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Abstract

We develop a New Keynesian framework that incorporates the term structure of fi-

nancial markets, emphasizing the role of government and central bank balance sheet

composition in monetary policy transmission. Our model accounts for microfounded

market segmentation across asset classes and maturities based on finite and estimable

asset demand elasticities. We show that unconventional policy interventions, such as

large-scale asset purchase programs and yield-curve control policies, effectively sta-

bilize the economy during normal periods and at the zero lower bound, albeit by ex-

tending ZLB episodes and reducing the efficacy of future short-term rate adjustments.
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1 Introduction

Since the 2007–2008 Global Financial Crisis, unconventional monetary policies have be-
come mainstream. Constrained by the zero lower bound (ZLB) on short-term rates, poli-
cymakers adopted strategies—such as expanding central bank balance sheets and increas-
ing government debt issuance—to lower long-term rates, stimulate aggregate demand, and
mitigate recessionary pressures. The COVID-19 pandemic further intensified this dynamic,
prompting the Federal Reserve to implement another round of unconventional interventions
as the policy rate once again reached the ZLB.1

This paper develops a tractable New Keynesian framework that incorporates an endoge-
nous term structure of interest rates in bond markets, enabling an analysis of both conven-
tional and unconventional monetary and fiscal policies. In contrast, standard log-linearized
models typically include only a single policy rate, neglecting both the term structure of
interest rates and heterogeneous asset returns. This limitation arises from the absence of
frictions in asset substitution (e.g., asset demands are perfectly elastic), which leads to the
equalization of expected returns across assets and maturities.2 As a result, additional assets
become redundant in monetary policy analysis.

To address these limitations, our framework builds on prior studies that emphasize mar-
ket segmentation and the inelastic demand across bonds of different maturities as critical for
understanding the effectiveness of quantitative easing programs. We integrate: (i) financial
market segmentation, represented by demand curves with finite own and cross elasticities;
(ii) households’ endogenous portfolio rebalancing across asset classes and maturities; and
(iii) the real effects of government and central bank balance sheet size and composition.
These components are essential for understanding the transmission mechanism of uncon-
ventional monetary policies.

We examine the cyclical properties of various monetary interventions implemented as
simple policy rules. Initially, we analyze a conventional policy rule for the short-term rate
and its impact on the yield curve and the broader economy. We then introduce a yield-
curve control (YCC) policy, in which the central bank directly manipulates the entire yield
curve. Our framework reveals notable differences between these policies, particularly dur-

1In March 2020, the Federal Reserve lowered its policy rate to 0% - 0.25%. The Fed committed to keep-
ing interest rates low until the economy achieved full employment and maintained 2% inflation consistently.
Concurrently, the unprecedented CARES Act injected nearly $500 billion in support of the Fed.

2This outcome also follows from the absence of a price of risk under log-linear approximation, resulting
in the well-known expectations hypothesis, which posits that long-term bond returns equal the average of
expected future short-term rates.
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ing episodes when the policy rate is constrained by the ZLB. For instance, under conven-
tional policy, a reduction in the supply of risk-free government bonds is recessionary at the
ZLB, consistent with the safe-asset shortage literature (see, e.g., Caballero and Farhi (2017)
and Caballero et al. (2021)). In contrast, under YCC, the central bank shifts the entire yield
curve downward, reducing the effective household savings rate and stimulating aggregate
demand, thus preventing a recession.3 We find that YCC policies generally provide more
effective economic stabilization and improve household welfare relative to conventional
short-term rate policy.

However, YCC policy has side effects, such as prolonging ZLB episodes. By ac-
tively easing long-maturity yields, YCC generates additional downward pressure on short-
term bond returns through household portfolio reallocation. Lower long-term rates prompt
households to shift wealth from long-term bonds into: (i) short-maturity bonds, which fur-
ther depress short-term yields; and (ii) private loan markets, which reduces firms’ borrow-
ing costs and consumption prices through lower production costs.4 When the ZLB binds,
YCC primarily operates by manipulating long-term bond yields, delaying the exit from the
ZLB. Thus, household portfolio reallocation creates a feedback loop between ZLB duration
and reliance on YCC: YCC extends ZLB duration while the economy becomes increasingly
dependent on its stabilization. To the best of our knowledge, this outcome is novel.

Our asset demand systems incorporate finite demand elasticities and cross elasticities
across asset classes and maturities, allowing households to rebalance their portfolios in re-
sponse to relative changes in returns or other fundamentals, though not as perfectly as in
log-linearized conventional models. A key advantage of this approach is that the demand
elasticity for each asset class serves as a sufficient statistic for its degree of market segmen-
tation, facilitating empirical testing and estimation of the segmented market hypothesis.
We estimate the bond market’s segmentation degree—or its demand elasticity—based on
our model structure.

In Online Appendix D, we develop a microfoundation for inelastic asset demands based
on imperfect information about asset returns. We assume that each household is subdivided
into a continuum of families and family members, each with a distinct, imperfect informa-

3Even under conventional policy, a declining short-term rate lowers long-term bond yields through house-
holds’ endogenous portfolio reallocation, reducing the effective savings rate. However, this channel is insuf-
ficient for boosting aggregate demand when the economy is constrained by the ZLB and conventional policy
becomes ineffective.

4Decreases in the aggregate price index further intensify downward pressure on the short-term policy rate
under an inflation-targeting rule, extending the duration of ZLB episodes.
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tion set regarding future asset returns, while consumption is perfectly insured within the
household. Lacking a common signal, the household allocates aggregate savings uniformly
among its members, who then invest their share in the asset they deem most profitable. This
behavior leads to the inelastic portfolio demand function, with cross-sectional dispersion in
expected asset returns determining the degree of market segmentation for each asset class.
To simplify aggregation of individual portfolio choices, we model differences in expected
returns as Fréchet-distributed shocks around their rationally anticipated levels.5 Borrowing
this aggregation technique from the international trade literature (e.g., Eaton and Kortum
(2002)), our framework seamlessly incorporates new asset types and varying degrees of
segmentation across assets and maturities, yielding tractable formulas for household port-
folio shares as functions of relative expected asset returns. Our formulation encompasses
the classic expectations hypothesis as a special case while allowing for deviations due to
imperfect information and behavioral factors.

