productivity distri-

bution. In particular, by embedding this Pareto assumption, together with unit elasticity

of substitution across varieties, into Poisson search frictions, we deliver a closed-form so-

lution for variable markups characterized by a gamma hazard function. This representa-
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tion yields many desirable properties and greatly simplifies structural estimation. Third,

we study general equilibrium and derive analytical solutions for all aggregate variables

in our economy, relying on a microfounded Weibull distribution for the buyer-side mini-

mum encountered price. More importantly, our results show that the general-equilibrium

effect of search frictions on aggregate demand is a key determinant of adoption incen-

tives. Finally, in one of our model variants, we extend Menzio (2024a,b) by allowing firms

to choose their optimal search effort endogenously, rather than taking search frictions as

given.

We also contribute to the theoretical literature on technology diffusion and adoption.

While a large body of work treats agents as passively exposed to technological externali-

ties (Kortum, 1997; Luttmer, 2007, 2011; Bloom et al., 2013; Buera and Oberfield, 2020), our

model speaks to active decisions of firms to adopt better technology at a cost. This strand

of literature starts with stylized models of Lucas and Moll (2014) and Perla and Tonetti

(2014), and is incorporated into the open-economy monopolistic-competition framework

à la Melitz (2003) by Sampson (2016) and Perla et al. (2021).

The dynamic block of our model builds on Perla et al. (2021), who characterize technol-

ogy adoption as paying a fixed cost to draw a higher productivity level from the current

productivity distribution. We differ from Perla et al. (2021) in two key aspects. Concep-

tually, under the implicit assumption of perfect search, monopolistic competition implies

that each variety is produced only by its most efficient producer. Therefore, Perla et al.

(2021) in fact study an adoption process in which the adopter randomly draws and learns

from the frontier technology of a different variety, while continuing to produce its original

variety. In contrast, by introducing search frictions, we allow firms with different produc-

tivity levels to coexist in the same product market. Technology adoption can therefore

be interpreted more naturally as learning and imitation among producers within a va-

riety. Analytically, connecting a search-theoretic market structure to endogenous adop-

tion decisions yields new and surprising insights. For example, the offsetting partial- and

general-equilibrium effects of search frictions on adoption incentives, as well as the mech-

anisms in our model extensions that allow search frictions to have dynamic implications,

are all novel to the literature on technology adoption.

Insights from our model extensions connect to several strands of the literature. The

mechanism that a reduction in search frictions indirectly stimulates adoption incentives
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of incumbents, by discouraging within-variety firm entry, contributes to the literature on

endogenous entry (e.g., Hopenhayn, 1992; Melitz, 2003). When search is costly, the nega-

tive general-equilibrium effects of improved search technology on the allocative efficiency

of search labor and adoption incentives add to recent theoretical works that incorporate

endogenous search efforts in product markets (e.g., Allen, 2014; Arkolakis et al., 2025). By

combining search frictions, technology adoption, and creative destruction in a tractable

way, we also speak to the literature on the interaction between adoption and innovation

(e.g., Benhabib et al., 2021; Trouvain, 2024).

Finally, our structural estimation indicates a secular decline in the shape parameter of

the Pareto productivity distribution, implying a thickening right tail consistent with em-

pirical evidence (Autor et al., 2020; Chen, 2023; Kwon et al., 2024). Across all model vari-

ants, this structural change substantially promotes technology adoption and economic

growth. Given the well-documented slowdown in U.S. productivity growth (Bloom et al.,

2020; Akcigit and Ates, 2021, 2023; Goldin et al., 2024), our quantitative analysis points

to a sizable increase in barriers to technology adoption, in tandem with the rise of super-

star firms. Recently, a growing body of empirical evidence shows that large incumbents

use various tactics to stifle technology adoption by their smaller competitors, including

strategic patenting (Hall et al., 2021; Akcigit and Ates, 2023; Argente et al., 2025), litiga-

tion (Galasso and Schankerman, 2015), and restrictions on labor mobility (Akcigit and

Ates, 2023; Akcigit and Goldschlag, 2023; Fernández-Villaverde et al., 2025). Our result is

consistent with this literature.

Layout The remainder of the paper is organized as follows. Section 2 introduces the

baseline model and defines the BGP equilibrium. Section 3 solves the static expected

profit maximization problem of firms and characterizes equations for variable markups

and firm profits. Section 4 solves the dynamic technology adoption problem of firms and

derives firm value. Section 5 closes the baseline model by characterizing aggregate vari-

ables, real GDP growth rate, and welfare. Section 6 incorporates additional features into

the baseline model, including endogenous entry, endogenous search effort, and creative

destruction. Section 7 takes U.S. data to different model variants for quantitative wel-

fare analysis. Section 8 concludes and discusses the future research agenda. Appendix A

contains proofs and derivations. Appendix B provides detailed data description, method-
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ology, and discussion of our markup estimation in Section 7.

2 Model

In this section, we introduce the baseline search economy with endogenous technology

adoption and define the BGP equilibrium.

Our model consists of a static block and a dynamic block. The static block builds on

Menzio (2024a,b), who focuses on the Poisson search frictions between buyers and sell-

ers of a given good. Unlike the single-good partial-equilibrium environment of Menzio

(2024a,b), our framework allows for imperfect substitutability across varieties and examines

general equilibrium.

The dynamic block characterizes endogenous technology adoption decisions of firms,

following Perla et al. (2021). In contrast to Perla et al. (2021) who focus on monopolis-

tic competition, the market structure in our search economy allows heterogeneous firms

producing the same variety to coexist, giving rise to a distinct within-variety incentive for

technology adoption.

2.1 Setup

Preferences The economy is endowed with a unit measure of homogeneous consumers

who supply one unit of labor inelastically and whose utility function is given by:

Ut =

∫ ∞

t

exp (−ρ (s− t)) lnCs ds, (1)

where Ct denotes the final good consumption at time t and ρ is the discount rate.

The final good is the CES aggregate of intermediate varieties indexed by ω. Although

there exists a unit continuum of varieties, a key feature of our search economy is that

consumers only have access to a fraction of varieties due to search frictions. Let St ⊆ [0, 1]

denote a random subset of accessible varieties to a consumer at time t with norm |St| = Ωt,

the final good consumption is given by:

Ct =

[∫
St

Ct (ω)
σ−1
σ dω

] σ
σ−1

, (2)
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where Ct (ω) is the consumption of variety ω at time t and σ is the elasticity of substitution

across varieties.

In addition to consuming the final good Ct, consumers can invest in a risk-free bond

At, which is in zero net supply, implying At = 0 in equilibrium. The budget constraint is

thus:

PtCt + Ȧt = wt +Πt + rtAt. (3)

The final good price index Pt at each time t will be normalized to one to interpret all

variables as real. wt, Πt, and rt thus denote real wage, aggregate real profit redistributed

to consumers, and the real interest rate, respectively.

Market structure The market consists of a unit continuum of varieties ω ∈ [0, 1]. With

frictionless search, firms producing perfect substitutes with heterogeneous productivity

cannot coexist since the most efficient firms for a given variety will serve the entire market

using limit pricing. With search friction, however, firms producing the same variety with

different productivity levels can coexist because buyers have access only to a subset of

firms in the economy. Therefore, in the baseline search economy, we allow each variety to

be produced by an exogenous measure S of firms that differ in productivity.

Production technology We assume that the productivity distribution at time 0 is Pareto

with shape parameter θ > 1 and lower bound z0 > 0:5

G0 (z) = 1−
(
z

z0

)−θ

. (4)

A firm with productivity z possesses the following Cobb-Douglas technology:

yt (z) = z

[
Qt (z)

α

]α [
lt (z)

1− α

]1−α

,

where yt (z) is the output at time t, lt (z) denotes labor input, and

Qt (z) =

[∫
St

qt (ω; z)
σ−1
σ dω

] σ
σ−1

(5)

5 The Pareto distribution assumption for technology has been widely used in the literature, e.g., Kortum
(1997), Chaney (2008), etc.
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is the CES aggregate of accessible intermediate varieties. We assume that the intermediate

varieties used by firms share the same elasticity of substitution as for consumers and are

subject to identical search friction.6

Cost minimization yields the firm’s marginal cost ct (z) =
w1−α

t

z
. Given the initial Pareto

productivity distribution G0 (z), we have the following initial cost distribution:

H0 (c) =

(
c

c0

)θ

, (6)

where c0 =
w1−α

0

z0
represents the cost upper bound at time 0.

Search and matching Search friction is modeled as Poisson arrivals of random encoun-

ters between buyers and sellers, à la Menzio (2024a,b) and Miyauchi (2024). For any given

variety, the Poisson arrival rate of an encounter is given by:

M = λSγs

Bγb

, (7)

where λ > 0 denotes search efficiency, S and B represent the measures of sellers and

buyers for that variety, and γs and γb are their respective elasticities. Since both consumers

and firms are buyers of intermediate varieties, we have B = S + 1. In our baseline search

economy, we take both λ and S as given, so the arrival rate M is exogenous.

We define a match as the realization of a transaction between a buyer and a seller. Buy-

ers of a given variety purchase from the seller offering the lowest price among all sellers

they encounter. Following Menzio (2024a), with a continuous, differentiable, and strictly

increasing price distribution Ft (·),7 the probability that a buyer with n other encounters

of a given variety matches with a seller offering price p is:

[1− Ft (p)]
n . (8)

Technology adoption Following Perla et al. (2021), we assume that firms at time t can

either produce at current productivity or pay a fixed cost κ > 0 in units of labor to adopt

6 With identical search friction, consumers and firms thus encounter the same measure of accessible
intermediate varieties, i.e., |St| = Ωt.

7 Menzio (2024a) proves the continuity, differentiability, and strict monotonicity of the price distribution
Ft (·) in an economy with Poisson search frictions similar to (7).
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a new technology drawn from the current productivity distribution Gt (·). Let Vp,t (z)

denote the value of production for a firm with productivity z. The expected net value of

technology adoption is then given by:

Va,t =

∫ ∞

zt

Vp,t (z) dGt (z)− κwt. (9)

We assume that a firm can repeatedly redraw its productivity within time t until it has

no incentive to do so. Firms’ technology adoption collectively shapes the evolution of the

productivity distribution and, in turn, the aggregate growth of the economy.

2.2 Balanced growth path equilibrium

For analytical tractability, we focus on the BGP equilibrium defined as follows:

Definition 1 (Balanced Growth Path Equilibrium). A balanced growth path (BGP) equilib-

rium is such that:

• Consumers choose final good consumption path {Cs}s∈[t,∞) to maximize lifetime utility Ut

in (1), subject to the budget constraint (3).

• Firms at each time t take the price distribution Ft (·) as given and set price p to maximize

the expected profit πt (p; z) prior to the realization of encounters (7) and matches (8). The

optimal prices of all firms are, in turn, consistent with the overall price distribution Ft (·).

• Firms at each time t adopt new technologies randomly drawn from the current productivity

distribution Gt (·) whenever Va,t ≥ Vp,t (z), where Va,t is given by (9). Technology adoption

drives aggregate growth, which in turn determines firms’ value of production Vp,t (z). All

aggregate variables grow at constant rates, with the real GDP growth rate denoted by g.

• The cross-sectional distribution of inverse relative productivity ẑ = zt
z
∈ (0, 1] is stationary,

denoted by Ĝ (·). The cross-sectional distribution of marginal cost c is also stationary, such

that Ht (c) = H (c) =
(
c
c

)θ at each time t.

• All markets (i.e., labor, intermediate and final goods, and risk-free bond) clear at each time t.
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3 Optimal Pricing, Markups, and Profits

In this section, we solve the firms’ expected profit maximization problem in the baseline

search economy and discuss the properties of optimal pricing, markups, and profits.

Expected profit maximization The following lemma provides the expression for a firm’s

expected profit before the realization of encounters and matches, as a function of price p

and productivity z:

Lemma 1 (Expected Profit). The expected profit of a firm with price p and productivity z is given

by:

πt (p; z) = bt (p) qt (p) πt (p; z) , (10)

where

bt (p) = λSγs−1Bγb

exp
(
−λSγs

Bγb−1Ft (p)
)

(11)

is the expected number of buyers matched with the firm,8

qt (p) = Qtp
−σ (12)

is the firm’s expected demand from a random buyer (i.e., a consumer or a firm), with Qt denoting

the expected real expenditure of a random buyer on the final good, and

πt (p; z) = p− ct (z) = p− w1−α
t

z

is the firm’s profit margin.

Proof. See Appendix A.1.

Discussion Lemma 1 highlights two differences between the expected profit (10) and

the profit in an economy with frictionless search. The first difference is straightforward:

The expected number of buyers matched with the firm, bt (p), emerges as a key determinant of

expected profit. Without search frictions, all buyers of a variety would flow to the global

technology leader for that variety. In contrast, the randomness introduced by search and

8 Menzio (2024b) derives bt (p) under a similar search and matching environment, but without external-
ities from the masses of buyers and sellers.
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matching generates an intensive margin in the expected number of buyers, allowing het-

erogeneous firms producing the same variety to coexist.

What determines the intensive margin in the expected number of buyers? Taking logs

of equation (11) and totally differentiating yields:

d ln bt (p) =

[
1− M

B
Ft (p)

]
d ln

M

B
+ d ln

B

S
− M

B
F ′
t (p) dp, (13)

where M
B

= λSγs
Bγb−1 represents the Poisson arrival rate of a random seller (i.e., a firm)

for a buyer of any given variety. Equation (13) reveals three factors that affect a firm’s ex-

pected number of buyers: the Poisson arrival rate of sellers M
B

, the relative mass of buyers

compared with sellers B
S

, and the price p set by the firm. In the absence of matching, vari-

ations in the arrival rate of sellers M
B

pass through one-for-one to the expected number of

buyers per seller. However, since buyers only match with the lowest-priced seller they

encounter, the simultaneous arrival of sellers charging prices below the focal firm’s price

p, captured by M
B
Ft (p), limits this pass-through. The relative mass of buyers B

S
, in com-

parison, affects all sellers equally, with unit elasticity. Finally, a marginal increase in price

reduces the expected number of buyers by lowering the matching probability, with the

semi-elasticity determined by the arrival of sellers charging the previous price p, M
B
F ′
t (p).

Ignoring bt (p), the remaining component in expected profit (10), qt (p) πt (p; z), takes a

form similar to that in an economy with frictionless search and CES preferences.9 How-

ever, the second and more subtle difference is that the equilibrium object Qt in (12) is no

longer the buyers’ total expenditure on the final good, but rather the expected expenditure

per buyer. As a buyer may encounter and match with any seller in the economy regardless

of the seller’s position in the within-variety productivity distribution, Qt aggregates the

expected expenditure over all sellers of each variety.

Optimal pricing and markups A firm with productivity z sets price p to maximize the

expected profit πt (p; z) in (10). The optimal price p becomes a function of productivity z

and is denoted by p̃t (z) = argmaxp πt (p; z). Based on Lemma 1, the first-order condition

9 Note that the final good price index Pt is normalized to one.
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of the problem is given by:

F ′
t (p̃t (z)) =

(1− σ) p̃t (z) + σct (z)

λSγsBγb−1p̃t (z) [p̃t (z)− ct (z)]
, (14)

which is a non-linear first-order ordinary differential equation (ODE) in Ft (·). The non-

linearity and the nested endogenous mapping between productivity and price make (14)

analytically intractable in most cases. However, as shown in Appendix A.2, equation (14)

can be greatly simplified under the following regularity assumption:

Assumption 1 (Regularity Assumption). At each time t, a firm at the technology frontier sets

its price as:

lim
z→∞

p̃ (z) =

(
λSγs

Bγb−1
)− 1

θ

Γ
(
θ−1
θ

) c, (15)

where Γ (a) =
∫∞
0
xa−1 exp (−x) dx denotes the gamma function.

Equation (15) serves two purposes. First, it provides a boundary condition required to

pin down the solution to the ODE (14). Second, as shown in Appendix A.2, it is the only

condition that can guarantee that the optimal price p̃t (z) is strictly increasing in marginal

cost ct (z) for all parameter choices. In this case, we can apply the change of variables

p̃t (zt (c)) = pt (c) and Ft (pt (c)) = H (c) to simplify (14) to the following ODE:10

p′ (c) =
λSγs

Bγb−1H ′ (c) p (c) [p (c)− c]

(1− σ) p (c) + σc
. (16)

It turns out that the optimal pricing function becomes time-invariant, i.e., pt (c) = p (c),

and admits a closed-form solution in the special case of σ = 1, in which the final good is a

Cobb-Douglas aggregator. For analytical tractability, we focus on this particular case from

now on. The following proposition characterizes firms’ optimal pricing and markups in

this special case:

Proposition 1 (Optimal Pricing and Markups). Suppose that σ = 1 and Assumption 1 holds.

10 Since ct (z) =
w1−α

t

z , inverting this expression yields zt (c) =
w1−α

t

c . For the detailed derivation of ODE
(16), see Appendix A.2.
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The optimal price of a firm with marginal cost c is the solution to the following Riccati equation:

p′ (c) = λSγs

Bγb−1H ′ (c)

[
p (c)2

c
− p (c)

]
. (17)

The markup of a firm with marginal cost c, in turn, is given by:

m (c) =
p (c)

c
=

[
λSγs

Bγb−1H (c)
]− 1

θ
exp

(
−λSγs

Bγb−1H (c)
)

∫∞
λSγsBγb−1H(c)

x−
1
θ exp (−x) dx

, (18)

which is monotonically decreasing in c.

Proof. See Appendix A.2.

Discussion The Riccati equation (17) can be written in the following easily interpretable

form:
d ln p (c)

d ln c
= λSγs

Bγb−1H ′ (c) [p (c)− c] . (19)

Suppose that a firm with marginal cost c increases its price to the level charged by a firm

with infinitesimally higher marginal cost c+ dc. Holding expected demand constant, the

left-hand side of (19) represents the percentage increase in expected profits resulting from

the rise in profit margin. On the other hand, raising the price at the margin exposes the

firm to an additional price disadvantage relative to competitors whose marginal costs lie

in [c, c+ dc]. In the search economy, this reduces the firm’s expected demand, as captured

by the arrival rate of such additional competitors, i.e., λSγs
Bγb−1H ′ (c). The right-hand

side of (19) thus measures the percentage decrease in expected profits resulting from the

decline in expected demand, holding profit margin constant at its original level. When

the expected gain equals the expected loss, the firm has no incentive to change its price,

and p (c) is therefore pinned down by equation (19).

How should we understand the markup function (18)? Qualitatively, it implies that

in the search economy, even atomistic firms producing a homogeneous good will charge

strictly positive and variable markups as long as they differ in marginal costs (i.e., produc-

tivity). Unlike standard monopolistic competition and oligopolistic competition models

(e.g., Melitz, 2003; Atkeson and Burstein, 2008)—where markups arise from imperfect

substitutability across varieties—search and matching between buyers and sellers give
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rise to within-variety markups that are directly tied to technology gaps. Unlike stan-

dard quality ladder and creative destruction models (e.g., Grossman and Helpman, 1991;

Aghion and Howitt, 1992)—where the markup on a variety is solely charged by its global

technology leader—search frictions introduce uncertainty so that each buyer faces a dif-

ferent local technology leader of their own, which gives every seller strictly positive mar-

ket power.