Related Literature We contribute to several strands of the macroeconomics and finance
literature. Early work emphasizes the role of macroeconomic factors in explaining the term
structure of interest rates (Ang and Piazzesi, 2003; Rudebusch and Wu, 2008; Bekaert et
al., 2010).6 However, these models typically employ an ad hoc affine term structure (e.g.,
Duffie and Kan (1996)) without microfoundations. We extend this literature by modeling
the term structure in a setting with multiple asset classes (e.g., government bonds and pri-
vate loans) and nominal rigidities. By explicitly incorporating government and central bank
balance sheets alongside households’ endogenous portfolio choices across the yield curve,
our framework links business cycle dynamics, financial markets, and monetary policy.

The preferred-habitat theory of the term structure has been developed in works such as
Modigliani and Sutch (1966), Vayanos and Vila (2021), and Kekre et al. (2023).7 Build-
ing on Vayanos and Vila (2021), Ray (2019) proposes a New Keynesian model that links
monetary policy, business cycles, and the term structure; in his model, an arbitrageuer’s
capacity to absorb risks determines term premia along the yield curve, which in turn deter-
mines the effective savings rate that households face for their intertemporal substitution. In
contrast, our framework abstracts from arbitrageurs and introduces an asset demand system

5For general properties of the Fréchet distribution, see, e.g., Gumbel (1958).
6By examining the joint dynamics of bond yields and macroeconomic variables in a VAR setting with a

no-arbitrage restriction, Ang and Piazzesi (2003) show that models incorporating business cycle factors yield
better forecasts than those relying solely on unobservable factors.

7In international macroeconomics, Gourinchas et al. (2022) and Greenwood et al. (2022) explore how
the preferred-habitat setting jointly determines exchange rates and the term structure of interest rates.
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with finite elasticities that leads to financial market segmentation, following the recent de-
mand system literature (Koijen and Yogo, 2019) and the inelastic market literature (Gabaix
and Koijen, 2022). Even in a log-linearized version of the model, our framework generates
positive term premia both at the steady state and out of the steady state. Also, the endoge-
nous portfolio rebalancing—also examined by Alpanda and Kabaca (2020) in the context
of LSAP spillovers—yields distinctive dynamics (see Section 2.1).8

Another literature strand (Gertler and Karadi, 2011; Cúrdia and Woodford, 2011; Chris-
tensen and Krogstrup, 2018, 2019; Karadi and Nakov, 2021) explores the link between the
central bank’s balance sheet and monetary policy, providing insights into how large-scale
asset purchases mitigate disruptions in financial markets.9 Most studies focus on aggre-
gate balance sheet expansion rather than multiple bond maturities. Our unified framework
demonstrates how central banks can adjust bond portfolios along the yield curve for stabi-
lization, and our finding that active long-term bond manipulation improves welfare aligns
with Sims and Wu (2021).10

While our analysis of the ZLB recessions mirrors prior work (Swanson and Williams,
2014; Caballero and Farhi, 2017; Caballero et al., 2021), we further emphasize the benefits
of managing both the size and composition of the central bank’s balance sheet across ma-
turities when the ZLB binds. To our knowledge, this is one of the first general equilibrium
models to combine the term structure of interest rates, a binding ZLB, multiple financial
assets, yield-curve control policies, the portfolio balance channel under demand functions
with finite elasticities.

Layout Section 2 introduces the model and derives the main results. Section 3 examines
the steady-state implications of various policies and calibration choices. Section 4 explores
the short-run cyclical responses of the model to different shocks under alternative mon-
etary policy regimes and economic conditions, including the ZLB. Section 5 concludes.
The Appendix contains additional figures and tables. Online Appendix A provides detailed
derivations and proofs; Online Appendix B outlines our calibration and estimation strate-

8For empirical assessments of the market-segmentation hypothesis as a determinant of the term structure,
see, e.g., D’Amico and King (2013) and Droste et al. (2021).

9Gertler and Karadi (2011) note that compared with private market intermediaries, the central bank faces
fewer balance sheet constraints, and as private intermediaries’ constraints tighten during crises, central bank
intermediation becomes more beneficial; Cúrdia and Woodford (2011) find targeted asset purchases effective
under exogenous market disruptions.

10Sims and Wu (2021) assume that a wholesale firm and fiscal authorities issue perpetuities with decaying
coupon payments. In contrast, we consider bonds with different maturities.
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gies; and Online Appendix C derives the second-order approximation to welfare. Online
Appendix D provides a microfoundation for our inelastic financial markets. Supplementary
Material in Online Appendices E-H includes further figures and explanations.

2 Model

2.1 Representative Household

The representative household maximizes its expected discounted utility:

max
{Ct+j ,Nt+j}

Et

∞∑
j=0

βj

[
log(Ct+j)−

η

η + 1

(
Nt+j

N̄t+j

)1+ 1
η

]
, (1)

where Ct denotes final good consumption and Nt =
(∫ 1

0
Nt(ν)

η+1
η dν

) η
η+1

is the aggregate
labor index with Nt(ν) representing labor supplied in intermediate industry ν. The param-
eter η is the Frisch elasticity of labor supply, and N̄t is the balanced-growth population,
growing at a constant gross rate GN .

Each period, the household invests in f -period zero-coupon government bonds (with
f = 1, . . . , F ) and provides loans to firms.11 Its budget constraint is

Ct +
Lt

Pt
+

∑F
f=1B

H,f
t

Pt
=

∑F−1
f=0 Rf

t B
H,f+1
t−1

Pt
+

RK
t Lt−1

Pt
+

∫ 1

0

Wt(ν)Nt(ν)

Pt
dν +

Λt

Pt
, (2)

where Lt denotes one-period loans to firms, yielding a return RK
t ; Wt(ν) is the wage in

industry ν; and Λt aggregates transfers from lump-sum taxation and profits from the central
bank and firms. BH,f

t represents nominal investment in f -maturity government bonds that
pay one dollar at time t + f , with Qf

t denoting the bond price (by definition, Q0
t = 1 at

maturity). Households cannot issue risk-free bonds. The one-period return on an f -period
bond is given by Rf

t =
Qf

t

Qf+1
t−1

, which captures the rate of bond price revaluation between
adjacent periods. The gross yield of a zero-coupon bond with maturity f is defined as

Y Df
t :=

(
Qf

t

)−1/f

.12

11Alternatively, this may be interpreted as households purchasing one-period corporate bonds. Banks and
financial intermediaries are abstracted from our framework; in the absence of intermediation frictions, both
representations yield equivalent results.

12It follows that bond returns can alternatively be expressed as Rf
t =

(Y Df
t )

−f

(Y Df+1
t−1 )

−(f+1) .
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2.1.1 Inelastic Portfolio Demands

The representative household determines optimal consumption, employment, and savings
St, which are allocated between government bonds BH

t =
∑F

f=1B
H,f
t and firm loans Lt,

so that St = BH
t + Lt.

Following the literature (Koijen and Yogo, 2019; Gabaix and Koijen, 2022), we assume
that households’ portfolio shares are determined by downward-sloping demand functions
with finite own- and cross-price elasticities. This structural representation offers two advan-
tages. First, the estimated demand elasticities (see Online Appendix B) summarize market
segmentation across maturities. Second, it nests the benchmark New Keynesian model as
a special case. Online Appendix D provides a microfoundation for these finite elasticity
portfolio demand functions based on heterogeneous information about asset returns.

Let the household’s portfolio share of the f -maturity bond in total government bond
holdings be denoted by λHB,f

t , i.e., λHB,f
t ≡ BH,f

t

BH
t

. We assume λHB,f
t is given by:

λHB,f
t =

(
zft Et[Qt,t+1R

f−1
t+1 ]

ΦB
t

)κB

, (3)

where ΦB
t ≡

[∑F
j=1

(
zjt Et[Qt,t+1R

j−1
t+1 ]
)κB
] 1

κB . Here, κB represents the elasticity of the

demand for the f -maturity bond with respect to its expected return Rf−1
t+1 , discounted by the

household’s stochastic discount factor Qt,t+1.13 We assume κB > 0 throughout the paper.
Additionally, we introduce zft as a shock to the portfolio preference for the f -maturity

bond. For example, an increase in zft will raise the household’s f -maturity share of gov-
ernment bond holdings, given returns and other macroeconomic states. In equilibrium,
this shock will raise the price of the f -maturity bond Qf

t and induce households to real-
locate their portfolios toward other maturities and private loans, thus pushing down their
returns.14 This shock, combined with the household’s endogenous portfolio “rebalancing”,
is an important source of variation that generates an upward-sloping yield curve both at and
away from the steady state. In the context of the preferred-habitat literature (Vayanos and
Vila, 2021), this shock can be interpreted as a shock to the preferred-habitat demand for

13In our framework, Et[Qt,t+1R
f−1
t+1 ] does not equal 1 due to the inelasticity of demand in (3), consistent

with the literature.
14Under our calibration and estimated κB , decreases in returns of other assets are smaller than the decrease

in the original return Rf
t+1. This produces a phenomenon known as “localization” of demand shocks, as

documented in Vayanos and Vila (2021) and Droste et al. (2021).
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the f -maturity bond.
Given equation (3), the aggregate return on the household’s bond portfolio is:

RHB
t+1 =

F−1∑
f=0

λHB,f+1
t Rf

t+1. (4)

Using the effective bond return from (4), the household’s portfolio share of total savings
allocated to loans is given by:

λK
t =

(
zKt Et[Qt,t+1R

K
t+1]

ΦS
t

)κS

, (5)

where ΦS
t =

[(
Et[Qt,t+1R

HB
t+1 ]
)κS +

(
zKt Et[Qt,t+1R

K
t+1]
)κS
] 1

κS . Here, κS represents the
elasticity of the demand for private loans with respect to their expected return RK

t+1, dis-
counted by the household’s stochastic discount factor Qt,t+1.15 We assume κS > 0 through-
out the paper. As the bond return RHB

t+1 depends on the bond portfolio {λf
t }Ff=1, given by (3),

our portfolio demand follows a nested constant elasticity of substitution (CES) structure.
Additionally, we introduce zSt as a shock to the portfolio preference for private loans.

Similar to the case for {zft }, this shock induces households to rebalance their portfolios,
which affects the equilibrium returns of bonds with different maturities and private loans.16

Based on (3) and (5), the aggregate bond holdings by maturity f are:

BH,f
t =

(
1− λK

t

)
λHB,f
t St, ∀f = 1, . . . , F,

and the aggregate return on household savings is:

RS
t =

(
1− λK

t−1

)
RHB

t + λK
t−1R

K
t . (6)

Therefore, RS
t is a weighted average of returns from bonds (across maturities) and loans,17

representing the effective savings rate of households. The household’s budget constraint

15Again, Et[Qt,t+1R
K
t+1] does not equal 1 in our framework, due to the assumed inelasticity of demand

in (5), consistent with the literature.
16Equation (5) implies that the household’s portfolio share in loans increases in response to higher loan

returns RK
t+1 and decreases in response to the aggregate bond return RHB

t+1 .
17While our analysis assumes a one-period duration for private loans, extending the model to incorporate

a term structure in the loan market is feasible. However, given our focus on unconventional monetary policy
via central bank purchases of government bonds, we restrict our discussion to the term structure for bonds to
maintain model tractability.
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(2) can be rewritten as:

Ct +
St

Pt

=
RS

t St−1

Pt

+

∫ 1

0

Wt(ν)Nt(ν)

Pt

dν +
Λt

Pt

. (7)

Despite the richer asset structure and market segmentation, the representative household’s
problem ultimately resembles that of a conventional New Keynesian model.

Expectations Hypothesis Note that as κB → ∞, κS → ∞, and zft = zSt = 1 for all f, t,
our framework converges to a conventional New Keynesian model represented by:

Et[Qt,t+1R
f−1
t+1 ] = Et[Qt,t+1R

K
t+1] = 1, ∀f. (8)

In its log-linearized form, equation (8) becomes:

Et[R̂
f−1
t+1 ] = Et[R̂

K
t+1] = R̂0

t+1, ∀f, (9)

which makes all returns other than the policy rate R̂0
t+1 redundant. Equation (9) corresponds

to the classic expectations hypothesis. Thus, our model specification with inelastic financial
markets nests the conventional expectations hypothesis result as a special case.