Quantitatively, the markup function (18) can be written as the following gamma hazard

rate:

m (c) = m (Λ (c)) =
Γ̃′ ( θ−1

θ
,Λ (c)

)
1− Γ̃

(
θ−1
θ
,Λ (c)

) , (20)

where Γ̃ (a, x) =
∫ x
0 ua−1 exp(−u)du

Γ(a)
denotes the cumulative distribution function (CDF) of

the gamma distribution and Λ (c) = λSγs
Bγb−1H (c) represents the arrival rate of sellers

with marginal costs below c. As proved by Glaser (1980), the monotonicity of the gamma

hazard rate (20) is determined by the sign of θ−1
θ

, with 0 < θ−1
θ
< 1 (i.e., θ > 1) implying

a strictly decreasing function of Λ (c) (i.e., m′ (Λ (c)) < 0).11 Together with Λ′ (c) > 0,

markups therefore decrease monotonically in the marginal cost c.

To dissect the relationship between markup and marginal cost from an economic per-

spective, we derive the following elasticity from (20):

d lnm (c)

d ln c
=

d ln p (c)

d ln c
− 1 = θΛ (c) [m (c)− 1]− 1 < 0. (21)

A direct implication of (21) is the incomplete pass-through from marginal costs to prices.

Pass-through for a firm with marginal cost c is jointly determined by three factors. First, a

larger Pareto shape parameter θ implies a thinner right tail of the productivity distribution

and weaker competitive pressure from top firms with low marginal costs, which directly

raises pass-through.12

The other two determinants of pass-through are the arrival rate of competitors with

marginal costs below c, Λ (c), and market power as captured by the net markup m (c)− 1.

Holding market power fixed, an increase in marginal cost makes it more likely that the

firm’s potential buyers simultaneously encounter alternative sellers with lower marginal

costs, i.e., an increase in Λ (c). This intensified competitive disadvantage forces the firm

11 See Appendix A.2 for a detailed proof.
12 Note that θ also affects pass-through indirectly by entering Λ (c) and m (c)− 1.
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to attach greater weight to profits from buyers over whom it retains a competitive advan-

tage, i.e., buyers who encounter only alternative sellers with higher marginal costs. Using

the same terminology as Aghion et al. (2005) (with a different interpretation), this static

escape-competition effect pushes up pass-through and is a distinctive feature of the search

economy.

On the other hand, holding Λ (c) fixed, increased marginal cost also directly reduces

market power m (c) − 1, which in turn pulls down pass-through. This market power ef-

fect is widely documented in the variable markup literature (e.g., Atkeson and Burstein,

2008; Edmond et al., 2015, 2023). The key difference is that the search economy cap-

tures within-variety market power. Taken together, the opposing push-pull effects keep

the pass-through incomplete.

Profits By first substituting ct (z) =
w1−α

t

z
back into the markup equation (18) and then

plugging the resulting optimal price p̃t (z) into the expected profit (10), we can recover

the time-t flow profit πt (z) as a function of productivity z:

πt (z) = Dt

[(
λSγs

Bγb−1
)− 1

θ
exp

(
−λSγs

Bγb−1
(zt
z

)θ)
− Γ

(
θ − 1

θ
, λSγs

Bγb−1
(zt
z

)θ) zt
z

]
,

(22)

where Dt = λ
θ+1
θ S

θ+1
θ

γs−1B
θ+1
θ

γb− 1
θQt denotes the aggregate demand shifter at time t, de-

termined in equilibrium, and Γ (a, x) =
∫∞
x
ua−1 exp (−u) du denotes the upper incomplete

gamma function (Abramowitz and Stegun, 1965).13

Discussion Differentiating the flow profit equation (22) with respect to productivity z

yields:

π′
t (z) = DtΓ

(
θ − 1

θ
, λSγs

Bγb−1
(zt
z

)θ) zt
z2

> 0, (23)

which indicates that flow profits are strictly increasing in productivity. While, at the ex-

tensive margin, search frictions imply strictly positive market power and profits for all

firms producing the same variety, buyer-seller matching based on the lowest price pre-

serves the importance of technological advantage at the intensive margin of profits. It

is this intensive-margin heterogeneity that generates a distinct within-variety technology

13 In parallel, the lower incomplete gamma function γ (a, x) is defined as γ (a, x) = Γ (a) − Γ (a, x) =∫ x

0
ua−1 exp (−u) du.
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adoption incentive for less productive firms in the search economy. In contrast, standard

models of creative destruction à la Aghion and Howitt (1992) focus on innovation activ-

ities that advance the technology frontier, since inter-firm profit differences arise only at

the extensive margin in a winner-take-all manner. We therefore proceed to the dynamic

block in the next section to characterize firms’ endogenous technology adoption decisions

in the search economy.

4 Technology Adoption and Firm Value

In this section, we characterize technology adoption decisions of firms, derive firms’ value

functions, and show how to solve for the aggregate growth rate of the economy.

Technology adoption First, the following lemma characterizes firms’ technology adop-

tion decisions and characterizes dynamic impacts on the productivity distribution:

Lemma 2 (Technology Adoption). In the BGP equilibrium, at each time t, only firms at the

lower bound zt of the productivity distribution Gt (·) choose to adopt new technology, with the

associated value-matching and smooth-pasting conditions given by:

Vp,t (zt) = Va,t (24)

and
∂Vp,t (z)

∂z

∣∣∣
z=zt

=
∂Va,t
∂z

∣∣∣
z=zt

= 0, (25)

respectively. Along the BGP, the productivity distribution Gt (·) remains Pareto with shape pa-

rameter θ, while its lower bound zt grows at a constant rate over time, denoted by gz.

Proof. See Appendix A.3.

Discussion Equation (24) indicates that, at any point in time, only firms at the lower

bound zt of the productivity distribution choose to adopt new technology, while all other

firms continue to produce. If instead a firm with productivity z > zt had an incentive to

adopt, the monotonicity of the profit function shown by (23) would imply that firms with

lower productivity levels z′ ∈ [zt, z) also adopt and thus exit this region, contradicting the
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fact that zt is the productivity lower bound. Technology adoption is therefore equivalent

to an optimal stopping problem with zt as the cutoff, where (24) and (25) correspond to

the standard value-matching and smooth-pasting conditions, respectively (Stokey, 2009).

Firm value With the flow profit πt (z) given by (22), the Bellman equation for a firm with

productivity z is:

rtVp,t (z) = πt (z) +
dVp,t (z)

dt
. (26)

Let ẑ = zt
z
∈ (0, 1] denote the inverse relative productivity. Since the flow profit function (22)

only depends on Dt and ẑ, we can define v (ẑ) = Vp,t(z)

Dt
as the detrended value function.

We now have the following proposition that characterizes v (ẑ):

Proposition 2 (Detrended Value Function). In the BGP equilibrium, the detrended value func-

tion v (ẑ) of a firm with inverse relative productivity ẑ is the solution to the following first-order

linear ODE:

v′ (ẑ) =
ρ

gz ẑ
v (ẑ)− π̂ (ẑ)

gz ẑ
(27)

where π̂ (ẑ) = πt(z)
Dt

is the detrended flow profit.14 Solving the above ODE yields:

v (ẑ) =
1

ρ

[
π̂ (ẑ) +

∫ 1

ẑ

(
ẑ

x

) ρ
gz

dπ̂ (x)

]
.15 (29)

Proof. See Appendix A.4.
14 Specifically,

π̂ (ẑ) =
(
λSγs

Bγb−1
)− 1

θ

exp
(
−λSγs

Bγb−1ẑθ
)
− Γ

(
θ − 1

θ
, λSγs

Bγb−1ẑθ
)
ẑ. (28)

15 Suppose that σ = 1 and Assumption 1 holds. In this case, we can expand the detrended value function

(29) to obtain the following expression:

ρv (ẑ) =
(
λSγs

Bγb−1
)− 1

θ

exp
(
−λSγs

Bγb−1ẑθ
)
− Γ

(
θ − 1

θ
, λSγs

Bγb−1ẑθ
)
ẑ

+ Γ

(
θ − 1

θ

)
gz

gz − ρ

(
ẑ − ẑ

ρ
gz

)
−

∞∑
n=0

(−1)
n
(
λSγs

Bγb−1
)n+ θ−1

θ

n!
(
n+ θ−1

θ

) (
nθ + θ − ρ

gz

) (ẑnθ+θ − ẑ
ρ
gz

)
. (30)

For the detailed derivation of (30), see Appendix A.4.
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Discussion The detrended value function v(ẑ) in (29) is decomposed into two compo-

nents. The first component, captured by π̂(ẑ)
ρ

, represents the detrended value of current profits

given a constant inverse relative productivity ẑ. However, due to technology adoption by

the least productive firms (i.e., firms with ẑ = 1) and the resulting growth in the produc-

tivity lower bound zt, ẑ for a given firm increases over time. This mechanism gives rise to

the second component—the detrended value of future profit losses arising from competitors’

technology adoption—as captured by
∫ 1

ẑ

(
ẑ
x

) ρ
gz d π̂(x)

ρ
.16 Clearly, this value loss is larger as

the productivity lower bound zt rises more rapidly (i.e., when gz is higher).

To better understand the value-loss component, suppose the firm has inverse relative

productivity ẑ at time 0. We can then use a change of variables x = exp (gztx) ẑ to rewrite

it as: ∫ − ln ẑ
gz

0

exp (−ρtx) d
π̂ (exp (gztx) ẑ)

ρ
. (31)

Hence, (31) integrates the discounted marginal value loss exp (−ρtx) d π̂(exp(gztx)ẑ)
ρ

from time

0 to − ln ẑ
gz

, during which inverse relative productivity moves from ẑ to 1.

Future value losses in (31) are negligible for both the most (i.e., ẑ → 0) and the least

(i.e., ẑ → 1) productive firms. The former are so far from the productivity lower bound

that their profit flows are barely threatened by adopters: exp (−ρtx) d π̂(exp(gztx)ẑ)
ρ

→ 0 when

ẑ → 0. The latter are very close to the lower bound and soon become adopters themselves:

− ln ẑ
gz

→ 0 when ẑ → 1. In both cases, (31) approaches zero. Therefore, firms in the middle

of the productivity distribution suffer the largest future value losses from competitors’

technology adoption.

Finally, by plugging the detrended value function v (ẑ) into the value-matching con-

dition (24), the growth rate gz of the productivity lower bound along the BGP solves:

D̃ (gz)

[∫ 1

0

v (x; gz) dĜ (x)− v (1; gz)

]
= κ, (32)

where D̃ (gz) =
Dt

wt
is the detrended demand shifter that is determined in equilibrium and

Ĝ (x) = xθ represents the distribution of inverse relative productivity ẑ. The growth rate
16 It follows from equation (23) that:

dπ̂ (x) = − 1

Dt
π′
t

(zt
x

) zt
x2

dx = −Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ

)
dx < 0,

which implies that the detrended flow profit decreases as x increases.
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gz of the productivity lower bound affects the detrended value function v (ẑ) in (29) by

altering the value losses induced by competitors’ technology adoption. In turn, the shape

of v (ẑ) feeds back into gz by changing the expected detrended value of adoption, i.e.,∫ 1

0
v (x; gz) dĜ (x) − v (1; gz) in (32). Put differently, the intensity of technology adoption

shapes the value of production, which in turn determines firms’ incentives to adopt.

However, since the labor allocated to technology adoption depends on gz,17 the de-

trended demand shifter D̃—directly linked to the labor used in production—is in turn a

function of gz. Pinning down gz and the associated real GDP growth rate g thus requires

solving for the general equilibrium, which is the focus of the next section.

5 General Equilibrium, Growth, and Welfare

In this section, we close the baseline model by solving for the aggregate variables in gen-

eral equilibrium and characterizing the real GDP growth rate and consumer welfare.

Accessibility For any given variety, the probability that a buyer has access to it is equal

to the probability of encountering at least one seller in that variety. The Poisson arrival

of encounters implies that this probability is 1 − exp
(
−M

B

)
. Since there exists a unit con-

tinuum of varieties, the law of large numbers implies that this probability coincides with

the fraction of varieties accessible to the buyer. That is:

Ωt = Ω = 1− exp
(
−λSγs

Bγb−1
)
. (33)

Conditional on encountering at least one seller of a given variety, the following lemma

characterizes the distribution of the minimum marginal cost accessible to a buyer:

Lemma 3 (Minimum Cost Distribution). For any buyer of any accessible variety, the mini-

mum cost among encountered sellers follows a right-truncated Weibull distribution with shape

17 Specifically, the labor used in technology adoption is given by the product of the mass of adopters and
the labor required per adopter:

La =
Gt

(
zt+dt

)
−Gt (zt)

dt
Sκ = G′

t (zt) zt
d ln zt
dt

Sκ = Sκθgz.
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parameter θ, scale parameter λSγs
Bγb−1c−θ, and truncation point c:

Hmin (c) =
1− exp

(
−λSγs

Bγb−1c−θcθ
)

Ω
. (34)

Proof. See Appendix A.5.

Discussion Equation (33) and (34) jointly characterize the accessibility of buyers to low-

marginal cost sellers, which plays a crucial role in determining the real wage wt in general

equilibrium. In particular, (33) captures the extensive margin of accessibility—whether a

buyer can encounter a seller in a given variety. Clearly, Ω increases with the arrival rate

of sellers, i.e., dΩ

dλSγsBγb−1
> 0.

By contrast, (34) reflects the intensive margin of accessibility conditional on encounter-

ing a variety, i.e., the extent to which a buyer has access to low-cost sellers. Technically,

the right-truncated Weibull distribution in (34) belongs to the Type-III extreme value fam-

ily and arises from a Poisson-Pareto mixture, which is commonly used to characterize the

minimum of a random variable—here, the minimum marginal cost among sellers encoun-

tered. By applying Jensen’s inequality, we obtain ∂Hmin(c)

∂λSγsBγb−1
≥ 0,18 which implies that the

minimum marginal cost a buyer encounters is stochastically decreasing (i.e., in the sense

of first-order stochastic dominance) in the arrival rate of sellers.

General equilibrium Given (33), (34), and the market-clearing conditions, the following

proposition solves the aggregate variables in general equilibrium:

Proposition 3 (General Equilibrium). Suppose that σ = 1 and Assumption 1 holds. Along the

18 Taking the partial derivative of (34) with respect to λSγs

Bγb−1 yields:

∂Hmin (c)

∂λSγsBγb−1
=

exp
(
−M

B

(
1 +

(
c
c

)θ))
Ω2

[(c
c

)θ
exp

(
M

B

)
− exp

((c
c

)θ M

B

)
−
(c
c

)θ
+ 1

]
.

By Jensen’s inequality and the convexity of the exponential function, we obtain:

exp

((c
c

)θ M

B

)
= exp

((c
c

)θ M

B
+

(
1−

(c
c

)θ)
· 0
)

≤
(c
c

)θ
exp

(
M

B

)
−
(c
c

)θ
+ 1.

It follows that ∂Hmin(c)

∂λSγsBγb−1
≥ 0.
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BGP equilibrium, real GDP is given by:

Ct = wt +Πt. (35)

Real wage wt is given by:

wt =

[
exp

(
1−

λSγs
Bγb−1 exp

(
− λSγs

Bγb−1
)
− µ

(
λSγs

Bγb−1
)

Ω

)(
λSγs

Bγb−1
) 1

θ
zt

] 1
1−α

,

(36)

where µ
(
λSγs

Bγb−1
)
=
∫ λSγsBγb−1

0

ln Γ( θ−1
θ

,x)
exp(x)

dx is a constant. Aggregate real profit Πt is given

by:

Πt =

[
D̃S

∫ 1

0

π̂ (x) dĜ (x)

]
wt, (37)

where the detrended demand shifter D̃ is:

D̃ =

[
(1− α) θ

∫ 1

0

Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
xθ dx

]−1
1− Sκθgz

S
. (38)

Proof. See Appendix A.6.

Discussion Proposition 3 provides a step-by-step decomposition of real GDP. First, the

final-good market-clearing condition (35) implies that real GDP Ct equals the real wage

wt plus the aggregate real profit Πt, which is lump-sum rebated to consumers.

Equation (36) gives a closed-form solution for the equilibrium real wage wt. Note that

the growth rate of wt is given by gz
1−α

, i.e., growth in the productivity lower bound zt does

not pass through one-for-one to real wage growth but instead generates an amplification

effect through roundabout production, as summarized by the Leontief inverse 1
1−α

.19

Besides zt and 1
1−α

, the equilibrium real wage wt is affected by the Poisson arrival rate

of sellers, λSγs
Bγb−1, through three different channels: the extensive margin of accessibil-

ity Ω, the intensive margin of accessibility Hmin (c), and the optimal pricing p (c). The first

channel appears explicitly as Ω in (36), whereas the latter two channels are intertwined

with each other and are summarized by the remaining terms involving λSγs
Bγb−1. With

a higher arrival rate of sellers, buyers gain access to a wider range of varieties (i.e., higher

19 Specifically, 1
1−α =

∑∞
n=0 α

n, where n indexes the nth round through which the effects of productivity
growth propagate via intermediate inputs.
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Ω) and are more likely to encounter sellers with low marginal costs (i.e., higher Hmin (c)),

while sellers tend to charge lower prices due to intensified competition (i.e., lower p (c)).

All these effects raise the real wage wt.

Equilibrium aggregate real profit Πt, given in (37), is proportional to the real wage

wt, implying that real GDP grows at the same rate as real wage along the BGP, i.e., g =

gz
1−α

. The multiplier D̃S
∫ 1

0
π̂ (x) dĜ (x) captures the aggregate profitability of firms in the

economy, and is determined by the detrended demand shifter D̃, the total measure of

firms S, and the detrended flow profit of a representative firm,
∫ 1

0
π̂ (x) dĜ (x). Holding

D̃ fixed, a higher arrival rate of sellers intensifies competition, lowers optimal prices, and

consequently reduces the representative firm’s detrended flow profit.20

Finally, given the productivity lower bound growth rate gz, equation (38) provides

an analytic expression for the detrended demand shifter D̃. D̃ is the product of aver-

age production labor per firm, 1−Sκθgz
S

, and a multiplier that reflects allocative efficiency of

production labor. The inverse of the multiplier, (1− α) θ
∫ 1

0
Γ
(

θ−1
θ
, λSγs

Bγb−1xθ
)
xθ dx,

is proportional to the labor demand of a representative firm,
∫ c

0
l̃t (c) dH (c), which cap-

tures economy-wide labor misallocation.21 Without search frictions, labor becomes entirely

concentrated in frontier firms for each variety. Now with search frictions, however, even

relatively unproductive firms retain positive labor demand, which reduces allocative ef-

ficiency.

Beyond search frictions (i.e., lower λSγs
Bγb−1), labor misallocation is also exacerbated

by a higher labor share (i.e., higher 1 − α). In contrast, the impact of the Pareto shape

parameter θ is ambiguous: While a lower θ corresponds to a fatter right tail of the pro-

ductivity distribution, implying a greater mass of high-productivity firms and a lower de-

gree of labor misallocation, it also implies higher aggregate market power and markups,

reducing allocative efficiency.

Growth and welfare Finally, by substituting (38) into (32) and applying integration by

parts and the Fubini-Tonelli theorem (Royden and Fitzpatrick, 1988), the following propo-

20 Specifically,

∂π̂ (x)

∂λSγsBγb−1
= −1

θ

(
λSγs

Bγb−1
)− θ+1

θ

exp
(
−λSγs

Bγb−1xθ
)
< 0 for all x ∈ (0, 1] .

21 For the detailed derivation, see Appendix A.6.
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sition characterizes the real GDP growth rate, as well as consumer welfare:

Proposition 4 (Growth and Welfare). Suppose that (1− α) ρSκθ < 1, σ = 1, and Assumption

1 holds. Along the BGP, the growth rate of real GDP is given by:

g =
gz

1− α
=


1− (1− α) ρSκθ

(1− α) [(1− α) θ + 1]Sκθ
, for λ ∈ R++,

0, for λ = ∞.

(39)

The welfare of consumers at time t is given by:

Ut =
1

ρ

(
lnCt +

g

ρ

)
. (40)

Proof. See Appendix A.7.