2.1.2 Optimality Conditions

The solution to the household’s problem in (1), subject to the budget constraint in (7), yields
the following equilibrium conditions:

(
Nt(ν)

N̄t

) 1
η

=

(
Ct

N̄t

)−1
Wt(ν)

Pt

, (10)

1 = β Et

[
RS

t+1Ct

Ct+1Πt+1

]
, (11)

where Πt+1 = Pt+1/Pt is the gross inflation rate. In equation (11), the effective savings
rate RS

t+1 serves as the benchmark rate for intertemporal consumption decisions. This rate
is a composite measure reflecting the returns on bonds of various maturities and loans,
each weighted by its share in the aggregate portfolio. As a result, the endogenous portfolio
rebalancing channel becomes central to the business cycle dynamics under forward-looking
unconventional monetary policies (see Section 4).
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Remarks Our results regarding imperfect substitution across assets are similar to those
found in bond-in-the-utility models with finite substitution elasticities (e.g., Alpanda and
Kabaca (2020)), but our formulation preserves the standard aggregate dynamics (i.e., equa-
tions (10) and (11)), which enhances tractability.18

Moreover, unlike the previous preferred-habitat literature, our framework does not rely
on financial arbitrageurs to generate an upward-sloping yield curve; in our model, the bond
market is segmented with the degree directly captured by the parameters κB and κS , and
household portfolios are subject to each asset maturity and class-specific preference shocks
{zft }Ff=1, z

K
t , which in equilibrium lead to different levels of term premium along the yield

curve.

2.2 Capital Producer

A representative firm produces capital Kt and rents it to intermediate goods producers at
price PK

t . Capital is accumulated by investing final goods, depreciates at rate δ, and new
investment It is implemented with a one-period lag. Hence, capital evolves according to

Kt = (1− δ)Kt−1 + It−1.

The firm’s profits are given by

ΛK
t = PK

t Kt − Pt It,

with Pt denoting the final good price index. Maximizing profits with respect to It yields
the first-order condition

1 = Et

[
Qt,t+1 Πt+1

(
(1− δ) +

PK
t+1

Pt+1

)]
,

where Πt+1 =
Pt+1

Pt
is the gross inflation rate.

18Harrison (2024) similarly introduces a portfolio friction that creates a wedge between short- and long-
run bond returns, allowing the central bank’s quantitative easing policy to work.
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2.3 Firms

There is a continuum ν ∈ [0, 1] of intermediate goods, each produced by a monopolist
using capital and labor according to

Yt(ν) =

(
Kt(ν)

α

)α(
AtNt(ν)

1− α

)1−α

, (12)

where At = exp(uA
t ) denotes aggregate technology with uA

t = µ + uA
t−1 + εAt , εAt ∼

N(0, σ2
A), and the gross growth rate is GAt ≡ At/At−1 = exp(µ+ εAt ).

A representative competitive firm aggregates intermediate products into a final good
using a Dixit–Stiglitz aggregator:

Yt =

[∫ 1

0

Yt(ν)
ϵ−1
ϵ dν

] ϵ
ϵ−1

,

with ϵ > 1 as the elasticity of substitution. The demand for intermediate good ν is

Yt(ν) =

(
Pt(ν)

Pt

)−ϵ

Yt , (13)

and the aggregate price index is defined as

Pt =

[∫ 1

0

Pt(ν)
1−ϵ dν

] 1
1−ϵ

. (14)

Intermediate producers face sticky prices à la Calvo (1983) and reset their prices each
quarter with probability 1−θ. Firms that adjust set the optimal price P ∗

t , and the equilibrium
aggregate price index satisfies P 1−ϵ

t = (1− θ)(P ∗
t )

1−ϵ + θ P 1−ϵ
t−1 .

Each intermediate firm rents capital at price PK
t from the capital producer. To finance

production, firm ν borrows a fraction γ of its potential revenue (1 + ζF )Pt(ν)Yt(ν), where
ζF represents a production subsidy. Specifically, a firm ν that borrows Lt(ν) must repay
RK

t+1 Lt(ν) in the next period, with the rate RK
t+1 contracted at time t. This borrowing

constraint can be interpreted as a financial friction faced by intermediate firms, such as a
working capital constraint.
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Firm ν maximizes its discounted profit stream:

max
∞∑
j=0

Et

[
Qt,t+j

(
(1 + ζF )Pt+j(ν)Yt+j(ν)−Wt+j(ν)Nt+j(ν)− PK

t+jKt+j(ν)

−RK
t+jLt+j−1(ν) + Lt+j(ν)

)]
, (15)

where Qt,t+j = βj
(

Pt+j

Pt
· Ct+j

Ct

)−1

is the stochastic discount factor between periods t and
t+ j. At period t+ j, firm ν repays RK

t+jLt+j−1(ν) on the loan taken in period t+ j − 1.
Minimizing production costs with respect to labor and capital yields the input demand

functions:

Nt(ν) = (1− α)
Yt(ν)

At

(
PK
t

Pt

Wt(ν)
PtAt

)α

,
Kt(ν)

At

= α
Yt(ν)

At

(
PK
t

Pt

Wt(ν)
PtAt

)−(1−α)

. (16)

2.4 Bond Market

The bond market equilibrium is given by

BH,f
t +BG,f

t +BCB,f
t = 0, ∀f = 1, . . . , F, (17)

where BH,f
t denotes households’ holdings of f -maturity bonds, while BG,f

t and BCB,f
t

represent bonds held by the government19 and the central bank, respectively. We assume
that only the government and the central bank can issue riskless claims—and therefore hold
negative bond positions.20

Allowing the government to issue bonds (and hold negative positions) is essential; our
specifications for technology growth GAt and population growth GN ensure that, at the
steady state, the government’s debt remains nonzero but non-explosive, so it consistently
supplies risk-free debt despite cyclical fluctuations.

Defining λG,f
t and λCB,f

t as the shares of f -maturity bonds held by the government and

19By assumption, the government issues bonds across maturities, so BG,f
t ≤ 0 for all f .

20In practice, a negative position of the central bank can be interpreted as holding interest-bearing excess
reserves (see, e.g., Frost (1971), Güntner (2015), Mattingly and Abou-Zaid (2015), Primus (2017), and Ennis
(2018)).
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the central bank, respectively, we can rewrite (17) as

λHB,f
t BH

t + λG,f
t BG

t + λCB,f
t BCB

t = 0, ∀f = 1, . . . , F. (18)

2.5 Government

The government’s budget constraint is given by

Gt + ζFYt +
BG

t

Pt

= Tt +
RG

t B
G
t−1

Pt

, with BG
t =

F∑
f=1

BG,f
t , RG

t =
F−1∑
f=0

λG,f+1
t−1 Rf

t . (19)

Here, BG
t is the government’s nominal bond position, Gt denotes real government spend-

ing, Tt represents taxes, and RG
t is the aggregate bond return on its portfolio, where λG,f

t

is the fraction of government debt held as an f -maturity bond. By assumption, BG,f
t =

λG,f
t BG

t for all f = 1, . . . , F , and both λG,f
t and BG

t are exogenous.21

Rearranging (19), the constraint can be written as

BG
t

Pt

=
RG

t B
G
t−1

Pt

−
[
ζGt + ζF − ζTt

]
Yt, (20)

where ζGt = Gt

Yt
and ζTt = Tt

Yt
denote government spending and taxation as shares of GDP,

respectively, and are exogenous in our framework.

2.6 Central Bank

The profits generated by the bonds held on the central bank’s balance sheet are given by

ΛCB
t = RCB

t BCB
t−1 −BCB

t , with BCB
t =

F∑
f=1

BCB,f
t , RCB

t =
F−1∑
f=0

λCB,f+1
t−1 Rf

t , (21)

where BCB
t denotes the central bank’s total nominal bond holdings, and RCB

t is the aggre-
gate bond return on its portfolio {BG,f

t−1}Ff=1. The fraction of bonds held with maturity f is
given by λCB,f

t . Formally,

BCB,f
t = λCB,f

t ·BCB
t , ∀f = 1, . . . , F. (22)

21We abstract from the government’s optimal maturity structure problem and assume its gross bond posi-
tions and portfolios across maturities are exogenous, focusing on the central bank’s monetary policy.
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Both BCB
t and λCB,f

t depend on the monetary policy rules, which will be described shortly.
The central bank’s profits ΛCB

t are transferred as a lump-sum payment to the household,
forming part of the total transfer Λt in (2).

2.7 Monetary Policy

Equation (22) introduces F additional conditions, so the central bank’s monetary policy
now has F degrees of freedom that must be specified to achieve a determinate nominal
equilibrium.22 Monetary authorities may implement policy by:

1. Setting a rule for each f -maturity bond’s holdings BCB,f
t , allowing bond prices (and

yields) to adjust accordingly.

2. Setting a rule for each f -maturity bond’s yield Y Df
t (or equivalently, its price Qf

t ),
and then adjusting the purchase amounts BCB,f

t to achieve the target yield.

3. Employing a combination of the two approaches across different maturities.

In Case 1, the central bank directly controls the expansion of its bond holdings, resembling
traditional rules on money supply growth.23 Case 2 exemplifies yield-curve control (YCC),
as implemented by the Bank of Japan in 2016.24 Case 3 combines elements of both and
includes, for example, the traditional short-term rate target of conventional monetary policy.

While unconventional policies could be implemented according to any of the three cases
above, we assume that their defining characteristic is an intent to influence asset returns
along the entire yield curve (in contrast to conventional policies, which focus on short-term
rates). Consequently, we adopt a YCC policy rule as the representative unconventional
policy within our framework. In what follows, we formally characterize the equations
describing both conventional and YCC policy rules.

22The central bank selects its bond portfolio across maturities and its total debt position. In conventional
New Keynesian models, this portfolio problem is typically abstracted away since the explicit term structure
is absent, as discussed in Section 2.1.1.

23This approach reflects the idea that bond purchases increase money supply. It also specifies the portfolio
composition across maturities, even though we do not explicitly incorporate money as a separate variable.

24On September 21, 2016, the Bank of Japan set a short-term rate target of −0.1% and capped its 10-year
government bond yield near zero. For the U.S. case, see Humpage (2016) regarding the Fed’s yield-curve
control during World War II.
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Conventional Policy Conventional monetary policy targets the short-term interest rate
(Case 3), whereby the central bank sets a rule for the one-period bond yield Y D1

t while
leaving longer-term bonds unchanged. We assume that the central bank maintains nor-
malized positions for long-term bonds (i.e., adjusted for technology, population, and price
growth) as follows:

R0
t+1 ≡ Y D1

t = max
{
Y D1∗

t , 1
}
,

Y D1∗
t

Y D
1 =

(
Y D1∗

t−1

Y D
1

)ρ1 (Y D1∗
t−2

Y D
1

)ρ2 [(Πt

Π̄

)γπ (Yt

Ȳt

)γy

exp
(
ϵ̃Y D1

t

)]1−(ρ1+ρ2)

,

BCB,f
t

AtN̄tPt

=
BCB,f

AN̄P
, ∀ f = 2, . . . , F,

(23a)

(23b)

(23c)

where Y D1∗
t follows a standard Taylor rule that targets deviations in inflation and output,

with ϵ̃Y D1

t representing a monetary policy shock. When Y D1∗
t falls below 1, the ZLB binds,

so that R0
t+1 ≡ Y D1

t = 1 as specified in (23a).25

Yield-Curve-Control policy Yield-curve control policy targets the entire yield curve by
applying a Taylor rule to each bond maturity—including the short-term rate rule defined in
(23)—as follows:

Y Df∗
t

Y D
f

=

(
Y Df∗

t−1

Y D
f

)ρ1 (
Y Df∗

t−2

Y D
f

)ρ2 [(
Πt

Π̄

)γf
π
(
Yt

Ȳt

)γf
y

exp
(
ε̃Y Df

t

)]1−(ρ1+ρ2)

,

Y DY CC,f
t = Y D

f

(
Y DCP,f

t

Y D
f

)γf
CP
[
Y Df∗

t

Y D
f

]1−γf
CP

,

(24a)

(24b)

where γf
π and γf

y capture the responsiveness to inflation and output deviations for maturities
f = 1, . . . , F , and ε̃Y Df

t is a monetary policy shock affecting the yield on an f -maturity
bond. The term Y DCP,f

t denotes the yield that would prevail under conventional monetary
policy – see equation (23). γf

CP ∈ [0, 1] governs the influence of the conventional target
within the yield-curve control framework. When γf

CP = 1, the rule reverts to conventional
policy; when γf

CP = 0, the yield for the f -maturity bond is determined solely by the YCC

25For example, a sudden increase in the preference parameter z1t may boost household demand for one-
period bonds, pushing the yield toward zero and potentially inducing recessionary pressures as consumption
falls under the ZLB constraint.
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rule, that is:

Y DY CC,f
t = Y D

f

(
Y Df∗

t−1

Y D
f

)ρ1 (
Y Df∗

t−2

Y D
f

)ρ2 [(
Πt

Π̄

)γf
π
(
Yt

Ȳt

)γf
y

exp
(
ε̃Y Df

t

)]1−(ρ1+ρ2)

.