Discussion Equation (39) delivers the central insight of the baseline model: Although

the real GDP growth rate exhibits a sharp discontinuity when the economy shifts from a

frictionless to a frictional search environment—i.e., g jumps from 0 to 1−(1−α)ρSκθ
(1−α)[(1−α)θ+1]Sκθ

as

λ falls from infinity to a finite value—as long as search friction exists, its magnitude does

not affect the level of aggregate growth.

To understand why, we return to the value-matching condition (32) that pins down gz.

As shown in Appendix A.7, the expected detrended value of adoption
∫ 1

0
v (x; gz) dĜ (x)−

v (1; gz) can be rewritten as −
∫ 1
0 Ĝ(x)dπ̂(x)

ρ+θgz
, i.e., the value of expected cumulative marginal

profits, discounted at the effective rate ρ + θgz. For marginal profit −dπ̂ (x),22 it accrues

to an adopter whenever the inverse relative productivity draw lies in (0, x], which occurs

with probability Ĝ (x). The term −
∫ 1

0
Ĝ (x) dπ̂ (x) thus integrates expected marginal profit

gains over the full support (0, 1]. The dampening effect of future adoption by competitors

on the value of adopting today is captured by θgz in the effective discount rate. Plugging

in Ĝ (x) and π̂ (x), we have:

∫ 1

0

v (x; gz) dĜ (x)− v (1; gz) =
1

ρ+ θgz

∫ 1

0

Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
xθ dx. (41)

Intuitively, as search efficiency improves (i.e., higher λSγs
Bγb−1), the resulting tougher

22 Note that x here denotes the inverse relative productivity. Hence, π̂ (x) is decreasing in x, implying
−dπ̂ (x) > 0.
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competition forces all firms to reduce prices, with price cuts being more pronounced for

higher-productivity firms that actively engage in competition. The detrended profit thus

becomes less sensitive to productivity changes, weakening incentives to adopt. We refer

to this channel as the partial-equilibrium effect.

However, by enhancing the allocative efficiency of production labor, higher search ef-

ficiency generates a general-equilibrium effect that promotes technology adoption, reflected

in an increase in the detrended demand shifter D̃. By comparing (38) and (41), it turns

out that the partial- and general-equilibrium effects exactly offset each other, rendering the

magnitude of finite search efficiency irrelevant for aggregate growth. The intuition is that,

in the presence of search frictions, labor misallocation arises from firms’ static aggregate

profitability, which is exactly proportional to the expected detrended adoption value be-

cause the dynamic value-loss component is already absorbed into the effective discount

rate via θgz.

In stark contrast, (32) is no longer valid for solving gz when λ = ∞. Instead, the market

structure collapses to perfect competition where atomistic firms at the technology frontier

produce and break even, while all other firms remain inactive. In this limiting case, no

firm has an incentive to incur the fixed labor cost κ > 0 to adopt new technology, leading

to g = 0.

Given a finite λ, what determines the real GDP growth rate g in the baseline model?

The first determinant is the composite term Sκθ, the labor required for technology adop-

tion per unit of growth rate gz. A higher Sκθ diverts labor away from production (i.e., the

labor composition effect), reduces the detrended demand shifter D̃, and thereby weakens

adoption incentives and aggregate growth. The Pareto shape parameter θ also affects the

growth rate by altering the misallocation of labor, together with the labor share 1− α. In

addition to reducing labor misallocation, a lower labor share also strengthens the ampli-

fication effect from roundabout production, as reflected in a higher Leontief inverse 1
1−α

.

Finally, as the discount rate ρ rises, the future payoff from technology adoption becomes

less attractive, slowing aggregate growth.

Lastly, equation (40) decomposes consumer welfare into two components: the value of

current consumption, lnCt

ρ
, and the value of future consumption growth, g

ρ2
. Even though the

magnitude of finite search efficiency does not affect GDP growth g in the baseline econ-

omy, it remains crucial for determining the level of current consumption Ct by changing
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the real wage wt and aggregate real profits Πt.

6 Extensions

In this section, we present several extensions of the baseline search economy to explore

the implications under alternative settings. We show that once additional features are

introduced that break the balance between the partial- and general-equilibrium effects,

the magnitude of search efficiency begins to affect aggregate growth, either directly or

indirectly, with the mechanisms closely tied to the particular feature considered.

6.1 Endogenous entry

We first examine entry decisions of firms by allowing the total measure of firms, S, to be

determined endogenously. Following Hopenhayn (1992), we assume that entrants at time

tmust pay a fixed cost ξ, measured in units of labor, to draw their initial productivity from

the current productivity distribution Gt (·). The expected net value of entry is therefore

given by Ve,t =
∫∞
zt
Vp,t (z) dGt (z) − ξwt, and firms continue to enter whenever Ve,t ≥ 0.

The following proposition characterizes the equilibrium conditions in the search economy

with endogenous entry:

Proposition 5 (Endogenous Entry). Suppose that ξ > κ, σ = 1, and Assumption 1 holds.

Along the BGP, the total measure of firms S is the solution to the following fixed-point problem:

1 + ρSκ

(ξ − κ) [(1− α) θ + 1] ρS
=

∫ 1

0
Γ
(

θ−1
θ
, λSγs

Bγb−1xθ
)
xθ dx(

λSγsBγb−1
)− 1

θ exp
(
−λSγsBγb−1

)
− Γ

(
θ−1
θ
, λSγsBγb−1

) , (42)

and the solution is unique.

Proof. See Appendix A.8.

Discussion The key insight conveyed by Proposition 5 is that, once entry is endogenous,

finite search efficiency λ still does not directly affect the real GDP growth rate g given by

(39). However, it does affect g indirectly by endogenously determining the total measure

of firms S in (42). In turn, S directly enters (39) through the labor composition effect.
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To see why, we first rewrite the free entry condition Ve,t = 0 in the following form:

D̃v (1) + D̃

[∫ 1

0

v (x) dĜ (x)− v (1)

]
= ξ. (43)

Compared with (32), it is clear that the second term on the left-hand side of (43) is gov-

erned by adopters’ equilibrium behavior and is always equal to the adoption cost κ. A

higher κ implies less threat to entrants from technology adoption by competitors, making

entry more attractive. Hence, an entrant’s decision boils down to comparing the variable

value of entry, D̃v (1), and the effective entry cost, ξ − κ, where v (1) = π̂(1)
ρ

as shown in

(29).

Now equation (42) becomes easily interpretable. An increase in search efficiency λ is

reflected on the right-hand side through two channels: a reduction in aggregate misallo-

cation captured by the numerator (i.e., the general-equilibrium effect), and a decrease in

the detrended profit for the least productive firms, π̂ (1), captured by the denominator.23

However, unlike the partial-equilibrium effect on cumulative marginal profit gains, the

channel operating through π̂ (1) cannot be fully offset by the general-equilibrium force.

Intuitively, the general-equilibrium effect averages out labor reallocation from low- to

high-productivity firms, while the least productive firms—where misallocation is most

severe—lose labor (and thus profits) disproportionately.

As a result, a higher search efficiency λ lowers the variable value of entry, which re-

duces the total measure of firms S and in turn spurs technology adoption by increasing

the average production labor per firm, 1−Sκθgz
S

, and hence the detrended demand shifter

D̃. Other related parameters also affect equilibrium firm entry in the expected way.24

6.2 Endogenous search effort

Next, we consider the case where sellers can actively choose their search efforts. In con-

trast to the baseline economy, each seller in this setting jointly chooses its price and search

effort to maximize expected profit. For simplicity, we abstract from endogenous search

on the buyer side. One can think of this case as sellers’ marketing activities in reality, such

23 Note from (28) that the denominator is equal to π̂ (1).
24 In particular, a higher entry cost ξ, a higher discount rate ρ, and greater misallocation induced by a

higher (1− α) θ all deter entry.
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as advertising, with buyers being passive recipients of these advertisements.

Since for each variety firms differ only in productivity, we denote the optimal search

effort of a firm with productivity z at time t as λt (z). With search effort λt (z), the Poisson

arrival rate of encounters between the firm and potential buyers is λt (z)Sγs
Bγb . Based

on the superposition property of the Poisson process,25 the arrival rate of a random en-

counter in the economy remains Poisson and is given by:

Mt = λtS
γs

Bγb

, (44)

where λt = S
∫∞
zt
λt (z) dGt (z) represents the aggregate search effort in equilibrium.

Search is costly, where its cost is measured in units of labor. We define the search cost

function as a convex power function of the search effort λ:

χ

φ
λφwt, (45)

with χ > 0 and φ > 1.

Let πt (λ, p, z) denote the expected sales profit of a firm with search effort λ, price p, and

productivity z at time t. Given the aggregate search effort λt, the firm at time t chooses its

optimal search effort λt (z) and optimal price p̃t
(
z;λt

)
to maximize its expected net profit

πt (λ, p, z)− χ
φ
λφwt. As in Assumption 1, we impose a similar regularity assumption that

allows for analytical tractability:

Assumption 2 (Regularity Assumption with Endogenous Search Effort). At each time t,

given the aggregate search effort λt, a firm at the technology frontier sets its price as:

lim
z→∞

p̃
(
z;λt

)
=

(
λtS

γs
Bγb−1

)− 1
θ

Γ
(
θ−1
θ

) c. (46)

Let

π̂
(
ẑ;λt

)
=
(
λtS

γs

Bγb−1
)− 1

θ
exp

(
−λtSγs

Bγb−1ẑθ
)
− Γ

(
θ − 1

θ
, λtS

γs

Bγb−1ẑθ
)
ẑ (47)

takes the same functional form as π̂ (ẑ) in the baseline economy, except that the exogenous

25 For this property, see, e.g., Crane and Mccullagh (2015).
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search efficiency λ is replaced by the endogenous aggregate search effort λt. We term it the

baseline detrended profit. The following proposition then characterizes the equilibrium

conditions in the search economy with endogenous search effort:

Proposition 6 (Endogenous Search Effort). Suppose that σ = 1 and Assumption 2 holds.

Along the BGP, aggregate search effort remains constant, i.e., λt = λ. Given λ, the optimal search

effort as a function of inverse relative productivity ẑ is:

λ̂
(
ẑ;λ
)
=

[
D̃
(
λ
)

χ

] 1
φ

π̂
(
ẑ;λ
) 1

φ−1 , (48)

where

D̃
(
λ
)
=

1− Sκθgz
(
λ
)

S
[
1
φ

∫ 1

0
π̂
(
x;λ
) φ

φ−1 dĜ (x) + (1− α) θ
∫ 1

0
π̂
(
x;λ
) 1

φ−1 Γ
(
θ−1
θ
, λSγsBγb−1xθ

)
xθ dx

]
(49)

is the detrended demand shifter with gz
(
λ
)

given by (54). The aggregate search effort, λ, in turn,

is endogenously determined as the solution to the following fixed-point problem:

λ =

[
D̃
(
λ
)

χ

] 1
φ

S

∫ 1

0

π̂
(
x;λ
) 1

φ−1 dĜ (x) . (50)

Aggregate real profit is given by:

Πt

(
λ
)
=

[
D̃
(
λ
)
S

∫ 1

0

π̂
(
x;λ
) φ

φ−1 dĜ (x)

]
wt. (51)

The detrended value function v
(
ẑ;λ
)

is the solution to the following first-order linear ODE:

v′
(
ẑ;λ
)
=

ρ

gz ẑ
v
(
ẑ;λ
)
− φ− 1

φ

π̂
(
ẑ;λ
) φ

φ−1

gz ẑ
, (52)

and the solution reads:

v
(
ẑ;λ
)
=
φ− 1

ρφ

[
π̂
(
ẑ;λ
) φ

φ−1 +

∫ 1

ẑ

(
ẑ

x

) ρ
gz

dπ̂
(
x;λ
) φ

φ−1

]
. (53)
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Suppose that
[
Ξ
(
λ
)
+ (1− α) θ

]
ρSκ < 1. The real GDP growth rate for λ ∈ R++ is given by:

g
(
λ
)
=
gz
(
λ
)

1− α
=

1−
[
Ξ
(
λ
)
+ (1− α) θ

]
ρSκ

(1− α)
[
Ξ
(
λ
)
+ (1− α) θ + 1

]
Sκθ

, (54)

where

Ξ
(
λ
)
=

1
φ

∫ 1

0
π̂
(
x;λ
) φ

φ−1 dĜ (x)∫ 1

0
π̂
(
x;λ
) 1

φ−1 Γ
(
θ−1
θ
, λSγsBγb−1xθ

)
xθ dx

. (55)

All other variables retain the same expressions as in the baseline economy, except that endogenous

λ replaces the exogenous search efficiency parameter λ.

Proof. See Appendix A.9.

Discussion Proposition 6 provides three key insights. First, consistent with Arkolakis

et al. (2025), the convexity of the search cost function makes it optimal for firms with high

productivity to invest disproportionately more in search activities and, in return, capture

disproportionately higher profits. However, equation (48) implies that the elasticity of

optimal search effort λ̂
(
ẑ;λ
)

with respect to inverse relative productivity ẑ is 1
φ−1

d ln π̂(ẑ;λ)
d ln ẑ

,

with the elasticity of the baseline detrended profit π̂
(
ẑ;λ
)

serving as a sufficient statis-

tic. This non-isoelastic feature is driven by within-variety search and matching and the

resulting variable markups, which are absent from Arkolakis et al. (2025).

As part of the Poisson arrival rate of buyers, λ̂
(
ẑ;λ
)

enters the expected profit multi-

plicatively. However, what determines overall competitive pressure—and hence optimal

pricing—is the aggregate search effort λ in equilibrium, which governs the Poisson arrival

rate of sellers per buyer. As a result, the detrended net flow profit becomes φ−1
φ
π̂
(
ẑ;λ
) φ

φ−1 ,

which appears in ODE (52). Compared with the baseline economy, heterogeneous search

effort across firms makes the flow profit more elastic with respect to productivity changes,

i.e.,
d ln

(
φ−1
φ

π̂(ẑ;λ)
φ

φ−1

)
d ln ẑ

= φ
φ−1

d ln π̂(ẑ;λ)
d ln ẑ

with φ
φ−1

> 1.

Second, the fixed-point problem (50) reveals that aggregate search effort λ is jointly

determined by two externalities that each seller fails to internalize when choosing individ-

ual search effort: a positive externality whereby higher search effort collectively mitigates

labor misallocation and boosts the detrended demand shifter D̃
(
λ
)
, and a negative exter-

nality whereby more intensive search strengthens competition and depresses detrended
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profits of all firms, i.e., π̂
(
ẑ;λ
)

for all ẑ.26 In equilibrium, λ adjusts until the two exter-

nalities balance so that the right-hand side of (50) coincides with λ itself. The scale and

elasticity parameters of the search cost function, χ and φ, play crucial roles in this process.

Finally, and most importantly, unlike the baseline economy with exogenous search ef-

ficiency, endogenous aggregate search effort λ affects the real GDP growth rate directly

through Ξ
(
λ
)
, as shown in (54). All parameters that pin down λ, such as χ and φ, thus

also influence aggregate growth. The reason is that costly search gives rise to a new source

of labor misallocation: the positive labor demand from low-productivity firms for search ac-

tivities. As shown in Appendix A.9, this misallocation is given by 1
φ

∫ 1

0
π̂
(
x;λ
) φ

φ−1 dĜ (x),

which directly depresses the detrended demand in (49). It is exactly this additional in-

efficiency that prevents the general- and partial-equilibrium effects of λ from completely

offsetting each other. Instead, their net effect is summarized by Ξ
(
λ
)

in (55),27 with the ad-

ditional multiplier π̂
(
x;λ
) 1

φ−1 in the denominator reflecting the impact of heterogeneous

search effort on baseline effects. Aggregate growth g
(
λ
)

therefore depends on the relative

strength of the two forces, with a higher Ξ
(
λ
)

implying relatively greater misallocation,

weaker adoption incentives, and slower growth.28

6.3 Creative destruction

The Pareto distribution of productivity in the baseline economy implicitly places the tech-

nology frontier at infinity. In this section, we instead impose a bounded technology fron-

tier to allow for both technology adoption and creative destruction à la Aghion and Howitt

(1992).
26 Note that from the perspective of consumer welfare, the externality operating through π̂

(
ẑ;λ
)

is posi-
tive. Here we label it "negative" only in the sense that intensified search generates negative spillovers
from firms’ perspective.

27 Using integration by parts, we obtain:

1

φ

∫ 1

0

π̂
(
x;λ

) φ
φ−1 dĜ (x) =

π̂
(
1;λ
) φ

φ−1

φ
+

∫ 1

0
π̂
(
x;λ

) 1
φ−1 Γ

(
θ−1
θ , λSγs

Bγb−1xθ
)
xθ dx

φ− 1
,

which implies that:

Ξ
(
λ
)
=

π̂
(
1;λ
) φ

φ−1

φ
∫ 1

0
π̂
(
x;λ

) 1
φ−1 Γ

(
θ−1
θ , λSγsBγb−1xθ

)
xθ dx

+
1

φ− 1
,

where the first term on the right-hand side can no longer be canceled out and always depends on λ.
28 Note from (39) and (54) that the baseline economy corresponds to Ξ

(
λ
)
= 0.
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Specifically, we assume that initial productivity follows a Pareto distribution truncated

from both above and below:

G̃0 (z) =
1−

(
z
z0

)−θ

1−
(

z0
z0

)−θ
, (56)

where the upper bound z0 corresponds to the technology frontier at time 0. Creative de-

struction here is modeled as a cutting-edge research project that probabilistically enables

a firm’s productivity to leap to a level marginally above the current technology frontier,

with an exogenous Poisson arrival rate δ > 0. Overall, continuous arrivals of creative

destruction drive the growth of the technology frontier zt.

Engaging in this research project entails costs denominated in labor. We assume that

the required investment increases with inverse relative productivity and is defined as:

ς
(zt
z

)η
wt, (57)

with ς ≥ 0 and η ≥ 0.29 With creative destruction, the Bellman equation for a firm with

productivity z is given by:

rtṼp,t (z) = π̃t (z) + max

{
δ

[
Ṽ ′
p,t (zt)

dzt
dt

+ Ṽp,t (zt)− Ṽp,t (z)

]
− ς

(zt
z

)η
wt, 0

}
+

dṼp,t (z)

dt
.

(58)

The firm trades off the value gain from creative destruction against the research cost, and

it invests in the research project only when the former exceeds the latter.

Two challenges arise in this extended model. First, with the doubly truncated produc-

tivity distribution, the lower bound of marginal cost shifts from 0 to zt
zt
c, which compli-

cates the optimal pricing problem (17). Second, the potential kink and non-monotonicity

introduced by the maximum operator make it difficult to solve equation (58). Hence, we

impose the following regularity assumption for tractability:

Assumption 3 (Regularity Assumption with Creative Destruction). At each time t, given

29 Therefore, while a low-productivity firm reaps a greater benefit from the research project, it pays higher
investment costs according to (57).
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the productivity lower bound zt, a firm at the technology frontier zt sets its price as:

p̃ (zt; zt) =

[
λ̃
(

zt
zt

)
Sγs

Bγb−1
]− 1

θ
exp

(
−λ̃
(

zt
zt

)
Sγs

Bγb−1
(

zt
zt

)θ)
Γ

(
θ−1
θ
, λ̃
(

zt
zt

)
SγsBγb−1

(
zt
zt

)θ) c, (59)

where λ̃
(

zt
zt

)
= λ

1−
(

zt
zt

)θ . The research cost scale parameter ς is sufficiently small such that:

ς ≤ inf
z∈[zt,zt]

δ

wt

[
Ṽ ′
p,t (zt)

dzt
dt

+ Ṽp,t (zt)− Ṽp,t (z)

](
z

zt

)η

, (60)

and the elasticity parameter η is sufficiently small such that:

η ≤ ρ+ δ

d ln zt/dt
. (61)

Similar to Assumption 1, (59) serves as a boundary condition and ensures the mono-

tonicity of the optimal pricing function. Inequality (60) implies that every firm has an in-

centive to invest in the research project. Inequality (61) is somewhat subtle. As shown in

Appendix A.10, it serves as a sufficient condition to ensure that the value function Ṽp,t (z)

is monotonically increasing in productivity z, implying that only firms at the productivity

lower bound zt undertake technology adoption at time t as in the baseline model.