In this pure case, the central bank ignores balance sheet exposure concerns for bonds with
maturity f – see equation (23c). Intermediate values 0 < γf

CP < 1 allow the monetary
authority to balance yield-curve intervention with considerations of balance sheet com-
position and size. For simplicity, in our subsequent analysis we set γf

CP = 0 for all f ,
representing a pure yield-curve control policy.

2.8 Market Clearing

Using the bond market equilibrium condition (17), the total transfers to households—comprising
profits from firms, the central bank, and capital producers, net of government taxes—are
given by

Λt = PtYt − PtGt − PtIt −
∫ 1

0

Wt(ν)Nt(ν) dν −RK
t Lt−1 + Lt +BH

t −RH
t B

H
t−1. (25)

Combining (25) with the household’s budget constraint (2) yields the standard aggregate
market-clearing condition:

Ct +Gt + It = Yt . (26)

2.9 Aggregation

Aggregating labor demand equation (16) across intermediate firms yields:

Nt

N̄t

= (1− α)(
η

η+α)
(

Ct

AtN̄t

)−α( η
η+α)( Yt

AtN̄t

)( η
η+α)(PK

t

Pt

)α( η
η+α)

∆
η

η+1

t , (27)

where ∆t is a measure of price dispersion, recursively defined as:

∆t = (1− θ)

(
P ∗
t

Pt

)−ϵ( η+1
η+α)

+ θΠ
ϵ( η+1

η+α)
t ∆t−1. (28)

Note from equation (27) that, for a given (normalized) level of consumption and output, the
required labor Nt increases with price dispersion ∆t—a proxy for the inefficiency induced
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by nominal rigidities. Moreover, a higher PK
t

Pt
raises the rental cost of capital, prompting

firms to substitute capital with labor, thereby increasing Nt. This substitution channel is
also captured in the aggregate capital equilibrium condition:26

Kt

At−1N̄t−1

= α(1− α)
1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α
(
PK
t

Pt

)−( η(1−α)
η+α )

∆t.

(29)

Consequently, aggregate capital Kt rises when consumption, output, or price dispersion
increases and/or when the rental price of capital falls. These two equations highlight the
role of firms’ substitution between capital and labor during production.

The representative household satisfies the Euler equation (11), with effective savings
rate RS

t+1 determined by (6), λK
t given by (5), and λHB,f

t specified in (3). The equilibrium
condition for the household’s allocation between loans and bonds is:

Lt

BH
t

=
γ(1 + ζF )PtYt

BH
t

=
λK
t

1− λK
t

, (30)

where BH
t and Lt represent the aggregate household bond and loan holdings, respectively.

2.9.1 Conventional Policy

Under conventional monetary policy (i.e., (23)), the central bank does not adjust its nor-
malized holdings of long-term bonds. Consequently, for f > 1 the ratio BCB,f

t

AtN̄tPt
remains

constant. In this setting, the household’s bond portfolio share, λHB,f
t , must satisfy:

λHB,f
t = −

BG,f
t

AtN̄tPt
+ BCB,f

AN̄P

BH
t

AtN̄tPt

, ∀f > 1. (31)

2.9.2 Yield-Curve Control Policy

In the yield-curve control case (i.e., (24)), monetary policy influences households’ bond
portfolio across maturities {λHB,f

t }Ff=1 and the effective bond return RHB
t through the fol-

26We normalize Kt by At−1N̄t−1, as Kt is determined in period t−1, while Nt, Ct, and Yt are normalized
by AtN̄t, and PK

t is normalized by Pt.
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lowing relationships:

λHB,f
t =

zft Et

[
Qt,t+1R

f−1
t+1

]
ΦB

t

κB

, Rf−1
t+1 =

(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f
. (32)

Changes in the household’s bond portfolio composition affect the effective bond rate RHB
t

(from (4)), the loan rate RK
t (from (5)), and the effective savings rate RS

t (from (6)). These
adjustments, in turn, influence consumption via the Euler equation (11) and other aggregate
outcomes as captured by equations (26), (27), (29), and (30).

Figure III.2 in Appendix III provides a graphical illustration of the model. Appendix
I provides shock processes for portfolio preference shocks {zft }Ff=1 and zKt , government
spending ratio ζGt and the revenue ratio ζTt , government bond shares {λG,f

t }Ff=1, and mon-
etary policy shocks {ε̃Y Df

t }Ff=1.
We present all other equilibrium conditions and derivations in Online Appendix A.

3 Steady-State (Long-Run) Analysis

3.1 Steady-State Relations

We assume that the central bank’s total bond holdings, BCB, equal a constant fraction ζCB

of the total government bond issuance, BG; that is, BCB = ζCBBG.27 Given the portfolio
shares {λCB,f}Ff=1, the steady-state relation in the Treasury market (i.e., (18)) becomes:

λHB,f =
λG,f + λCB,fζCB

1 + ζCB
.

Thus, the household’s steady-state bond portfolio shares {λHB,f}Ff=1 are determined by the
exogenous parameters {λG,f , λCB,f}Ff=1 and ζCB.

In steady state, the government’s budget constraint can be expressed as:

BG

AN̄P
= −

(
1− RG

Π ·GA ·GN

)−1 [
ζG + ζF − ζT

] Y

AN̄
.

Given the normalized output level Y
AN̄

and a positive primary deficit ratio ζG+ζF −ζT > 0,

27Since BG < 0 and BCB > 0 in steady state, it follows that ζCB < 0.
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an increase in the interest rate on government debt, RG, results in a larger volume of bond
issuance |BG| (recall that BG < 0) and a higher debt-to-output ratio, as the government
must pay more in interest on its debt.28

The remaining steady-state relationships and the procedures for characterizing these
conditions are detailed in Online Appendix A.1.3.

3.2 Results

3.2.1 Calibration

We use publicly available data on (i) Treasury yields, (ii) the Federal Reserve’s holdings
of Treasury bonds (December 2002–June 2007), and (iii) the U.S. Treasury’s outstanding
bonds (January 1990–January 2007) to calibrate the model’s term structure parameters. We
set F = 120 to represent maturities up to 30 years (i.e., 120 quarters).29 Parameter values
are summarized in Table II.2 in Appendix II, with standard macroeconomic parameters
calibrated to widely accepted values in the literature.

Household demand for maturity-f bonds, λHB,f
t , is driven by the maturity-specific pref-

erence shock zft and the demand elasticity κB; similarly, loan demand λK
t is driven by zKt

and κS . We calibrate the yield curve’s slope using {zf}Ff=1 and its level using zK , with
fixed values for the demand elasticities κB and κS . Specifically, we set κB = 10, estimated
from macro data using our bond portfolio equation (3) in Online Appendix B, and κS = 6,
based on Kekre and Lenel (2023). With these values, {zf} is selected to match the relative
yields across maturities, while zK is calibrated to reproduce the steady-state return on the
household bond portfolio, RHB. The detailed calibration procedure is provided in Online
Appendix B.1. We also set γ = 3, which constitutes an upper bound for private debt-
to-GDP ratios in advanced economies. Under our calibration, the untargeted steady-state
value of RK is 8.12%, close to the average Moody’s Seasoned BAA Corporate Bond Yield
of 7.88% during 1990–2007.

Figure 1 displays the bond shares across maturities for households, government, and the
central bank, along with the resulting steady-state yield curve. The calibrated values of zK

and {zf}Ff=1 are reported in Table II.1 and Figure II.1. Notably, z1 = 1 is relatively large

28To maintain a positive primary deficit through non-explosive bond issuance in steady state, we require
RG < Π · GA · GN , a condition that holds under our calibration. This condition is consistent with recent
literature on debt sustainability, such as Blanchard (2019).

29When yield data are missing, we interpolate to generate a smooth yield curve. Data source: https:
//fiscaldata.treasury.gov/datasets/monthly-statement-public-debt
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compared to zf for f ≥ 2, reflecting the fact that short-term yields have historically been
lower than longer-term yields. This discrepancy likely captures the safety and/or liquidity
premium of short-term bonds, a phenomenon extensively documented in the literature (e.g.,
Krishnamurthy and Vissing-Jorgensen (2012) and Caballero and Farhi (2017)).
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Figure 1: Steady-state bond shares of different entities, with the yield curve

Lastly, our calibration of Taylor coefficients, γ1
π, γf≥2

π , γy, γf≥2
y , satisfies model deter-

minacy both in conventional policy and yield-curve control policy regimes, where increas-
ing monetary responsiveness to output and inflation generically guarantees that our model
yields unique equilibrium. We characterize the determinacy conditions in Online Appendix
H.

3.2.2 Government’s Supply and Central Bank’s Demand for Bonds

We now examine how changes in the government’s debt structure—captured by its Trea-
sury issuance shares {λG,f}Ff=1—affect the steady-state yield curve. Figure 2 shows al-
ternative debt issuance arrangements (left panel) and the corresponding yield curve shifts
(right panel); dashed and dotted lines indicate higher long-term issuance compared to the
benchmark (solid line).30 The model generates a positive correlation between yields and the
relative supply λG,f ; higher issuance at a given maturity increases its yield. This effect not
only targets that maturity but also influences equilibrium returns in both Treasury and pri-
vate loan markets via household portfolio rebalancing, thereby affecting the government’s
overall bond issuance in general equilibrium.

30For illustration purposes, the shifts in portfolio shares are arbitrary.
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Figure 2: Government’s bond issuance portfolio and yield curve
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Figure 3: Variations in central bank’s bond portfolio across maturities

Figure 3 illustrates an alternative scenario in which the central bank adjusts its bond
portfolio composition. Here, the dashed and dotted lines represent higher long-term bond
purchases relative to the benchmark (solid line). An increased relative purchase of a given
maturity is associated with a lower yield, which is consistent with evidence that central
bank bond purchases act as an additional demand shock in segmented markets under gen-
eral equilibrium (e.g., Ray (2019) and Droste et al. (2021)).31

31Krishnamurthy and Vissing-Jorgensen (2011) document that QE2, which focused on Treasury bonds,
had a disproportionate impact on Treasuries and Agencies relative to mortgage-backed and corporate bonds.
D’Amico and King (2013) also identify stock and flow effects of QE on Treasury yields, supporting the view
of imperfect substitution in the Treasury market.
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3.2.3 Comparative Statics with Deficit Ratio
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Figure 4: Variations in deficit ratio ζF + ζG − ζT

Figure 4 shows comparative statics for variations in the deficit ratio ζF + ζG − ζT . A
higher deficit ratio can be sustained only if (i) the government issues more bonds, (ii) the
effective bond rate RG decreases, or (iii) output declines, thereby lowering nominal deficit
expenditure.

Examining the first case, if the government increases debt issuance for a given output
level, the supply effectdiscussed in Section 3.2.2 raises RG, which in turn forces even
more debt issuance to cover higher interest costs—a process that spirals indefinitely. In
contrast, the second and third cases operate jointly: a higher deficit ratio reduces output,
consumption, and capital, which lowers the nominal deficit and government bond issuance,
thereby depressing RG. Meanwhile, the loan rate RK remains relatively stable, leading to
an increased credit spread rK − rHB. Notably, our finding that the debt-to-GDP ratio BG

Y

declines and the entire yield curve shifts downward in response to an increased deficit ratio
aligns with previous literature.32

Additional comparative statics results are provided in Online Appendix F.

32Laubach (2009) estimates that a 1% point increase in the projected debt-to-GDP ratio raises long-term
interest rates by approximately 3–4 basis points.
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4 Short-Run Analysis

4.1 Log-linearization

We now present the log-linearized solution of the model. Lower-case letters denote normal-
ized variables, e.g., kt ≡ Kt

At−1N̄t−1
, yt ≡ Yt

AtN̄t
, ct ≡ Ct

AtN̄t
, nt ≡ Nt

N̄t
, pKt ≡ PK

t

Pt
, while hats

denote log-deviations from the steady state. Given our system’s complexity, we highlight a
few key equilibrium equations here; complete derivations are provided in Online Appendix
A.

Linearizing the Euler equation (11) yields the dynamic IS equation featuring the effec-
tive savings rate r̂St+1:

ĉt = Et

[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (33)

where r̂St is derived from (6) as

r̂St =
λK
(
RK −RHB

)
RS

λ̂K
t−1 +

(1− λK)RHB

RS
r̂HB
t +

λKRK

RS
r̂Kt . (34)

Note that r̂St depends on the effective bond rate r̂HB
t , the loan rate r̂Kt , and the loan share

λ̂K
t−1, capturing the portfolio rebalancing between bonds and loans. The effective bond rate

r̂HB
t is obtained by linearizing (4):

r̂HB
t =

F∑
f=1

λHB,f
(
Y Df−1

)−(f−1)

RHB (Y Df )−f

[
λ̂HB,f
t−1 − (f − 1) · ŷd

f−1

t + f · ŷd
f

t−1

]
. (35)

It depends on past yields {ŷd
f

t−1}Ff=1, current yields {ŷd
f−1

t }Ff=1, and household bond port-
folio shares {λ̂HB,f

t−1 }Ff=1, capturing the impact of aggregate bond price revaluations and
portfolio composition on overall bond returns.