Let v (ẑ;λ, ρ) denote the baseline model’s detrended value function (29) of a firm with

inverse relative productivity ẑ, with effective search efficiency λ and discount rate ρ. The

following proposition then characterizes the equilibrium conditions in the search econ-

omy with both technology adoption and creative destruction:

Proposition 7 (Creative Destruction). Suppose that σ = 1 and Assumption 3 holds. Along the

BGP, both the lower and upper bounds of productivity grow at the same constant rate gz, and the

productivity distribution remains doubly truncated Pareto with shape parameter θ. The constant

inverse productivity dispersion, ι = zt
zt

for all t, is endogenously determined as:

ι =

(
δ

θgz + δ

) 1
θ

. (62)
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Given ι, the markup of a firm with marginal cost c ∈ [ιc, c] is given by:

m (c; ι) =
p (c; ι)

c
=

[
λ̃ (ι)Sγs

Bγb−1H (c)
]− 1

θ
exp

(
−λ̃ (ι)Sγs

Bγb−1H (c)
)

∫∞
λ̃(ι)SγsBγb−1H(c)

x−
1
θ exp (−x) dx

. (63)

The detrended value function takes the following form:

ṽ (ẑ) = vδ (ẑ) +
δ

ρ
[vδ (ι)− v′δ (ι) ιgz] , (64)

where

vδ (ẑ) = v
(
ẑ; λ̃ (ι) , ρ+ δ

)
− cδ (ẑ)

ρ+ δ − ηgz
(65)

represents the detrended variable value and

cδ (ẑ) =
ςẑη

D̃ (ι)

(
1− ηgz

ρ+ δ
ẑ

ρ+δ−ηgz
gz

)
(66)

is the effective detrended research cost, with

D̃ (ι) =

[
(1− α) θ

∫ 1

ι
Γ

(
θ − 1

θ
, λ̃ (ι)Sγs

Bγb−1xθ
)
xθ dx

]−1
[
1− ιθ − Sκθgz

S
−

ςθ
(
1− ιη+θ

)
η + θ

]
(67)

being the detrended demand shifter. The productivity growth rate gz, in turn, is given by the

solution to:

D̃ (ι, gz)

[∫ 1

ι

ṽ (x; ι, gz) d
ˆ̃
G (x; ι)− ṽ (1; ι, gz)

]
= κ, (68)

where ˆ̃
G (x; ι) = xθ−ιθ

1−ιθ
. Aggregate real profit Πt (ι) and the real wage wt (ι) are both functions of

ι and are given by equations (117) and (119) in Appendix A.10, respectively.

Proof. See Appendix A.10.

Discussion Three key insights emerge from Proposition 7. First, (62) shows that once

creative destruction is introduced, the relative distance between the least productive firms

and the technology frontier along the BGP—which is inversely related to ι—is endoge-

nously determined by the interaction between technology adoption and creative destruc-

tion.
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To build intuitions, consider a positive shock to δ. Following the shock, firms leapfrog

the frontier more frequently through creative destruction, raising the frontier growth rate

gz and stretching the productivity distribution (i.e., ι drops). On the other hand, a larger

gap relative to the frontier strengthens adoption incentives, boosting the growth rate of

the productivity lower bound, gz, and thereby compressing the distribution (i.e., ι raises).

The economy will reach a new BGP once the two growth rates equalize again, i.e., gz =

gz = gz, at which point ι stabilizes and is given by (62).

The second insight relates to the static effects of ι, which are twofold. Compared with

a distribution compressed into a narrow interval, more dispersed productivity (i.e., lower

ι) implies weaker within-variety competition among firms. This impact is reflected in the

new markup equation (63): When setting prices, firms treat λ̃ (ι) = λ
1−ιθ

, rather than λ, as

buyers’ effective search efficiency.30

Changes in ι also affect aggregation by reshaping the CDF of the inverse relative pro-

ductivity, ˆ̃G (· ; ι). As a result, all aggregate variables now become functions of ι. For the

detrended demand shifter D̃ (ι) in (67), ι additionally appears through its effect on the

aggregate labor used for research.

The final insight is about the decomposition of the detrended value of firms ṽ (ẑ). Ac-

cording to (64), ṽ (ẑ) consists of two components: the variable value vδ (ẑ) and the expected

value gain from creative destruction, δ
ρ
[vδ (ι)− v′δ (ι) ιgz].

31 The variable component in (65)

can be written as the value from production minus the discounted value of the effective

research cost, where the value from production, v
(
ẑ; λ̃ (ι) , ρ+ δ

)
, is the baseline produc-

tion value evaluated at the effective search efficiency λ̃ (ι) and the effective discount rate

ρ+δ. Intuitively, λ̃ (ι) carries over from the optimal markup (63), and the leapfrogging rate

δ makes future profit flows less valuable. The effective research cost cδ (ẑ) is discounted

at rate ρ+ δ− ηgz.32 A fast-growing productivity lower bound (i.e., higher gz) implies that

firms will bear ever higher research costs over time, an effect that is amplified by a more

convex cost function (i.e., higher η).

What roles do search frictions play in determining the productivity growth rate gz in

30 Clearly, markup (18) in the baseline economy corresponds to ι → 0, the case with the weakest overall
competition.

31 Note that v′δ (ι) < 0 and thus −v′δ (ι) ιgz represents the incremental value from being marginally above
the current technology frontier, relative to being exactly at the frontier.

32 Note that the effective research cost given by (66) includes an adjustment term ηgz
ρ+δ ẑ

ρ+δ−ηgz
gz . This term

is introduced to ensure that the smooth-pasting condition ṽ′ (1) = v′δ (1) = 0 holds.
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the presence of creative destruction, and how does that differ from the baseline economy?

To answer these questions, we turn to the following corollary, which unpacks the value-

matching condition (68):

Corollary 1 (Adoption Value with Creative Destruction). In the value-matching condition

(68), the expected detrended value of technology adoption can be expressed as:

∫ 1

ι

ṽ (x; ι, gz) d
ˆ̃
G (x; ι)− ṽ (1; ι, gz) = ∆v (ι, gz)−

∆cδ (ι, gz)

ρ+ δ − ηgz
, (69)

where

∆v (ι, gz) =
1

ρ+ δ + θgz

∫ 1

ι

Γ

(
θ − 1

θ
, λ̃ (ι)Sγs

Bγb−1xθ
)[

xθ − ιθ

1− ιθ
− ψ (x; ι, gz)

]
dx, (70)

with ψ (x; ι, gz) =
θgzιθ

(ρ+δ)(1−ιθ)

[
1−

(
ι
x

) ρ+δ
gz

]
, and

∆cδ (ι, gz)

ρ+ δ − ηgz
= − ςη

(ρ+ δ − ηgz) D̃ (ι)

∫ 1

ι

xη−1
(
1− x

ρ+δ−ηgz
gz

) xθ − ιθ

1− ιθ
dx. (71)

Proof. See Appendix A.11.

Discussion Equation (69) shows that the expected detrended value of adoption is given

by the expected gain in production value, ∆v (ι, gz), plus the expected reduction in dis-

counted effective research cost, −∆cδ(ι,gz)
ρ+δ−ηgz

. After netting out heterogeneous research costs,

the gross value of creative destruction, δ
ρ
[vδ (ι)− v′δ (ι) ιgz], affects all firms equally and is

therefore irrelevant for technology adoption. Instead, the leapfrogging rate δ influences

adoption incentives and aggregate growth via two channels: directly by entering the dis-

count rates and indirectly by determining the inverse productivity dispersion ι.

The impact of ι is summarized in equations (70) and (71). Comparing (70) with (41), an

essential difference is that marginal profit gains are no longer weighted by the productiv-

ity CDF. Instead, the weight is reduced by a truncation factor ψ (x; ι, gz). This factor arises

because the productivity distribution is now truncated at an intermediate point where the

future value loss from competitors’ technology adoption is typically large.33 The expected

33 In contrast, in the baseline economy with unbounded productivity, frontier firms are infinitely far away
from the productivity lower bound, implying that the value-loss component is zero.
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loss component is thus larger and can no longer be fully captured by θgz in the effective

discount rate.

More importantly, the truncation factor ψ (x; ι, gz) drives a wedge between the partial-

and general-equilibrium effects of search efficiency, so that search efficiency now has a di-

rect impact on aggregate growth.34 Unfortunately, the intricate effects of gz on the trunca-

tion factor and the effective research cost make a closed-form solution no longer possible.

7 Quantitative Analysis

In this section, we take U.S. data to the model to quantify BGP welfare changes over three

decades in the baseline search economy and its variants.

7.1 Parameterization

In this section, we estimate and calibrate the parameters required for the welfare analysis.

We treat Poisson arrival rate of sellers M
B

, Pareto shape θ, and technology adoption cost κ

as having undergone structural changes over the past three decades, and quantify their

impact on long-run BGP welfare. In the extension with endogenous search effort, the pa-

rameters χ and φ that determine M
B

are also treated as time-varying. We focus on M
B

and θ

because they directly affect within-variety markups in (18) and hence the micro-to-macro

linkage in our model. We focus on κ since the surge in barriers to knowledge diffusion is

highlighted by Akcigit and Ates (2023) as a crucial explanation for the slowdown in U.S.

business dynamism. We summarize the parameterization in Table 1.

GMM estimation We use GMM to estimate the Poisson arrival rate of sellers M
B

and the

Pareto shape parameter θ based on the parsimonious within-variety markup equation

(18). The estimation procedure consists of three steps: estimating markups, constructing

moments, and estimating parameters.

First, we estimate markups for Compustat firms based on the production approach of

De Loecker et al. (2020), which expresses markups as the elasticity of output with respect

34 Note that the impact of search efficiency also depends on the expected reduction in research cost given
by (71). As the dynamics of research cost have been fully captured by ηgz in the effective discount rate,
the remaining component on the right-hand side of (71) is simply the cumulative marginal reduction
in research cost.
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Table 1. Parameterization

Description (Notation) Method Value

Poisson arrival rate of sellers (M
B

) GMM estimation (see text) 0.08 [0.03, 0.13] for 1989–1993
0.12 [0.05, 0.20] for 2019–2023

Pareto shape of productivity distribution (θ) GMM estimation (see text) 7.96 [6.40, 9.53] for 1989–1993
4.84 [3.86, 5.83] for 2019–2023

Consumer discount rate (ρ) External calibration from Akcigit and Kerr (2018) 0.02
Cost share of intermediate inputs (α) External calibration from Edmond et al. (2023) 0.45
Poisson arrival rate of creative destruction (δ) External calibration from Aghion et al. (2019) 0.01
Research cost elasticity (η) External calibration from Acemoglu et al. (2018) 0.50
Total measure of firms per variety (S) Internal calibration (see text) 0.01
Fixed cost of technology adoption (κ) Internal calibration (see text) Model-specific
Fixed cost of entry (ξ) Internal calibration (see text) 2670.78
Search cost elasticity (φ) Internal calibration (see text) 2.32 for 1989–1993

1.36 for 2019–2023
Research cost scale (ς) Internal calibration (see text) 0.72
Elasticities in Poisson encounter rate (γs and γb) No calibration required given M

B
–

Search cost scale (χ) No calibration required given M
B

–
Initial productivity lower bound (z0) Normalization 1

to a variable input multiplied by the inverse of that input’s expenditure share in revenue.

Output elasticity estimates, in turn, are obtained by combining the control function ap-

proach of Ackerberg et al. (2015) with the refinements in De Ridder et al. (2025).

Since equation (18) characterizes markups for firms producing homogeneous goods,

we rely on time-varying product cosine similarity measures from the Embedding-Based

Text Network Industry Classification (ETNIC) data developed by Hoberg and Phillips

(2025) to identify each firm’s closest competitors. Merging ETNIC with financial informa-

tion from Compustat yields an estimation sample spanning 1989–2023.

For each benchmark firm j, we follow Cabezon and Hoberg (2026) and classify firms

i whose cosine similarity with j lies in the top 1% of the sample as its most direct com-

petitors, and then obtain their markup estimates m̂j
it for the resulting subsample. Because

firm i may be classified as a direct competitor of multiple firms, we compute the follow-

ing product-similarity-weighted average to assign greater weight to estimates indexed by

benchmark firms j that are closer to firm i in product space:

m̂it =
∑
j∈Jit

cosineijt∑
h∈Jit cosineiht

m̂j
it, (72)

where Jit denotes the set of firms with which firm i is a direct competitor at time t and

cosineijt is the ETNIC similarity score between firms i and j at time t. We treat m̂it as the

empirical counterpart of (18). For detailed data description, methodology, and discussion

of the markup estimation, see Appendix B.
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Proposition 1 and equation (23) jointly imply a strictly positive relationship between

markup and gross profit, which is confirmed by the data, using the binned scatter plot in

Panel A of Figure 1. We exploit this relationship to construct moment conditions. Specif-

ically, we estimate the following specification with the log of estimated markups as the

dependent variable:

log m̂it = βdata
1 +

4∑
n=2

βdata
∆n Qn,it + ϵit, (73)

where Qn,it is a dummy variable that equals one if the gross profit of firm i at time t falls

into the nth quartile, and zero otherwise. We stack the resulting coefficients into a vector

βdata.

Given parameters
(
M
B
, θ
)
, the same regression can be performed using model-implied

markups from (18), yielding a coefficient vector βmodel. Therefore, the GMM estimator is

given by: (
M̂

B
, θ̂

)
= arg min

(M
B
,θ)

(
βdata − βmodel

)′
W
(
βdata − βmodel

)
, (74)

where W is the optimal weighting matrix. To capture structural changes in search effi-

ciency and the shape of the productivity distribution—and their implications for the BGP

welfare—we estimate (74) separately for the first and last five years of the sample period,

i.e., 1989–1993 and 2019–2023. Importantly, the isomorphic structure of our markup equa-

tion across different model variants implies that the estimated structural changes apply

to all model extensions.35

Panel B of Figure 1 compares the moments from the data and the model. Given that

(74) is overidentified, the model does a good job tracking the empirical relationship, ex-

cept that it fails to capture the sharp increase in estimated markups from the first to the

second quartile of gross profit.

Our estimates indicate that the Poisson arrival rate of sellers rises by 50% over the

three decades—from 0.08 to 0.12—which is largely attributable to the revolution in infor-

mation and communication technology (Eaton et al., 2022a). Using supply-chain data on

the Japanese corporate universe from 2008 to 2016, Miyauchi (2024) estimates the corre-

sponding object under monopolistic competition to be 0.14, close to our estimate for the

35 For M
B , it corresponds to λSγs

Bγb−1 in the baseline model and the extension with endogenous entry. At
the same time, it maps to λSγs

Bγb−1 and λ̃ (ι)Sγs

Bγb−1 in the endogenous-search-effort and creative-
destruction extensions, respectively.
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late sub-period.

The estimated Pareto shape parameter falls from 7.96 to 4.84 (i.e., a 39.20% drop),

implying a fatter right tail of the productivity distribution. This structural change is con-

sistent with empirical evidence on the rise of superstar firms (Autor et al., 2020; Chen,

2023; Kwon et al., 2024). Still, our estimates of θ lie within the plausible range [3.60, 8.28]

suggested by Eaton et al. (2011).36

Panels C and D of Figure 1 plot the within-variety markup (18) and pass-through (21),

respectively, based on the estimated
(

M̂
B
, θ̂
)

for the two sub-periods. The upward shift in

the markup curve over time is mainly due to the decrease in θ, consistent with the increase

in market power driven by the top firms (De Loecker et al., 2020). In our model, small

firms exhibit higher pass-through due to the static escape-competition effect. This pattern

aligns with existing theory (e.g., Atkeson and Burstein, 2008) and empirical evidence (e.g.,

Amiti et al., 2019). However, because our model features atomistic firms and thus intense

competition, the implied pass-through is too low relative to the estimates in Amiti et al.

(2019). We therefore interpret our pass-through as a lower bound.

External calibration We assign the consumer discount rate ρ to 0.02 following Akcigit

and Kerr (2018), which corresponds to an annual discount factor of 0.98. The cost share

of intermediate inputs in roundabout production, α, is set to 0.45 to match the material

share calibrated in Edmond et al. (2023).

Using indirect inference to match U.S. firm dynamics, Aghion et al. (2019) report a

creative-destruction arrival rate of around 0.01. We therefore set δ = 0.01. It can be shown

that the elasticity parameter η governing research cost is qualitatively equivalent to the

elasticity of R&D efficiency with respect to firm size.37 The corresponding parameter in

Acemoglu et al. (2018) is calibrated to 0.50, implying diminishing returns. We set η to the

same value.38

36 See footnote 40 in Eaton et al. (2011) for details.
37 Specifically, we can define R&D efficiency as the creative-destruction arrival rate achieved per unit of

research labor. From (57), the R&D efficiency of a firm with productivity z is given by δ
ς

(
z
zt

)η
, where

productivity z is positively related to firm size as shown by (23).
38 Our ex-post verification shows that η = 0.5 satisfies condition (61) in Assumption 3 given our choice

of other parameters.
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Figure 1. GMM Estimation and Markup Analysis.

This figure summarizes plots related to the GMM estimation and markup analysis. Panel A shows a binned scatter plot of log markup

against log gross profit, where markups are estimated using ETNIC data from Hoberg and Phillips (2025) and financial data from

Compustat over the sample period from 1989 to 2023. Panel B compares the moments obtained by running the following regression

in the data and the model:

log m̂it = β1 +

4∑
n=2

β∆n Qn,it + ϵit,

where the plotted moments correspond to β1 and β1 + β∆n for n ∈ {2, 3, 4}. Panels C and D illustrate the model-implied within-

variety markup and pass-through, respectively, based on the estimated
(

M̂
B
, θ̂
)

for the two sub-periods.
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Figure 2. TFP Growth.

This figure plots U.S. utilization-adjusted TFP growth from Fernald (2015) in blue. The red curve corresponds to the Hodrick-Prescott

(HP) filtered series using an annual smoothing parameter of 100.

Internal calibration Using FactSet Revere Supply Chain data, Wu et al. (2025) report an

average of 7.6 buyers per supplier in the U.S. The model counterpart of this statistic can

be derived from (11):

b =

∫ c

0

bt (p (c)) dH (c) =
B

S

[
1− exp

(
−M
B

)]
, (75)

where B = S + 1. By plugging in the initial estimate of M
B

, we back out the total measure

of firms per variety, S = 0.01. When estimating M
B

, we classify firm pairs with top-1% sim-

ilarity scores as direct competitors. The value of S therefore coincides with normalizing

the entire Compustat sample to have unit mass.

We rely on U.S. utilization-adjusted total factor productivity (TFP) growth data from

Fernald (2015) to back out the technology adoption cost κ separately for each model vari-

ant using equations (39), (54), and (68). The time series in Figure 2 shows that TFP growth

fluctuates around a relatively low level over our sample period, with an average of 0.8%.

We take this value as gz. We then use the κ values calibrated under the two sets of
(

M̂
B
, θ̂
)

to answer the following question: How large the change in the technology adoption cost should
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be to bring aggregate growth back to the sample average?

For the model extension with endogenous entry, we treat S = 0.01 as the initial mass

of firms and invert the fixed-point problem (42) to pin down the entry cost ξ = 2670.78,

which is far larger than the technology adoption cost κ. As a benchmark, the ratio of entry

cost to initial adoption cost in our baseline model is 11.90, comparable to the correspond-

ing value of 7.88 in Perla et al. (2021).

When search is endogenous, the search cost of a firm with inverse relative productiv-

ity ẑ can be rewritten as 1
φ
Dt

(
λ
)
π̂
(
ẑ;λ
) φ

φ−1 by substituting (48) into (45), i.e., a fraction 1
φ

of the gross profit Dt

(
λ
)
π̂
(
ẑ;λ
) φ

φ−1 . Using selling, general, and administrative expenses

(SG&A) as a proxy for the search cost, the empirical counterpart of the search-cost elas-

ticity parameter φ is therefore given by GrossProfit
SG&A

. The binned scatter plot in Panel A of

Figure 5 highlights a near-unit elasticity between SG&A and gross profit in the data, pro-

viding support for the proportional relationship. We thus set φ to the sample median of
GrossProfit

SG&A
over the 1989–1993 and 2019–2023 sub-periods, i.e., 2.32 and 1.36, respectively,

which implies a declining trend in the elasticity of search cost with respect to search effort

over time.39 For comparison, the corresponding parameter for the 2019 Chilean economy

is 4.5 in the goods sector and 2.8 in the service sector (Arkolakis et al., 2025), implying a

less efficient search technology than in the United States.

In the extension with creative destruction, we choose the research-cost scale parameter

ς = 0.72 to match the 0.71% share of research labor in 2000 U.S. total employment obtained

from the OECD Main Science and Technology Indicators.40

Other parameters Given the estimated Poisson arrival rate of sellers M
B

, the elasticity

parameters γs and γb need not be calibrated separately, as they affect welfare only through
M
B

. Similarly, in the extension with endogenous search effort, the welfare analysis does

not require separate calibration of the search-cost scale parameter χ. Finally, we normalize

39 We choose the sample median to minimize the influence of outliers. Given that SG&A also includes
other costs unrelated to search activities, we view our calibrated values of φ as lower bounds.

40 Specifically, total research labor in the model is given by:

Lδ = S

∫ 1

ι

ςxη d
ˆ̃
G (x; ι) =

Sςθ
(
1− ιη+θ

)
(η + θ) (1− ιθ)

,

which is exactly the share of research labor as we normalize total labor supply to one. We verify that
ς = 0.72 satisfies condition (60) in Assumption 3 given our choice of other parameters.
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the initial productivity lower bound z0 to one without loss of generality.

7.2 Welfare analysis

Baseline model Figure 3 summarizes the welfare analysis for the baseline model with

exogenous search only. Given the initial θ, the pro-competitive effect of the secular re-

duction in search frictions raises the initial real wage by 8.66% (Panel A) and detrended

demand by 3.00% (Panel B), but lowers aggregate profitability by 5.71% (Panel C). In con-

trast, the increased market power of superstar firms at lower θ reduces the real wage and

detrended demand shifter by 20.14% and 8.13%, respectively, while boosting aggregate

profitability by 22.20%.

Panel D shows that a fatter tail of the productivity distribution (i.e., lower θ) substan-

tially increases the expected value of adoption and thereby accelerates real GDP growth

by 165.89%. Reverting the economy to the original growth rate requires a large 120.61%

increase in the technology adoption cost κ. Note that changes in the level of M
B

are unre-

lated to aggregate growth, as we show in Proposition 4.

Taken together, although the static effects on consumption are comparable, the muted

dynamic effect makes the overall welfare impact of M
B

quantitatively small relative to that

of θ: Changes in M
B

and θ alone raise BGP welfare by 3.03% and 144.32%, respectively,

with a joint effect of 150.58%.

Endogenous entry Figure 4 illustrates the welfare analysis under endogenous firm en-

try. The intensified competition associated with the three-decade increase in search effi-

ciency depresses the variable value of entry, reducing the total measure of firms per vari-

ety by 19.88% (Panel A). Fewer active firms raise the average production labor per firm,
1−Sκθgz

S
, and thus increase the detrended demand shifter sharply by 27.43% (Panel B). The

impact on firm-level demand is largely offset after aggregation, resulting in a 6.02% de-

cline in aggregate profitability (Panel C), close to 5.71% in the baseline model. The differ-

ence is driven by the composition effect between production and adoption labor, Sκθgz.

The drop in θ, in contrast, has opposite effects: Higher aggregate market power elevates

profitability by 23.54%, which attracts 68.74% more entry and in turn dilutes demand by

44.21%.

In sharp contrast to the baseline economy with fixed entry, the secular reduction in
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Figure 3. Welfare Analysis: Baseline Model.

This figure plots variables underlying BGP welfare in the baseline model. Panel A illustrates the initial real wage w0. Panel B shows

the detrended demand shifter D̃. Panel C presents the real GDP multiplier 1 + D̃S
∫ 1
0 π̂ (x) dĜ (x). Panel D visualizes the real GDP

growth rate g.
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search frictions now indirectly raises real GDP growth by 31.16% through the demand ef-

fect, as shown in Panel D. On the other hand, increased entry and the resulting dilution of

demand substantially offset the direct effect of a lower θ in reducing within-variety labor

misallocation, yielding a 42.51% growth impact much smaller than in the baseline model.

Accordingly, a smaller 50.09% increase in the technology adoption cost is sufficient to

drag the economy back to the average growth rate.

Altogether, once endogenous entry is taken into account, the separate effects of M
B

and

θ on BGP welfare become comparable, with nearly identical values of 30.91% and 30.51%,

respectively. Their joint effect, by contrast, reaches 79.84%, implying a relatively strong

complementarity between the two.

Figure 4. Welfare Analysis: Endogenous Entry.

This figure plots variables underlying BGP welfare in the model extension with endogenous entry. Panel A illustrates the to-

tal measure of firms per variety, S. Panel B shows the detrended demand shifter D̃. Panel C presents the real GDP multiplier

1 + D̃S
∫ 1
0 π̂ (x) dĜ (x). Panel D visualizes the real GDP growth rate g.

47



Endogenous search effort We now turn to the case in which firms endogenously choose

their search effort. In Panel B of Figure 5, we first compare firm value in this scenario to

its baseline counterpart. The impact of costly search on detrended firm value is twofold.

First, hiring additional labor for search directly reduces the net profit flow of all firms. As

high-productivity firms search disproportionately more, however, they crowd out low-

productivity firms in buyer matching and capture a larger share of sales profit. As shown

in Panel B, the former effect dominates the latter when the search-cost elasticity φ is high.

As φ declines over time, the latter effect kicks in, leading to greater polarization in firm

value. To illustrate this pattern more clearly, we also plot a hypothetical case in which φ

falls to a very low level of 1.10. The value of high-productivity firms explodes, leaving a

large mass of firms with extremely low detrended value.

Next, we examine the variables that directly enter BGP welfare. In Panel C of Figure

5, if we attribute all changes in M
B

to the search-cost scale χ while holding the elasticity φ

fixed, the secular rise in search efficiency implies a 3.52% decline in aggregate profitabil-

ity. As φ decreases, however, the polarization of sales profit across firms makes aggregate

profitability less sensitive to changes in the arrival rate of sellers, resulting in a 1.22% re-

bound. Incorporating the reduction in θ further raises aggregate profitability by 9.75%.

This increase is nonetheless more than halved relative to the 22.20% in the baseline econ-

omy, implying a negative net effect of θ on the static consumption level.41 The difference

is driven by the shift of labor from production to search.

Dynamically, attributing all changes in M
B

to χ raises aggregate growth by only 3.94%

(Panel D), suggesting that the offsetting partial- and general-equilibrium effects still dom-

inate within the empirically relevant range of M
B

. The drop in φ, on the contrary, induces

all firms to allocate more labor to search, including those with low productivity. This ad-

ditional misallocation diverts labor away from production, contracts demand, and weak-

ens adoption incentives, resulting in a 26.69% decrease in aggregate growth. The contrac-

tion in production labor also dampens the within-variety allocative efficiency gains due

to a lower θ, leaving a 115.93% effect on real GDP growth, which is smaller than in the

baseline economy (165.89%). To bring the growth rate back to the average, the technology

adoption cost only needs to rise by 44.73%.

41 Note that the impact of θ on the initial real wage w0 is the same as in the baseline model, i.e., a 20.14%
decline.
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Overall, with costly search, the observed advance in search technology over the past

three decades reduces BGP welfare by 15.85%. While the rise of superstar firms associated

with the decline in θ contributes a 108.35% welfare gain by itself, the effect drops sharply

to 55.33% once we jointly account for changes in search technology, as right-tail firms hire

disproportionately more search labor.

Figure 5. Welfare Analysis: Endogenous Search Effort.

This figure summarizes plots related to the BGP welfare analysis in the model extension with endogenous search effort. Panel A shows

a binned scatter plot of log SG&A against log gross profit using Compustat data from 1989 to 2023. Panel B illustrates the detrended

value function v
(
ẑ;λ

)
for different values of the search-cost elasticity parameter φ. Panel C presents the real GDP multiplier 1 +

D̃S
∫ 1
0 π̂ (x)

φ
φ−1 dĜ (x). Panel D visualizes the real GDP growth rate g.

Creative destruction Finally, Figure 6 illustrates the welfare analysis for the model ex-

tension with creative destruction. For the two sets of
(

M̂
B
, θ̂
)

in the two sub-periods, the

inverse productivity dispersion ι falls from 0.78 to 0.56, implying that the productivity
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Figure 6. Welfare Analysis: Creative Destruction.

This figure plots variables underlying BGP welfare in the model extension with creative destruction. Panel A illustrates the inverse

productivity dispersion ι for two sets of
(

M̂
B
, θ̂
)

. Panel B shows the initial real wage w0. Panel C presents the real GDP multiplier

1 + D̃S
∫ 1
ι π̂ (x) d

ˆ̃
G (x). Panel D visualizes the real GDP growth rate g.
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distribution stretches outward.42 However, Panels B and C show that the effects of M
B

and

θ on the initial real wage and aggregate profitability remain very close to those in the base-

line model, suggesting a limited static impact of the endogenous change in ι. The reason

is that, while the outward spread of the productivity distribution raises aggregate pro-

ductivity, it weakens overall competition and strengthens market power. The two forces

largely cancel out.

For the aggregate growth rate, Panel D shows that the estimated change in search fric-

tions is insufficient to induce a large wedge between the partial- and general-equilibrium

effects, resulting in a small negative impact of 1.47%. In contrast, by allowing ι to be de-

termined endogenously, the decline in θ now has a twofold growth-enhancing effect. As

in the baseline economy, it implies within-variety reallocation of production labor from

low- to high-productivity firms. Unlike the baseline model, the lower ι also raises frontier

growth driven by creative destruction, which further stimulates technology adoption. As

a result, the BGP growth rate increases by 313.81%, almost twice as large as in the base-

line model. The impact of adoption cost, by similar logic, is also strengthened: an 80.30%

increase is enough to force growth back to the average.

Taken together, this extension generates the largest divergence between the separate

BGP welfare effects of M
B

and θ, at 1.10% versus 285.26%. Their joint effect is 288.88%,

indicating very limited complementarity.

8 Conclusion

Monopoly rents within a product market can drive technological laggards to advance the

technology frontier through innovation, but often fall short in explaining their incentives

to catch up by adopting existing technologies at a cost. To address this, we propose a

search-economy model where incentives for adoption within a variety emerge naturally.

Search frictions grant all firms in the same product market strictly positive market power

and profits, irrespective of their productivity levels. Meanwhile, buyer-seller matching

based on the lowest price encountered maintains the importance of technological advan-

tage in shaping firm profits. This mechanism motivates less productive firms to embrace

42 Note that when plotting the two values of ι in Panel A, we vary only M
B and θ while holding κ fixed at

its initial value.
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advanced technologies to climb the profit ladder. The adoption of new technologies, in

turn, is tightly interconnected with firm dynamics, economic growth, and welfare.

While exogenous search frictions are essential for generating within-variety adop-

tion incentives, conditional on being strictly positive, the magnitude of those frictions

has surprisingly little impact on technology adoption and aggregate growth. This is be-

cause the partial-equilibrium effect on variable markups is perfectly offset by the general-

equilibrium effect on demand. Incorporating additional elements like endogenous entry,

endogenous search effort, or creative destruction creates a wedge between these two ef-

fects and enables search frictions to have dynamic implications through distinct mecha-

nisms.

We quantify the BGP welfare effects of the improving search efficiency and the thick-

ening right tail of the productivity distribution in the U.S. over the past three decades.

While the effect of the former depends strongly on the model variant in question, the ef-

fect of the latter is always positive and large. In all cases, a sizable increase in technology

adoption barriers is required to reconcile the model with the current slowdown in U.S.

productivity growth.

While we explored three model extensions that highlight the dynamic implications

of search frictions for economic growth, we view these merely as a starting point. Future

research may delve into additional mechanisms, such as persistence and path dependence

in buyer-seller matching, input-output linkages and production networks, and product

innovation through the creation of new varieties. Finally, given the growing attention

to search and matching in the spatial and international economics literature (e.g., Eaton

et al., 2022a,b; Miyauchi, 2024; Arkolakis et al., 2025), incorporating search frictions and

endogenous technology adoption decisions into an open-economy framework offers a

promising direction for future research.
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Appendix

A Proofs

A.1 Proof of Lemma 1

For a buyer of any given variety, the Poisson arrival rate of a random seller (i.e., a firm) is:

M

B
= λSγs

Bγb−1,

which implies that at each time t, the probability that the buyer encounters n sellers is:

exp
(
−λSγs

Bγb−1
)(

λSγs
Bγb−1

)n
n!

.

For a given seller, the expected number of encounters with buyers who have n other

encounters is thus given by:

B
exp

(
−λSγsBγb−1

)(
λSγsBγb−1

)n+1

(n+1)!
(n+ 1)

S
= λSγs−1Bγb

exp
(
−λSγs

Bγb−1
)(

λSγs
Bγb−1

)n
n!

.

The term B
exp

(
−λSγsBγb−1

)(
λSγsBγb−1

)n+1

(n+1)!
represents the expected measure of buyers who

have n+1 total encounters with sellers of the same variety. Multiplying it by n+1 yields

the expected total measure of encounters for these buyers. Because all sellers of measure

S are subject to the same search friction, dividing the expression by S yields the expected

number of encounters for a given seller with buyers with n other encounters.43

Using the matching probability (1− Ft (p))
n of a seller charging price p, and summing

over all types n of matched buyers, we obtain the following expression for the expected

number of buyers matched with the seller:

bt (p) =

∞∑
n=0

λSγs−1Bγb
exp

(
−λSγs

Bγb−1
)(

λSγs

Bγb−1
)n

n!
(1− Ft (p))

n

= λSγs−1Bγb

exp
(
−λSγs

Bγb−1Ft (p)
) ∞∑

n=0

exp
(
−λSγs

Bγb−1 (1− Ft (p))
) [

λSγs

Bγb−1 (1− Ft (p))
]n

n!

43 Note that these encounters arrive at sellers of measure S with equal probability.
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= λSγs−1Bγb

exp
(
−λSγs

Bγb−1Ft (p)
)
,

where the last equality relies on the fact that
exp

(
−λSγsBγb−1(1−Ft(p))

)[
λSγsBγb−1(1−Ft(p))

]n
n!

is the

probability mass function of a Poisson distribution with parameter λSγs
Bγb−1 (1− Ft (p)),

thereby proving equation (11).44

We define Qt as the expected real expenditure of a random buyer—either a consumer

or a firm—on the final good. Since both consumers and firms share the same elasticity

of substitution σ across varieties, a random buyer’s demand function takes the following

CES form:45

qt (p) = Qtp
−σ.

Finally,

πt (p; z) = p− ct (z) = p− w1−α
t

z

is the firm’s profit margin per unit of goods sold. □

A.2 Proof of Proposition 1

To prove Proposition 1, we first guess that the optimal price pt (c) is strictly increasing in

marginal cost c if and only if Assumption 1 holds. We derive equations (17) and (18) under

this conjecture. Finally, we verify the conjecture to complete the proof.

Optimal pricing and markups Using zt (c) =
w1−α

t

c
, we can rewrite the optimal price as

a function of marginal cost c, i.e., p̃t (zt (c)) = pt (c). Since pt (c) is strictly increasing in

c under our conjecture, the price distribution Ft (pt (c)) coincides with the time-invariant

cost distribution H (c). Hence:

dFt (pt (c))

dc
= F ′

t (pt (c)) p
′
t (c) = H ′ (c) .

44 Note that bt(p) is similarly derived in Menzio (2024b).
45 Note that the final good price index Pt at each time t is normalized to be 1, and Qt will be determined

in equilibrium. Since the demand of a random buyer, regardless of whether it is a consumer or a firm,
is proportional to p−σ , qt(p) = Qtp

−σ becomes the effective demand of a random buyer as a function
of p.
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Substituting ct (z) = c, p̃t (zt (c)) = pt (c), and F ′
t (pt (c)) =

H′(c)
p′t(c)

, we rewrite equation (14)

as:

p′t (c) =
λSγs

Bγb−1H ′ (c) pt (c) [pt (c)− c]

(1− σ) pt (c) + σc
. (76)

It is clear from equation (76) that the solution pt (c) does not depend on time t, so we can

drop the subscript t. For σ = 1, (76) can be further simplified to the Riccati equation (17)

in Proposition 1.

Using H (c) =
(
c
c

)θ along the BGP,46 we can plug in H ′ (c) and obtain:

p′ (c) = Λθcθ−2p (c) [p (c)− c] , (77)

where Λ = λSγs
Bγb−1c−θ is constant over time. Equation (77) can be transformed into the

following first-order linear ODE by a change of variables u (c) = 1
p(c)

:

u′ (c) = − p′ (c)

p (c)2
= Λθcθ−1u (c)− Λθcθ−2. (78)

Based on equation (78) and the integrating factor exp
(
−
∫
Λθcθ−1 dc

)
= exp

(
−Λcθ

)
,

we have:

d
(
u (c) exp

(
−Λcθ

))
dc

= exp
(
−Λcθ

) [
u′ (c)− Λθcθ−1u (c)

]
= − exp

(
−Λcθ

)
Λθcθ−2.

Integrating both sides from 0 to c, we obtain:

u (c) exp
(
−Λcθ

)
− u(0) = −

∫ c

0

exp
(
−Λĉθ

)
Λθĉθ−2 dĉ.

The right-hand side can be further simplified by a change of variables x = Λĉθ:

−
∫ c

0

exp
(
−Λĉθ

)
Λθĉθ−2 dĉ = −Λ

1
θ

∫ Λcθ

0

exp (−x)x−
1
θ dx = −Λ

1
θ γ

(
θ − 1

θ
,Λcθ

)
.

46 See Definition 1.
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Substituting u (c) = 1
p(c)

back, we obtain:

p (c) =
exp

(
−Λcθ

)
p (0)

1− Λ
1
θ γ
(
θ−1
θ
,Λcθ

)
p (0)

, (79)

where we denote limc→0 p (c) as p (0).

Assumption 1 implies

p (0) = lim
z→∞

p̃ (z) =

(
λSγs

Bγb−1
)− 1

θ

Γ
(
θ−1
θ

) c. (80)

Substituting (80) into (79) yields equation (18).

Monotonicity of pricing function We next verify the conjecture that p (c) is strictly in-

creasing in c if and only if Assumption 1 holds. Equation (17) implies that p′ (c) > 0 for

all c ∈ (0, c] if and only if p (c) > c for all c ∈ (0, c]. From equation (79), it must be:

1− Λ
1
θ γ

(
θ − 1

θ
,Λcθ

)
p (0) > 0 for all c (81)

and
exp

(
−Λcθ

)
p (0)

1− Λ
1
θ γ
(
θ−1
θ
,Λcθ

)
p (0)

> c for all c. (82)

Equation (81) indicates that:

p (0) < min
c∈(0,c]

1

Λ
1
θ γ
(
θ−1
θ
,Λcθ

) =
1

Λ
1
θ γ
(
θ−1
θ
,Λcθ

) . (83)

Rearranging equation (82), we obtain:

p (0) > max
c∈(0,c]

c

exp (−Λcθ) + Λ
1
θ γ
(
θ−1
θ
,Λcθ

)
c
. (84)

Taking the derivative of the right-hand side of equation (84) with respect to c:

d

(
c

exp(−Λcθ)+Λ
1
θ γ( θ−1

θ
,Λcθ)c

)
dc

=
exp

(
−Λcθ

)
+ Λ

1
θ γ
(
θ−1
θ ,Λcθ

)
c−

d

(
exp(−Λcθ)+Λ

1
θ γ( θ−1

θ
,Λcθ)c

)
dc c[

exp (−Λcθ) + Λ
1
θ γ
(
θ−1
θ ,Λcθ

)
c
]2 .
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By the Leibniz rule, we have:

dγ
(
θ−1
θ
,Λcθ

)
dc

= θΛ
θ−1
θ cθ−2 exp

(
−Λcθ

)
.

Plugging in and rearranging, we obtain:

d

(
c

exp(−Λcθ)+Λ
1
θ γ( θ−1

θ
,Λcθ)c

)
dc

=
exp

(
−Λcθ

)[
exp (−Λcθ) + Λ

1
θ γ
(
θ−1
θ
,Λcθ

)
c
]2 > 0.

Therefore, maxc∈(0,c]
c

exp(−Λcθ)+Λ
1
θ γ( θ−1

θ
,Λcθ)c

= 1
exp(−Λcθ)

c
+Λ

1
θ γ( θ−1

θ
,Λcθ)

. Combining equations

(83) and (84), we have:

1
exp(−Λcθ)

c
+ Λ

1
θ γ
(
θ−1
θ
,Λcθ

) < p (0) <
1

Λ
1
θ γ
(
θ−1
θ
,Λcθ

) (85)

Given Λ, p (0) must satisfy (85) for all possible c ∈ (0,∞). Since

max
c

1
exp(−Λcθ)

c
+ Λ

1
θ γ
(
θ−1
θ
,Λcθ

) = lim
c→∞

1
exp(−Λcθ)

c
+ Λ

1
θ γ
(
θ−1
θ
,Λcθ

) =
Λ− 1

θ

Γ
(
θ−1
θ

)
and

min
c

1

Λ
1
θ γ
(
θ−1
θ
,Λcθ

) = lim
c→∞

1

Λ
1
θ γ
(
θ−1
θ
,Λcθ

) =
Λ− 1

θ

Γ
(
θ−1
θ

) ,
the squeeze theorem implies that p′ (c) > 0 if and only if p (0) = Λ− 1

θ

Γ( θ−1
θ )

=

(
λSγsBγb−1

)− 1
θ

Γ( θ−1
θ )

c,

i.e., when Assumption 1 holds.

Monotonicity of markup function We now prove that the markup functionm (c) in (18)

is monotonically decreasing in c. Let f (x) = x−
1
θ exp (−x) and g (x) =

∫∞
x
u−

1
θ exp (−u) du,

we can rewrite the markup function (18) as the following gamma hazard rate:

m̃ (x) =
f (x)

g (x)
, (86)

where x = x (c) = λSγs
Bγb−1H (c).
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Using integration by parts, we obtain:

g (x) = f (x)− 1

θ
h (x) ,

where h (x) =
∫∞
x
u−

θ+1
θ exp (−u) du. Substituting into (86) to replace f (x), we have:

m̃ (x) = 1 +
h (x)

θg (x)
.

Differentiating yields:

m̃′ (x) =
x−

θ+1
θ exp (−x) [xh (x)− g (x)]

θg (x)2
.

Since

xh (x)− g (x) =

∫ ∞

x

(x− u)u−
θ+1
θ exp (−u) du < 0

and x′ (c) = λSγs
Bγb−1H ′ (c) > 0, we have m′ (c) = m̃′ (x) x′ (c) < 0. □

A.3 Proof of Lemma 2

We first prove that only firms at the lower bound zt of the current productivity distribu-

tion Gt (·) choose to adopt new technology. Suppose that firms with productivity z′ > zt

choose to adopt, then we have Va,t ≥ Vp,t (z
′). As the flow profit πt (z) is strictly increasing

in productivity z as shown in (23), it follows that Vp,t (z′) > Vp,t (zt). Therefore, all firms

with productivity z ∈ [zt, z
′) would continue redrawing productivity until they have no

incentive to do so, which contradicts the premise that zt is the lower bound of the pro-

ductivity distribution.

As a result, zt must be the unique productivity level at which firms have the incentive

to adopt at time t, and it must satisfy the value-matching condition (24). This is equivalent

to an optimal stopping problem with zt as the cutoff. For the optimal stopping problem,

the smooth-pasting condition (25) is required to ensure that the derivative of the value

function equals that of the payoff function at the cutoff (Stokey, 2009).

Given the decision rule for technology adoption, the fraction of firms that choose to
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redraw their productivity at time t is:

Gt

(
zt+dt

)
−Gt (zt)

dt
= G′

t (zt) zt
d ln zt
dt

.

Since these firms have probability 1 − Gt (z) of drawing a productivity level above z, we

obtain the following Kolmogorov Forward Equation (KFE):

dGt (z)

dt
= − [1−Gt (z)]G

′
t (zt) zt

d ln zt
dt

. (87)

By Definition 1, the distribution Ĝ (·) of inverse relative productivity ẑ =
zt
z
∈ (0, 1] is

stationary along the BGP. Given that Ĝ (x) = 1−Gt

( zt
x

)
for all t, we have Ĝ′ (1) = G′

t (zt) zt

for all t. Plugging G′
t (zt) zt = G′

0 (z0) z0 = θ into (87), rearranging, and integrating both

sides from 0 to dt, we have:∫ dt

0

d ln [1−Gs (z)] = θ

∫ dt

0

d ln zs. (88)

Solving (88), we get:

Gdt (z) = 1− [1−G0 (z)]

(
zdt
z0

)θ

= 1−
(
z

zdt

)−θ

.

Thus, the productivity distribution Gt (·) becomes always Pareto with shape parame-

ter θ, while its lower bound zt grows over time. As we show in Appendix A.6, the growth

rate of zt along the BGP must be a constant, denoted by gz, to ensure constant aggregate

growth. □

A.4 Proof of Proposition 2

Real interest rate First, consumers’ utility function (1) and budget constraint (3) jointly

yield the following current-value Hamiltonian:

Ht (Ct, At) = lnCt + µt (wt +Πt + rtAt − Ct) ,
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with first-order conditions:

∂Ht (Ct, At)

∂Ct

=
1

Ct

− µt = 0

and
∂Ht (Ct, At)

∂At

= µtrt = ρµt − µ̇t.

Solving the system of equations, we obtain the usual Euler equation for consumers:

Ċt

Ct

= rt − ρ.

With the real output growing at a constant rate g along the BGP, implying Ċt

Ct
= g, the real

interest rate r = ρ+ g remains constant over time.

Detrended value function Next, given that Vp,t (z) = Dtv
( zt

z

)
, we have:

dVp,t (z)

dt
=

d
(
Dtv

( zt
z

))
dt

= Dt
d lnDt

dt
v (ẑ) +Dtv

′ (ẑ) ẑ
d ln zt
dt

. (89)

Along the BGP, the growth rate of demand shifter Dt coincides with that of real output,

i.e., d lnDt

dt
= g, and Lemma 2 indicates that d ln zt

dt
= gz. Substituting them into (89) and

then (89) into (26) and dividing both sides by Dt, we obtain the ODE (27).

To solve (27), we first use the integrating factor exp
(
−
∫

ρ
gz ẑ

dẑ
)
= ẑ−

ρ
gz to get:

d
(
v (ẑ) ẑ−

ρ
gz

)
dẑ

= ẑ−
ρ
gz

[
v′ (ẑ)− ρ

gz ẑ
v (ẑ)

]
= − ẑ

− ρ
gz

−1

gz
π̂ (ẑ)

Integrating both sides from ẑ to 1 yields:

v (1)− v (ẑ) ẑ−
ρ
gz =

1

ρ

∫ 1

ẑ

π̂ (x) dx−
ρ
gz

=
π̂ (1)− π̂ (ẑ) ẑ−

ρ
gz

ρ
− 1

ρ

∫ 1

ẑ

x−
ρ
gz dπ̂ (x) , (90)
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which implies that:

v (ẑ) =
1

ρ

[
π̂ (ẑ)− ẑ

ρ
gz

∫ ẑ

0

x−
ρ
gz dπ̂ (x)

]
+ kẑ

ρ
gz , (91)

where k is a constant.

To pin down k, we require the smooth-pasting condition (25). Replacing Vp,t (z) with

Dtv
( zt

z

)
yields:

∂Vp,t (z)

∂z

∣∣∣
z=zt

=
∂
(
Dtv

( zt
z

))
∂z

∣∣∣
z=zt

= −Dt

zt
v′ (1) = 0,

which implies v′ (1) = 0. Differentiating (91) with respect to ẑ and substituting ẑ = 1, we

obtain:

k =
1

ρ

∫ 1

0

x−
ρ
gz dπ̂ (x) .

Substituting k into (91) and rearranging yields (29).

From equation (22), we have:

π̂ (x) =
πt
( zt

x

)
Dt

=
(
λSγs

Bγb−1
)− 1

θ
exp

(
−λSγs

Bγb−1xθ
)
− Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
x. (92)

Taking the differential yields:

dπ̂ (x) = −Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
dx, (93)

where Γ
(

θ−1
θ
, λSγs

Bγb−1xθ
)

can be made tractable using Taylor expansion:

Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)

= Γ

(
θ − 1

θ

)
−
∫ λSγsBγb−1xθ

0

exp (−u)u−
1
θ du

= Γ

(
θ − 1

θ

)
−
∫ λSγsBγb−1xθ

0

∞∑
n=0

(−1)n un−
1
θ

n!
du

= Γ

(
θ − 1

θ

)
−

∞∑
n=0

(−1)n
(
λSγs

Bγb−1
)n+ θ−1

θ
xnθ+θ−1

n!
(
n+ θ−1

θ

) .
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Plugging into dπ̂ (x), we have:

∫ 1

ẑ

x− ρ
gz dπ̂ (x) = −Γ

(
θ − 1

θ

)∫ 1

ẑ

x− ρ
gz dx+

∞∑
n=0

 (−1)
n
(
λSγs

Bγb−1
)n+ θ−1

θ

n!
(
n+ θ−1

θ

) ∫ 1

ẑ

xnθ+θ− ρ
gz

−1 dx



= −Γ

(
θ − 1

θ

)
gz

gz − ρ

(
1− ẑ1−

ρ
gz

)
+

∞∑
n=0

(−1)
n
(
λSγs

Bγb−1
)n+ θ−1

θ

n!
(
n+ θ−1

θ

) (
nθ + θ − ρ

gz

) (1− ẑnθ+θ− ρ
gz

)
.

Substituting into (29), we obtain (30). □

A.5 Proof of Lemma 3

For a given variety and a buyer who encounters n sellers of that variety, the probability

that the lowest marginal cost among these sellers is no greater than c is:

1− [1−H (c)]n = 1−
[
1−

(c
c

)θ]n
.

For any given buyer, the probability that the buyer has access to a variety and that the

lowest marginal cost among the sellers they encounter does not exceed c is therefore:

ΩHmin (c) =
∞∑
n=1

exp
(
−λSγs

Bγb−1
)(

λSγs
Bγb−1

)n
n!

{
1−

[
1−

(c
c

)θ]n}

= 1− exp
(
−λSγs

Bγb−1
)
− exp

(
−λSγs

Bγb−1
) ∞∑

n=1

{
λSγs

Bγb−1
[
1−

(
c
c

)θ]}n

n!

= 1− exp
(
−λSγs

Bγb−1c−θcθ
)
,

where the last equality applies the Taylor expansion:

exp

(
λSγs

Bγb−1

(
1−

(c
c

)θ))
= 1 +

∞∑
n=1

{
λSγs

Bγb−1
[
1−

(
c
c

)θ]}n

n!
.

□
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A.6 Proof of Proposition 3

Real consumption Since risk-free bond market clearing implies that At = 0 and Ȧt = 0

in equilibrium, the budget constraint (3) becomes the final-good market-clearing condi-

tion (35):

Ct = wt +Πt.

Real wage To solve for the real wage wt, we rely on the expression for the final good

price index. For σ = 1, the final good price index takes the following Cobb-Douglas form:

P = exp

(
Ω

∫ c

0

ln p (c) dHmin (c)

)
= exp

(
Ω

∫ c

0

[
−1

θ
ln Λ− Λcθ − ln Γ

(
θ − 1

θ
,Λcθ

)]
dHmin (c)

)
(94)

= 1,

where the second equality is obtained by substituting p (c) from equation (18).

To simplify (94), we first have:

∫ c

0

−1

θ
ln Λ dHmin (c) = −1

θ
ln Λ = −1

θ
ln
(
λSγs

Bγb−1c−θ
)
.

Next, using integration by parts, we obtain:

∫ c

0

−Λcθ dHmin (c) = −
∫ c

0

Λcθ d
1− exp

(
−Λcθ

)
Ω

= − 1

Ω

[
Λcθ

[
1− exp

(
−Λcθ

)]]c
0
+

1

Ω

∫ c

0

[
1− exp

(
−Λcθ

)]
dΛcθ

=

(
Λcθ + 1

)
exp

(
−Λcθ

)
− 1

Ω

=
λSγs

Bγb−1 exp
(
−λSγs

Bγb−1
)

Ω
− 1.

Finally, applying a change of variables x = Λcθ yields:

∫ c

0
− ln Γ

(
θ − 1

θ
,Λcθ

)
dHmin (c) = −

∫ c

0
ln Γ

(
θ − 1

θ
,Λcθ

)
d
1− exp

(
−Λcθ

)
Ω
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= − 1

Ω

∫ λSγsBγb−1

0

ln Γ
(
θ−1
θ , x

)
exp (x)

dx

= −
µ
(
λSγs

Bγb−1
)

Ω
,

where µ
(
λSγs

Bγb−1
)
=
∫ λSγsBγb−1

0

ln Γ( θ−1
θ

,x)
exp(x)

dx is a constant. Substituting the above three

components into (94) gives:

P = exp
(
λSγs

Bγb−1 exp
(
−λSγs

Bγb−1
)
− µ

(
λSγs

Bγb−1
)
− Ω

)(
λSγs

Bγb−1
)−Ω

θ
cΩ = 1.

Plugging in c = w1−α
t

zt
and rearranging, we obtain (36):

wt =

[
exp

(
1−

λSγs
Bγb−1 exp

(
− λSγs

Bγb−1
)
− µ

(
λSγs

Bγb−1
)

Ω

)(
λSγs

Bγb−1
) 1

θ
zt

] 1
1−α

.

This equation also confirms that the marginal cost upper bound c =
w1−α

t

zt
does not vary

over time, consistent with Definition 1.

Aggregate real profits We next solve for aggregate real profits Πt. Using the law of large

numbers, we have (37):

Πt = S

∫ ∞

zt

πt (z) dGt (z) =

[
D̃S

∫ 1

0

π̂ (x) dĜ (x)

]
wt,

where the second equality uses πt (z) = Dtπ̂ (ẑ) and Dt = D̃wt.

Detrended demand shifter Finally, to find the detrended demand shifter D̃, we need

the labor market clearing condition Lp + La = 1, where

Lp = S

∫ c

0

l̃t (c) dH (c) =
(1− α)S

∫ c

0
cỹt (c) dH (c)

wt

represents the labor used in production and

La =
Gt

(
zt+dt

)
−Gt (zt)

dt
Sκ = Sκθgz
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measures the labor used in technology adoption.

In equilibrium, the output of a firm with marginal cost c must equal the total demand

from its buyers, i.e., ỹt (c) = bt (p (c)) qt (p (c)). Using Lemma 1 and Proposition 1 to replace

bt (p (c)) and qt (p (c)) for σ = 1, we obtain:

ỹt (c) = λ
θ+1
θ S

θ+1
θ

γs−1B
θ+1
θ

γb− 1
θQtc

−1Γ

(
θ − 1

θ
, λSγs

Bγb−1
(c
c

)θ)
.

Plugging ỹt (c) into the labor market clearing condition and using a change of variables

x = c
c
, we have:

(1− α) θλ
θ+1
θ S

θ+1
θ

γs

B
θ+1
θ

γb− 1
θ
Qt

wt

∫ 1

0

Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
xθ dx+ Sκθgz = 1. (95)

We can rearrange equation (95) to solve for a firm’s expected demand from a random

buyer, Qt:

Qt =
1− Sκθgz

(1− α) θλ
θ+1
θ S

θ+1
θ

γs
B

θ+1
θ

γb− 1
θ

∫ 1

0
Γ
(
θ−1
θ
, λSγsBγb−1xθ

)
xθ dx

wt.

Equation (38) is thus derived by substituting Qt:

D̃ =
Dt

wt

= λ
θ+1
θ S

θ+1
θ

γs−1B
θ+1
θ

γb− 1
θ
Qt

wt

=
1− Sκθgz

(1− α) θS
∫ 1

0
Γ
(
θ−1
θ
, λSγsBγb−1xθ

)
xθ dx

.

□

A.7 Proof of Proposition 4

Aggregate growth Using integration by parts, we obtain:

∫ 1

0

v (x) dĜ (x)− v (1) = −
∫ 1

0

Ĝ (x) v′ (x) dx.

Plugging in Ĝ (x) = xθ and v′ (x) = 1
gz
x

ρ
gz

−1
∫ 1

x
u−

ρ
gz dπ̂ (u) and rearranging yields:

∫ 1

0

v (x) dĜ (x)− v (1) = − 1

gz

∫ 1

0

[∫ 1

x

u−
ρ
gz dπ̂ (u)

]
x

ρ
gz

+θ−1 dx.
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Applying the Fubini–Tonelli theorem, we have:

∫ 1

0

[∫ 1

x

u−
ρ
gz dπ̂ (u)

]
x

ρ
gz

+θ−1 dx =

∫ 1

0

[∫ u

0

x
ρ
gz

+θ−1 dx

]
u−

ρ
gz dπ̂ (u)

=
gz

ρ+ θgz

∫ 1

0

uθdπ̂ (u) .

Hence, substituting dπ̂ (x) given by (93) yields:

∫ 1

0

v (x) dĜ (x)− v (1) =
1

ρ+ θgz

∫ 1

0

Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
xθ dx. (96)

For λ ∈ R++, plugging (38) and (96) into (32) and rearranging, we obtain:

gz =
1− (1− α) ρSκθ

[(1− α) θ + 1]Sκθ
. (97)

Equations (35), (36), and (37) jointly imply that the real GDP growth rate satisfies g = gz
1−α

,

which corresponds to (39).

For λ = ∞, equation (32) is no longer valid for solving gz. Instead, the market structure

collapses to perfect competition where atomistic firms at the technology frontier produce

and break even, while all other firms remain inactive. In this limiting case, no firm has

an incentive to incur the fixed labor cost κ > 0 to adopt new technology, which implies

g = gz = 0.

Welfare Along the BGP with real GDP growth rate g, we have Cs = exp (g (s− t))Ct.

Substituting into the utility function (1) yields (40):

Ut = lnCt

∫ ∞

t

exp (−ρ (s− t)) ds+ g

∫ ∞

t

exp (−ρ (s− t)) (s− t) ds

=
1

ρ

(
lnCt +

g

ρ

)
,

where the second equality applies integration by parts. □
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A.8 Proof of Proposition 5

Fixed-point problem First, the free entry condition Ve,t = 0 implies:

D̃

∫ 1

0

v (x) dĜ (x) = ξ. (98)

By subtracting (32) from (98), we have:

D̃v (1) = ξ − κ. (99)

It follows from (29) that:

v (1) =
π̂ (1)

ρ
=

1

ρ

[(
λSγs

Bγb−1
)− 1

θ
exp

(
−λSγs

Bγb−1
)
− Γ

(
θ − 1

θ
, λSγs

Bγb−1

)]
.

Finally, plugging (38) and (97) into (99) to replace D̃, and then rearranging, we obtain the

fixed-point problem (42).

Uniqueness To prove that the fixed-point problem (42) has a unique solution, we can

rewrite it as f (S) = g(Λ)
h(Λ)

, where Λ = Λ (S) = λSγs
Bγb−1. It is clear that f (S) is strictly

decreasing in S, with f (S) → ∞ as S → 0 and f (S) → κ
(ξ−κ)[(1−α)θ+1]

as S → ∞.

Next, it is straightforward that g(Λ)
h(Λ)

→ 0 as Λ → 0. Using a change of variables u = Λxθ

and integration by parts, we have:

g (Λ) =
Λ− θ+1

θ

θ

∫ Λ

0

Γ

(
θ − 1

θ
, u

)
u

1
θ du

=
Λ− θ+1

θ

θ + 1

{[
Γ

(
θ − 1

θ
, u

)
u

θ+1
θ

]Λ
0

+

∫ Λ

0

exp (−u)u du

}

=
1

θ + 1

{
Γ

(
θ − 1

θ
,Λ

)
+ Λ− θ+1

θ [1− (Λ + 1) exp (−Λ)]

}
.

It follows that:

g′ (Λ) = −Λ− 2θ+1
θ

θ
[1− (Λ + 1) exp (−Λ)] < 0 for Λ > 0.
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Together with h′ (Λ) = −Λ− θ+1
θ

θ
exp (−Λ) < 0, L’Hôpital’s rule implies that:

lim
Λ→∞

g (Λ)

h (Λ)
= lim

Λ→∞

g′ (Λ)

h′ (Λ)
= lim

Λ→∞

exp (Λ)− Λ− 1

Λ
= ∞.

It remains to prove that g(Λ)
h(Λ)

is strictly increasing in Λ. Since Λ is strictly increasing in

S, it then follows that the solution for S is unique. Differentiating with respect to Λ yields:

d
(

g(Λ)
h(Λ)

)
dΛ

=
h′ (Λ)

[
g′(Λ)
h′(Λ)

− g(Λ)
h(Λ)

]
h (Λ)

.

By the fundamental theorem of calculus, we obtain:

g (Λ)

h (Λ)
=

∫∞
Λ
g′ (x) dx∫∞

Λ
h′ (x) dx

=

∫ ∞

Λ

g′ (x)

h′ (x)
· h′ (x)∫∞

Λ
h′ (x′) dx′

dx,

which implies that g(Λ)
h(Λ)

is a weighted average of g′(x)
h′(x)

over [Λ,∞), with weights given by
h′(x)∫∞

Λ h′(x′)dx′ . For the function g′(x)
h′(x)

, we have:

d
(

g′(x)
h′(x)

)
dx

=
d
(

exp(x)−x−1
x

)
dx

=
(x− 1) exp (x) + 1

x2
> 0 for x > 0.

Therefore, g(Λ)
h(Λ)

> g′(Λ)
h′(Λ)

. Together with h (Λ) > 0 and h′ (Λ) < 0, it follows that
d( g(Λ)

h(Λ))
dΛ

> 0.

□

A.9 Proof of Proposition 6

Optimal search effort, optimal pricing, and profits For a buyer of any given variety,

the Poisson arrival rate of a random seller (i.e., a firm) is:

Mt

B
= λtS

γs

Bγb−1,

which implies that at each time t, the probability that the buyer encounters n sellers is:

exp
(
−λtSγs

Bγb−1
)(

λtS
γs
Bγb−1

)n
n!

.
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For a given seller with search effort λ, the expected number of encounters with buyers
who have n other encounters is thus given by:

B
exp

(
−λtS

γs

Bγb−1
)(

λtS
γs

Bγb−1
)n+1

(n+ 1)!
(n+ 1)

λ

λt

= λSγs

Bγb
exp

(
−λtS

γs

Bγb−1
)(

λtS
γs

Bγb−1
)n

n!
.

As in Appendix A.1, the termB
exp

(
−λtSγsBγb−1

)(
λtSγsBγb−1

)n+1

(n+1)!
(n+ 1) denotes the expected

total measure of encounters for buyers with n other encounters. However, in contrast to

the case with exogenous search efficiency, the probability that these encounters are paired

with the given seller is λ
λt

rather than 1
S

.47

Similar to Lemma 1, the expected number of buyers matched with a seller with search

effort λ and price p is given by:

bt (λ, p) =
∞∑
n=0

λSγs

Bγb
exp

(
−λtSγs

Bγb−1
)(

λtS
γs
Bγb−1

)n
n!

(1− Ft (p))
n

= λSγs

Bγb

exp
(
−λtSγs

Bγb−1Ft (p)
)
.

With bt (λ, p), the expected sales profit of a firm with search effort λ, price p, and produc-

tivity z at time t is given by:

πt (λ, p, z) = bt (λ, p) qt (p) πt (p, z)

= λSγs

Bγb

exp
(
−λtSγs

Bγb−1Ft (p)
)
Qtp

−σ [p− ct (z)] .

The first-order condition for the optimal search effort λ is given by:

∂
(
πt (λ, p, z)− χ

φλ
φwt

)
∂λ

= Sγs
Bγb

exp
(
−λtS

γs
Bγb−1Ft (p)

)
Qtp

−σ [p− ct (z)]− χλφ−1wt = 0,

leading to

λt (p, z) =

{
Sγs

Bγb
Qt

χwt

exp
(
−λtSγs

Bγb−1Ft (p)
)
p−σ [p− ct (z)]

} 1
φ−1

. (100)

The first-order condition for the optimal price,
∂(πt(λ,p,z)−χ

φ
λφwt)

∂p
= 0, yields an ODE

47 The encounter share λ
λt

is derived from the thinning property of the Poisson process.

69



similar to (14), except that the exogenous search efficiency is replaced by the endogenous

aggregate search effort λt:

F ′
t

(
p̃t
(
z;λt

))
=

(1− σ) p̃t
(
z;λt

)
+ σct (z)

λtSγsBγb−1p̃t
(
z;λt

) [
p̃t
(
z;λt

)
− ct (z)

] .
Similar to Assumption 1, we assume Assumption 2 and focus on the case where σ = 1.

Using the same procedure as in Appendix A.2, we obtain the following optimal price as

a function of marginal cost c, given aggregate search effort λt:

p
(
c;λt

)
=

[
λtS

γs
Bγb−1H (c)

]− 1
θ
exp

(
−λtSγs

Bγb−1H (c)
)

Γ
(
θ−1
θ
, λtSγsBγb−1H (c)

) c.

Using ct (z) =
w1−α

t

z
to recover p̃t

(
z;λt

)
, substituting p̃t

(
z;λt

)
back into λt (p, z) in equa-

tion (100), and applying the change of variables ẑ =
zt
z

, we obtain the following expres-

sion for the optimal search effort as a function of inverse relative productivity ẑ, given

aggregate search effort λt:

λ̂t
(
ẑ;λt

)
=

[
λ

1
θ
t S

θ+1
θ

γs
B

θ+1
θ

γb− 1
θQt

χwt

π̂
(
ẑ;λt

)] 1
φ−1

, (101)

where

π̂
(
ẑ;λt

)
=
(
λtS

γs

Bγb−1
)− 1

θ
exp

(
−λtSγs

Bγb−1ẑθ
)
− Γ

(
θ − 1

θ
, λtS

γs

Bγb−1ẑθ
)
ẑ

takes the same form as π̂ (ẑ) = πt(z)
Dt

in equation (92) of the baseline economy, except that

the exogenous search efficiency λ is replaced by the endogenous aggregate search effort

λt.

Likewise, the expected sales profit as a function of ẑ is given by:

πt

(
λ̂t

(zt
z
;λt

)
, p̃t
(
z;λt

)
, z
)
= χwtλ̂t

(
ẑ;λt

)φ
= Dt

(
λt
)
π̂
(
ẑ;λt

) φ
φ−1 , (102)

where Dt

(
λt
)
= (χwt)

1
1−φ

(
λ

1
θ
t S

θ+1
θ

γs
B

θ+1
θ

γb− 1
θQt

) φ
φ−1

represents the demand shifter given

aggregate search effort λt.
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Aggregation To close the model, we next solve for the expected demand of a firm from

a random buyer Qt. First, aggregate real profits are given by:

Πt

(
λt
)
= S

∫ ∞

zt

πt

(
λ̂t

(zt
z
;λt

)
, p̃t
(
z;λt

)
, z
)
dGt (z) = SDt

(
λt
) ∫ 1

0

π̂
(
x;λt

) φ
φ−1 dĜ (x) .

(103)

As additional labor is required to cover search costs, the labor market clearing con-

dition becomes Lp + La + Ls = 1, where the labor allocated to production, technology

adoption, and search is given by:

Lp =
(1− α)S

∫ c

0
cỹt
(
c;λt

)
dH (c)

wt

,

La = Sκθgz,

Ls =
χS

φ

∫ 1

0

λ̂t
(
x;λt

)φ
dĜ (x) =

Πt

φwt

=
SDt

(
λt
) ∫ 1

0
π̂
(
x;λt

) φ
φ−1 dĜ (x)

φwt

.

In equilibrium, the output of a firm with marginal cost c must equal the total demand

from its buyers, that is:

ỹt
(
c;λt

)
= bt

(
λ̂t

(c
c
;λt

)
, p
(
c;λt

))
qt
(
p
(
c;λt

))
= Γ

(
θ − 1

θ
, λtS

γs

Bγb−1
(c
c

)θ)
λ̂t

(c
c
;λt

)
λ

1
θ
t S

θ+1
θ

γs

B
θ+1
θ

γb− 1
θQtc

−1

= Γ

(
θ − 1

θ
, λtS

γs

Bγb−1
(c
c

)θ)
Dt

(
λt
)
π̂
(c
c
;λt

) 1
φ−1

c−1,

which implies:

∫ c

0

cỹt
(
c;λt

)
dH (c) = Dt

(
λt
)
θ

∫ 1

0

Γ

(
θ − 1

θ
, λtS

γs

Bγb−1xθ
)
π̂
(
x;λt

) 1
φ−1 xθ dx.

Rewriting the labor market clearing condition, we obtain:

SDt

(
λt
)
ν
(
λt
)

wt

+ Sκθgz = 1,

where

ν
(
λt

)
=

1

φ

∫ 1

0
π̂
(
x;λt

) φ
φ−1 dĜ (x) + (1− α) θ

∫ 1

0
π̂
(
x;λt

) 1
φ−1 Γ

(
θ − 1

θ
, λtS

γs
Bγb−1xθ

)
xθ dx.
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We therefore obtain:

Dt

(
λt
)
= D̃

(
λt
)
wt =

(1− Sκθgz)wt

Sν
(
λt
) , (104)

which in turn pins down Qt:

Qt =

[
1− Sκθgz

ν
(
λt
) ]φ−1

φ
χ

1
φwt

λ
1
θ
t S

θ+1
θ

γs+φ−1
φ B

θ+1
θ

γb− 1
θ

.

SubstitutingQt back into the optimal search effort λ̂t
(
ẑ;λt

)
in equation (101), we have:

λ̂t
(
ẑ;λt

)
=

[
1− Sκθgz

χSν
(
λt
) ] 1

φ

π̂
(
ẑ;λt

) 1
φ−1 =

[
D̃
(
λt
)

χ

] 1
φ

π̂
(
ẑ;λt

) 1
φ−1 . (105)

The fixed-point problem (50) for λt is obtained by integrating λ̂t
(
ẑ;λt

)
over ẑ ∈ (0, 1]:

λt = S

∫ 1

0

λ̂t
(
ẑ;λt

)
dĜ (ẑ) =

[
D̃
(
λt
)

χ

] 1
φ

S

∫ 1

0

π̂
(
ẑ;λt

) 1
φ−1 dĜ (ẑ) .

It is clear that the solution λt does not depend on time t, so we can drop its subscript t

from all the relevant equations above. Hence, equations (105), (104), and (103) correspond

to (48), (49), and (51), respectively.

Detrended value function and aggregate growth Given aggregate search effort λ and

the net flow profit φ−1
φ
Dt

(
λ
)
π̂
(
ẑ;λ
) φ

φ−1 , we use the same procedure as in Appendix A.4

to obtain the ODE (52) for the detrended value function v
(
ẑ;λ
)
=

Vp,t(z;λ)
Dt(λ)

. Clearly, (52)

takes the same form as (27), except that the detrended flow profit π̂ (ẑ) is replaced by
φ−1
φ
π̂
(
ẑ;λ
) φ

φ−1 . It follows immediately that the solution is given by (53), which corre-

sponds to (29).

Finally, the value-matching condition gives:

D̃
(
λ, gz

) [∫ 1

0

v
(
x;λ, gz

)
dĜ (x)− v

(
1;λ, gz

)]
= κ.
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Using the same procedure as in Appendix A.7, we obtain:

∫ 1

0

v
(
x;λ, gz

)
dĜ (x)− v

(
1;λ, gz

)
=

1

ρ+ θgz

∫ 1

0

π̂
(
x;λ
) 1

φ−1 Γ

(
θ − 1

θ
, λSγs

Bγb−1xθ
)
xθ dx.

Substituting
∫ 1

0
v
(
x;λ, gz

)
dĜ (x) − v

(
1;λ, gz

)
and D̃

(
λ, gz

)
into the value-matching con-

dition yields:

gz
(
λ
)
=

1−
[
Ξ
(
λ
)
+ (1− α) θ

]
ρSκ[

Ξ
(
λ
)
+ (1− α) θ + 1

]
Sκθ

.

The real GDP growth rate (54) is therefore given by g
(
λ
)
=

gz(λ)
1−α

. □

A.10 Proof of Proposition 7

Productivity distribution As we will verify later, under Assumption 3, the value func-

tion with creative destruction, Ṽp,t (z), remains increasing in productivity z, so that only

firms at the productivity lower bound zt choose to adopt new technology at time t.

The KFE incorporating creative destruction is given by:

dG̃t (z)

dt
= −

[
1− G̃t (z)

]
G̃′

t (zt) zt
d ln zt
dt

− δG̃t (z) . (106)

Compared with equation (87) in Appendix A.3, an additional term δG̃t (z) appears in (106)

to account for the fraction of firms jumping marginally above the technology frontier zt.

Differentiating (106), we have:

dG̃′
t (z)

dt
= G̃′

t (z)

[
G̃′

t (zt) zt
d ln zt
dt

− δ

]
. (107)

By Definition 1, the distribution ˆ̃
G (·) of inverse relative productivity ẑ =

zt
z
∈
[
zt
zt
, 1
]

is stationary along the BGP. Therefore, as in Appendix A.3, we obtain:

G̃′
t (zt) zt = G̃′

0 (z0) z0 =
θ

1−
(

z0
z0

)−θ
for all t. (108)
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Plugging (108) into (107), rearranging, and integrating both sides from 0 to dt, we have:

∫ dt

0

d ln G̃′
s (z) =

θ

1−
(

z0
z0

)−θ

∫ dt

0

d ln zs −
∫ dt

0

δ ds,

which implies that:

G̃′
dt (z) =

(
zdt
z0

) θ

1−( z0
z0
)
−θ

exp (−δdt) G̃′
0 (z) =

θzθ0z
−θ−1

1−
(

z0
z0

)−θ

(
zdt
z0

) θ

1−( z0
z0
)
−θ

exp (−δdt) .

(109)

Substituting z = zdt into (109) and applying (108) yields:

zdt = exp

((
δ

θ

(
z0
z0

)θ

− δ

θ

)
dt

)
z0.

Hence, along the BGP, the lower bound of the productivity distribution grows at con-

stant rate gz = δ
θ

[(
z0
z0

)θ
− 1

]
. Using gz, (109) simplifies to:

G̃′
dt (z) =

θzθdtz
−θ−1

1−
(

z0
z0

)−θ
.

Finally, the boundary condition
∫ zdt
zdt

G̃′
dt (z) dz = 1 implies that:

1−
(

zdt
zdt

)−θ

1−
(

z0
z0

)−θ
= 1. (110)

Since zt grows at rate gz, for (110) to hold, the technology frontier zt must grow at the

same rate gz along the BGP. We have thus proved that the ratio zt
zt

= ι remains constant

over time. Substituting ι into the equation for gz, we obtain (62).

Optimal pricing, markups, and profits Given the doubly truncated Pareto distribution,

the marginal cost distribution becomes H̃ (c; ι) =
( c
c)

θ
−ιθ

1−ιθ
with support [ιc, c]. Since the

lower bound is no longer zero, the optimal pricing function corresponding to (79) is given
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by:

p (c) =
exp

(
−Λ̃cθ

)
p (ιc)

exp
(
−Λ̃ (ιc)θ

)
− Λ̃

1
θ

[
γ
(

θ−1
θ
, Λ̃cθ

)
− γ

(
θ−1
θ
, Λ̃ (ιc)θ

)]
p (ιc)

, (111)

where Λ̃ = λSγsBγb−1c−θ

1−ιθ
. Using the same logic as in Appendix A.2, we obtain the following

constraint on p (ιc) such that p′ (c) > 0 for all c:

exp
(
−Λ̃ (ιc)θ

)
exp(−Λ̃cθ)

c + Λ̃
1
θ

[
γ
(
θ−1
θ , Λ̃cθ

)
− γ

(
θ−1
θ , Λ̃ (ιc)θ

)] < p (ιc) <
exp

(
−Λ̃ (ιc)θ

)
Λ̃

1
θ

[
γ
(
θ−1
θ , Λ̃cθ

)
− γ

(
θ−1
θ , Λ̃ (ιc)θ

)] .
With a non-zero lower bound ιc, the above constraint is no longer monotonic in c on

either side. We therefore obtain p (ιc) through a guess-and-verify approach. Conjecture

that

p (ιc) =
exp

(
−Λ̃ (ιc)θ

)
Λ̃

1
θ

[
Γ
(
θ−1
θ

)
− γ

(
θ−1
θ
, Λ̃ (ιc)θ

)] , (112)

which corresponds to (59) in Assumption 3. Since Γ
(
θ−1
θ

)
> γ

(
θ−1
θ
, Λ̃cθ

)
, the right-hand

side of the constraint is clearly satisfied. It remains to verify that

Λ̃− 1
θ exp

(
−Λ̃cθ

)
+ γ

(
θ−1
θ
, Λ̃cθ

)
c

c
> Γ

(
θ − 1

θ

)
holds for all c ∈ (0,∞) such that the left-hand side of the constraint is also satisfied. It is

easy to show that the derivative of the left-hand side with respect to c is − Λ̃− 1
θ exp(−Λ̃cθ)

c2
< 0

and thus:

min
c

Λ̃− 1
θ exp

(
−Λ̃cθ

)
+ γ

(
θ−1
θ , Λ̃cθ

)
c

c
= lim

c→∞

Λ̃− 1
θ exp

(
−Λ̃cθ

)
+ γ

(
θ−1
θ , Λ̃cθ

)
c

c
= Γ

(
θ − 1

θ

)
.

Therefore, (112) constitutes an admissible boundary pricing. Plugging (112) into (111)

yields:

p (c; ι) =
Λ̃− 1

θ exp
(
−Λ̃cθ

)
Γ
(

θ−1
θ
, Λ̃cθ

) =

(
λSγsBγb−1

1−ιθ

(
c
c

)θ)− 1
θ

exp
(
−λSγsBγb−1

1−ιθ

(
c
c

)θ)
Γ
(

θ−1
θ
, λS

γsBγb−1

1−ιθ

(
c
c

)θ) c,

which corresponds to equation (63).
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Substituting p (c; ι) into the profit function and applying the change of variables ẑ =
zt
z
= c

c
, we have:

π̃t (z; ι) = Dt (ι) π̂
(
ẑ; λ̃ (ι)

)
,

where

Dt (ι) =
(
1− ιθ

)
λ̃ (ι)

θ+1
θ S

θ+1
θ

γs−1B
θ+1
θ

γb− 1
θ exp

(
λ̃ (ι)Sγs

Bγb−1ιθ
)
Qt (113)

denotes the demand shifter with creative destruction and π̂
(
ẑ; λ̃ (ι)

)
takes the same form

as π̂ (ẑ) = πt(z)
Dt

in the baseline economy except that λ is replaced by λ̃ (ι).

Detrended value function Next, we solve for the detrended value function. Using

ṽ (ẑ) = Ṽp,t(z)

Dt(ι)
= Ṽp,t(z)

D̃(ι)wt
, we have:

Ṽ ′
p,t (zt)

dzt
dt

=
d
(
Dt (ι) ṽ

( zt
z

))
dz

∣∣∣
z=zt

zt
d ln zt
dt

= −Dt (ι) ṽ
′ (ι) ιgz

and dṼp,t(z)

dt
, which takes the same form as (89). Substituting into (58), dividing both sides

by Dt (ι), and rearranging, we obtain the following ODE under Assumption 3:

ṽ′ (ẑ) =
ρ+ δ

gz ẑ
ṽ (ẑ)− 1

gz ẑ

{
π̂
(
ẑ; λ̃ (ι)

)
+ δ [ṽ (ι)− ṽ′ (ι) ιgz]−

ςẑη

D̃ (ι)

}
.

The integrating factor, exp
(
−
∫

ρ+δ
gz ẑ

dẑ
)
= ẑ−

ρ+δ
gz , implies:

d
(
ṽ (ẑ) ẑ−

ρ+δ
gz

)
dz

= ẑ−
ρ+δ
gz

[
ṽ′ (ẑ)− ρ+ δ

gz ẑ
ṽ (ẑ)

]
= − ẑ

− ρ+δ
gz

−1

gz

{
π̂
(
ẑ; λ̃ (ι)

)
+ δ [ṽ (ι)− ṽ′ (ι) ιgz]−

ςẑη

D̃ (ι)

}
.

Integrating both sides and applying the results from Appendix A.4, together with the

smooth-pasting condition ṽ′ (1) = 0, we obtain:

ṽ (ẑ) = v
(
ẑ; λ̃ (ι) , ρ+ δ

)
+

δ

ρ+ δ
[ṽ (ι)− ṽ′ (ι) ιgz]−

cδ (ẑ)

ρ+ δ − ηgz
, (114)
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where v
(
ẑ; λ̃ (ι) , ρ+ δ

)
takes the same form as the detrended value function in the base-

line model, given by equation (29), with the search efficiency parameter λ replaced by

λ̃ (ι) and the discount rate ρ replaced by ρ+ δ. cδ (ẑ) is given by (66).

Substituting ẑ = ι into (114) and rearranging, we have:

ṽ (ι) =
1

ρ

[
(ρ+ δ) v

(
ι; λ̃ (ι) , ρ+ δ

)
− δṽ′ (ι) ιgz −

(ρ+ δ) cδ (ι)

ρ+ δ − ηgz

]
.

Plugging ṽ (ι) into (114) yields:

ṽ (ẑ) = v
(
ẑ; λ̃ (ι) , ρ+ δ

)
+
δ

ρ

[
v
(
ι; λ̃ (ι) , ρ+ δ

)
− ṽ′ (ι) ιgz −

cδ (ι)

ρ+ δ − ηgz

]
− cδ (ẑ)

ρ+ δ − ηgz
.

(115)

Finally, differentiating (114) and substituting ẑ = ι yields:

ṽ′ (ι) = v′
(
ι; λ̃ (ι) , ρ+ δ

)
− c′δ (ι)

ρ+ δ − ηgz
,

where c′δ (ẑ) =
ςηẑη−1

D̃(ι)

(
1− ẑ

ρ+δ−ηgz
gz

)
. Plugging ṽ′ (ι) into (115), we obtain:

ṽ (ẑ) = v
(
ẑ; λ̃ (ι) , ρ+ δ

)
− cδ (ẑ)

ρ+ δ − ηgz

+
δ

ρ

{
v
(
ι; λ̃ (ι) , ρ+ δ

)
− cδ (ι)

ρ+ δ − ηgz
−
[
v′ (ι; ρ+ δ)− c′δ (ι)

ρ+ δ − ηgz

]
ιgz

}
, (116)

which corresponds to equation (64), with vδ (ẑ) given by (65).48

Since ẑ ∈ [ι, 1], with η ≤ ρ+δ
gz

under Assumption 3, we have c′δ (ẑ) ≥ 0. Together

with v′
(
ẑ; λ̃ (ι) , ρ+ δ

)
≤ 0, we have verified that ṽ′ (ẑ) ≤ 0 and thus only firms at the

productivity lower bound zt (i.e., ẑ = 1) choose to adopt new technology at time t.

Aggregation We complete the proof by deriving the aggregate variables. The labor mar-

ket clearing condition with creative destruction is given by Lp + La + Lδ = 1, where the

labor allocated to production, technology adoption, and the research project for creative

48 Note that the second line in (116) is constant for any ẑ ∈ [ι, 1].
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destruction is given by:

Lp = S

∫ c

ιc

l̃t (c; ι) dH̃ (c; ι) =
(1− α)S

∫ c

ιc
cỹt (c; ι) dH̃ (c; ι)

wt

,

La =
Sκθgz
1− ιθ

,

Lδ = S

∫ 1

ι

ςxη d
ˆ̃
G (x; ι) =

Sςθ
(
1− ιη+θ

)
(η + θ) (1− ιθ)

.

In equilibrium, the output of a firm with marginal cost c must equal the total demand

from its buyers. Deriving the total demand and using (113), we obtain:

ỹt (c; ι) = Dt (ι) Γ

(
θ − 1

θ
, λ̃ (ι)Sγs

Bγb−1
(c
c

)θ)
c−1.

Plugging ỹt (c; ι) into Lp and rearranging the labor market clearing condition yields (67):

D̃ (ι) =

[
(1− α) θ

∫ 1

ι
Γ

(
θ − 1

θ
, λ̃ (ι)Sγs

Bγb−1xθ
)
xθ dx

]−1
[
1− ιθ − Sκθgz

S
−

ςθ
(
1− ιη+θ

)
η + θ

]
.

Finally, aggregate real profit is simply given by:

Πt (ι) = S

∫ zt

zt

π̃t (z; ι) dG̃t (z) =

[
D̃ (ι)S

∫ 1

ι

π̂
(
x; λ̃ (ι)

)
d
ˆ̃
G (x)

]
wt (ι) . (117)

To derive the real wage wt, we first follow the same procedure as in Appendix A.5 to

recover the distribution of the minimum marginal cost accessible to a buyer:

H̃min (c; ι) =
1− exp

(
−λ̃ (ι)Sγs

BγB−1
(
c−θcθ − ιθ

))
Ω

. (118)

The final good price index takes the form:

P = exp

(
Ω

∫ c

ιc

ln p (c; ι) dH̃min (c; ι)

)
= 1.

Plugging in p (c; ι) from (63) and H̃min (c; ι) from (118), and proceeding as in Appendix

A.6, we have:

1 = exp
(
λ̃ (ι)Sγs

Bγb−1
(
exp

(
−λSγs

Bγb−1
)
− ιθ

)
− exp

(
λ̃ (ι)Sγs

Bγb−1ιθ
)
µ̃
(
λ̃ (ι)Sγs

Bγb−1
)
− Ω

)
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[
λ̃ (ι)Sγs

Bγb−1
]−Ω

θ

cΩ,

where µ̃
(
λ̃ (ι)Sγs

Bγb−1
)
=
∫ λ̃(ι)SγsBγb−1

λ̃(ι)SγsBγb−1ιθ

ln Γ( θ−1
θ

,x)
exp(x)

dx. Plugging in c = w1−α
t

zt
and rearrang-

ing, we obtain:

wt =

{
exp

(
1−

λ̃ (ι)Sγs

Bγb−1
(
exp

(
− λSγs

Bγb−1
)
− ιθ

)
− exp

(
λ̃ (ι)Sγs

Bγb−1ιθ
)
µ̃
(
λ̃ (ι)Sγs

Bγb−1
)

Ω

)
[
λ̃ (ι)Sγs

Bγb−1
] 1

θ

zt

} 1
1−α

. (119)

□

A.11 Proof of Corollary 1

Substituting (116) into the value-matching condition and rearranging, we obtain:

κ = D̃ (ι, gz)

{[∫ 1

ι

v
(
x; λ̃ (ι) , ρ+ δ, gz

)
d
ˆ̃
G (x; ι)− v

(
1; λ̃ (ι) , ρ+ δ, gz

)]
− 1

ρ+ δ − ηgz

[∫ 1

ι

cδ (x; ι, gz) d
ˆ̃
G (x; ι)− cδ (1; ι, gz)

]}
= D̃ (ι, gz)

[
∆v (ι, gz)−

∆cδ (ι, gz)

ρ+ δ − ηgz

]
. (120)

Using the same procedure as in Appendix A.7, together with ˆ̃
G (x; ι) = xθ−ιθ

1−ιθ
, we have:

∆v (ι, gz) = −
∫ 1

ι

ˆ̃
G (x; ι) v′

(
x; λ̃ (ι) , ρ+ δ, gz

)
dx

= − 1

ρ+ δ + θgz

∫ 1

ι

{
xθ − ιθ

1− ιθ
− θgz
ρ+ δ

ιθ

1− ιθ

[
1−

( ι
x

) ρ+δ
gz

]}
dπ̂
(
x; λ̃ (ι)

)
=

1

ρ+ δ + θgz

∫ 1

ι

Γ

(
θ − 1

θ
, λ̃ (ι)Sγs

Bγb−1xθ
)[

xθ − ιθ

1− ιθ
− ψ (x; ι, gz)

]
dx, (121)

where ψ (x; ι, gz) =
θgzιθ

(ρ+δ)(1−ιθ)

[
1−

(
ι
x

) ρ+δ
gz

]
. Next, plugging in cδ (ẑ) from (66) yields:

∆cδ (ι, gz) = −
∫ 1

ι

ˆ̃
G (x; ι) c′δ (x; ι, gz) dx

= − ςη

D̃ (ι)

∫ 1

ι

xη−1
(
1− x

ρ+δ−ηgz
gz

) xθ − ιθ

1− ιθ
dx. (122)
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Equations (120), (121), and (122) therefore correspond to (69), (70), and (71), respectively.

□

B Markup Estimation

B.1 Data

Industry classification To estimate within-variety markups given by (18), we need an

industry classification that accurately identifies a firm’s most direct product-market com-

petitors based on product similarity. We therefore use the newly developed ETNIC data

from Hoberg and Phillips (2025).

ETNIC applies a doc2vec embedding model, e.g., Le and Mikolov (2014), to the 10-K

business descriptions of all Compustat firms from 1988 to 2023 to compute the text-based

cosine similarity for each pair of firms. Compared with the original TNIC data (Hoberg

and Phillips, 2016), ETNIC not only has broader coverage—both cross-sectionally and

over time—but also better captures information from synonyms and context.

Following Cabezon and Hoberg (2026), we treat firm pairs whose cosine similarity

lies in the top 1% of the sample as the most direct competitors. The high granularity—

roughly equivalent to 4-digit SIC codes—ensures that firms grouped together produce

highly substitutable varieties, so that within-group price dispersion is more likely to be

driven by search frictions rather than product differentiation, in line with equation (18).

Compared with traditional industry classification schemes such as NAICS and SIC,

ETNIC offers two additional advantages in our setting. First, our model abstracts from

firms’ decisions to introduce new products. The time-varying nature of ETNIC allows

firms to be promptly regrouped after substantial product updates, thereby reducing po-

tential bias in within-variety markup estimation stemming from variety shocks. Second,

Chen et al. (2016) find that traditional industry classifications are subject to managerial

manipulation. By contrast, Regulation S-K mandates that firms disclose detailed and ac-

curate product-related information, which helps ensure the objectivity of ETNIC and its

strong link to product markets.
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Financial information We merge ETNIC with firms’ financial information from Com-

pustat. For markup estimation, we extract gross sales (sale), cost of goods sold (cogs), and

gross and net property, plant, and equipment (ppegt and ppent, respectively). We drop

observations with missing values for any of these variables. Because lagged inputs are

required as instruments, our estimation sample covers the period 1989–2023.

Deflators To express financial variables in real terms, we obtain GDP and investment

deflators (Gross domestic product (implicit price deflator) and Gross private domestic

investment: Fixed investment: Nonresidential (implicit price deflator), respectively) from

the Federal Reserve Economic Data (FRED).

B.2 Methodology

In this section, we explain in detail how to obtain the markup estimates corresponding to

equation (18). All notation introduced in this section is independent of that used in our

main text.

Production approach Following De Loecker et al. (2020), we estimate markups using

the production approach. Specifically, the cost-minimization problem of firm i in industry

j at time t yields the following Lagrangian:

Lj (Vit, Kit, cit) =W j
t Vit +Rj

tKit − cit
[
Y j (Vit, Kit,Ωit)− Y it

]
, (123)

where Vit denotes the quantity of variable inputs with price W j
t , Kit denotes capital stock

with user cost Rj
t , Y j (Vit, Kit,Ωit) is the production function in industry j with Ωit repre-

senting firm i’s productivity, and the Lagrange multiplier cit equals firm i’s marginal cost

according to the envelope theorem.

The first-order condition with respect to Vit in (123) delivers the markup expression:

mit =
Pit

cit
= αj

it

PitYit

W j
t Vit

, (124)

where Pit is the output price charged by firm i and αj
it =

∂ lnY j(Vit,Kit,Ωit)
∂ lnVit

denotes the output

elasticity in variable input for firm i in industry j. We proxyW j
t Vit with cost of goods sold
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and PitYit with gross sales, so that markup estimation reduces to estimating αj
it.

Production function estimation We combine the control function approach of Acker-

berg et al. (2015) with the refinements in De Ridder et al. (2025) to obtain output elasticity

estimates α̂j
it. Using lowercase letters to denote log-transformed variables, we estimate

the following translog production function:

yit = x′
itβ

j + ωit + εit, (125)

where

x′
itβ

j = βj
0 + βj

vvit + βj
kkit + βj

vvv
2
it + βj

kkk
2
it + βj

vkvitkit,

ωit denotes productivity observed by firms but unobserved by the econometrician, and

εit represents i.i.d. noise unobserved by both, including measurement errors in output

yit. The translog production function is a second-order approximation to any production

function and yields more general output elasticities that vary with a firm’s inputs.

Because input choices are usually made based on productivity ωit, a simple OLS esti-

mation of (125) suffers from omitted-variable bias. However, under the assumptions of

Ackerberg et al. (2015), ωit can be recovered as a function of inputs, that is:

ωit = f j (vit, kit) , (126)

where f j (·) is called the control function. Substituting (126) into (125) implies that we can

purge the noise term εit by regressing yit on a high-order polynomial in (vit, kit), yielding

fitted output ŷit.

We assume that productivity evolves according to the following nonlinear process:

ωit = ρj1ωit−1 + ρj2ω
2
it−1 + ξit, (127)

where ξit denotes i.i.d. innovations to productivity at time t and is therefore orthogonal

to input choices at time t− 1. Given that ωit = ŷit − x′
itβ

j , substituting into (127) yields:

ξit
(
ρj1, ρ

j
2,β

j
)
= ŷit − x′

itβ
j − ρj1

(
ŷit−1 − x′

it−1β
j
)
− ρj2

(
ŷit−1 − x′

it−1β
j
)2
.
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The GMM estimator
(
ρj1, ρ

j
2,β

j
)

is thus defined by the following moment condition:

E

ξit (ρ̂j1, ρ̂j2, β̂j
)
⊗


xit−1

ŷit−1 − x′
it−1β̂

j(
ŷit−1 − x′

it−1β̂
j
)2

 = 0, (128)

which gives the following output elasticity estimates:

α̂j
it = β̂j

v + 2β̂j
vvvit + β̂j

vkkit.

In estimating (128), we implement the following procedure. First, because we group

firms based on ETNIC, industry j here refers to a benchmark firm. Hence, for each firm j,

we estimate (128) using the subsample of its closest product-market competitors defined

by the top-1% cosine-similarity cutoff. We impose a minimum sample size of 50 for the

central limit theorem to be applied. This filter also effectively excludes niche markets with

few direct competitors, where markups may deviate from equation (18). We construct the

capital stock using the perpetual inventory method, proxying investment by changes in

net property, plant, and equipment and deflating it with the investment deflator. For other

nominal variables, we deflate them based on the GDP deflator. Finally, when observations

are missing for some intermediate years, we interpolate using the average of adjacent-

year observations whenever available.

Product-similarity-weighted markup estimates Substituting the estimated output elas-

ticity α̂j
it, we obtain the markup estimate m̂j

it for firm i at time t in the competitor sub-

sample defined by benchmark firm j. As ETNIC provides a continuous similarity mea-

sure at the firm-pair level, it is possible that firm i is classified as a direct competitor of

multiple benchmark firms, yielding multiple markup estimates. To capture the within-

variety markup driven by search frictions, we assign higher weight to estimates indexed

by benchmark firms j that are closer to firm i in product space.

Specifically, let Jit denote the set of firms for which firm i is a direct competitor at time

t, and let cosineijt denote the ETNIC similarity score between firms i and j at time t. The
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product-similarity-weighted markup estimate for firm i at time t is given by:

m̂it =
∑
j∈Jit

cosineijt∑
h∈Jit cosineiht

m̂j
it,

which we treat as the empirical counterpart of (18). Finally, we truncate the estimates at

the 1st and 99th percentiles to mitigate the influence of outliers.

B.3 Discussion

A key caveat in the estimation procedure of markups for Compustat firms is that we only

observe gross sales, rather than quantities of goods sold. As a result, the left-hand side of

(125) becomes pit+yit. In this case, the GMM estimator suffers from omitted-variable bias

whenever the current log price is correlated with lagged log inputs, i.e., E [pitxit−1] ̸= 0.

Under imperfect competition and a persistent productivity process, this bias generically

exists.

However, as shown by De Ridder et al. (2025), the bias becomes a constant common

to all firms as long as the demand system is invertible so that the log price can be written

as:

pit = −
∑
k

diktykt,

where dikt denotes the heterogeneous cross-elasticity of firm i’s price with respect to firm

k’s output. In our search economy, (14) implies that a firm’s price depends on the prices

(and hence output) of all other firms, so the argument in De Ridder et al. (2025) applies.

With the constant bias, regressions based on log markups can still precisely capture

markup variation (Li et al., 2025), which is the approach we employ in the GMM estima-

tion of model parameters.
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