To study portfolio reallocation, we linearize the household’s optimal bond portfolio (see
(3)) and express the bond shares as functions of past and current yields:

λ̂HB,f
t−1 = κBEt−1

[
ẑft−1 − π̂t + ĉt−1 − ĉt − (f − 1) · ŷd

f−1

t + f · ŷd
f

t−1 − ϕ̂B
t−1

]
, (36)

where ϕ̂B
t comprises {ŷd

f−1

t , ŷd
f

t−1}Ff=1 and other aggregate variables. Substituting equa-
tion (36) into (35) represents the household’s effective bond rate as a function of the entire
yield curve.
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Finally, linearizing the household’s optimal portfolio choice between bonds and loans
(i.e., (5)) yields:

λ̂K
t = κS

(
1− λK

) (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
.

Here, increases in ẑKt and in the expected spread Et[r̂
K
t+1 − r̂HB

t+1 ] raise the loan share λ̂K
t .

Since r̂Kt+1 directly enters the effective savings rate r̂St+1 (see (33)), it influences consump-
tion via the intertemporal substitution channel. Changes in r̂Kt+1 also affect λK

t , altering loan
issuance Lt, output (see (30)), and, consequently, aggregate labor (see (27)) and capital (see
(29)) accumulation.

4.2 Results

4.2.1 Impulse-Response without the ZLB

We first analyze impulse responses to various shocks in an economy that remains above the
ZLB. The shocks considered are z1t (household preference shock for short-term bonds), zKt
(household preference shock for loans), and εTt (tax shock). Graphs for additional shocks
appear in Online Appendix G.

Short-term Bond Preference Shock, z1t : Figure 5a shows that a positive z1t shock raises
household demand for short-maturity bonds that feature the lowest returns along the yield
curve at the steady state. Under conventional policy (dashed lines), this shock is reces-
sionary since it induces households to save relatively more in overpriced short-term assets
with lower returns, lowering aggregate consumption demand. Under our calibration, a one
standard deviation z1t shock reduces output by 3–4%. In contrast, under YCC policy (solid
lines), the central bank can mitigate a recession by lowering the effective bond return. This
additional monetary easing alleviates drops in aggregate consumption demand, stabilizing
inflation and output.

More broadly, a positive z1t shock can be interpreted as a negative financial shock, such
as a disruption in the bond market—similar to a flight-to-safety or liquidity shock affecting
demand for short-term bonds. Under conventional policy, this would typically induce a
recession, whereas YCC achieves near-perfect stabilization.

Loan Preference Shock, zKt : Figure 5b illustrates that a positive zKt shock causes house-
holds to allocate more savings toward loans. This portfolio shift reduces loan returns and
increases aggregate capital, which subsequently boosts output and inflation. In response,
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the central bank raises the policy rate. As in previous cases, YCC dampens these fluctua-
tions more effectively than conventional policy.
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Figure 5: Impulse response to z1t and zKt without ZLB

Tax Shock, εTt : Figure 6 depicts impulse responses to a positive tax shock, εTt . Under
conventional policy, higher tax revenues lead the government to issue fewer bonds. This
reduction triggers a decline in bond and loan returns33 and in factor prices (loan rates and
wages) via household portfolio reallocation and firms’ input substitution. Under our cal-
ibration, the conventional policy response is insufficient to counteract the negative output
effects of reduced bond issuance. In contrast, the YCC policy achieves better stabilization
because the entire yield curve shifts downward in response to the shock. This coordinated
adjustment results in smaller changes in individual maturities and thus a modest reduction
in the effective household savings rate rSt+1, which supports aggregate consumption and
mitigates output losses.

These results highlight that while conventional policy may induce significant business
cycle fluctuations following shocks, a yield-curve control regime can more effectively sta-
bilize the economy by actively managing the entire term structure.

33This shock thus reduces aggregate consumption demand, as bonds become more expensive in equilib-
rium and the household’s elasticity of substitution between bonds and private loans is finite.
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Figure 6: Impulse-response to εTt shock without ZLB

4.2.2 Impulse-Response at the ZLB

In this section, we present impulse responses to various shocks under the ZLB. To illustrate
independent ZLB episodes, we calibrate shocks to very large (albeit highly improbable)
magnitudes.

Short-term Bond Preference Shock, z1t : Figure 7a shows that a positive z1t shock —in-
creasing household demand for short-term bonds—lowers the short-term rate under con-
ventional policy (dashed lines) and causes a recession with deflation and output drop by
3–4% per standard deviation. In contrast, under a YCC regime (solid lines), the central
bank increases long-term bond purchases, lowering long-term rates and the effective sav-
ings rate. This boosts aggregate demand and mitigates the recession.

However, this intervention also extends the ZLB episode, as the downward pressure on
long-term yields feeds back into the household’s portfolio decisions. Households shift their
portfolios further toward short-term bonds, which further binds the short-term rate at zero.
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(a) z1t shock
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(b) zKt shock

Figure 7: Impulse response to z1t and zKt with ZLB

Loan Preference Shock, zKt : Figure 7b depicts that a sizable negative zKt shock induces
households to reduce loan investments and reallocate toward bonds. Consequently, bond
rates decline and the policy rate remains at the ZLB, while output, capital, inflation, and
loan rates all fall. As with the z1t shock, YCC achieves better stabilization but extends the
ZLB duration.

Tax Shock, εTt : Figure 8 shows that a positive tax shock leads to a reduction in bond is-
suance under conventional policy. The resulting lower bond and loan returns and lower ag-
gregate consumption, combined with the endogenous portfolio reallocation by households
and firms’ input substitution, deepen the recession—causing declines in output, capital,
inflation, and capital returns. Under YCC, the central bank lowers the entire yield curve,
reducing the household’s effective savings rate and stimulating aggregate demand, thereby
mitigating the negative impact of reduced bond issuance. However, as with previous cases,
this policy also extends the ZLB episode due to its effect on household portfolio decisions.

In summary, while yield-curve control policies effectively stabilize the economy by
offsetting shocks across the term structure, they tend to extend the duration of ZLB episodes
compared to conventional policy, highlighting a trade-off in the stabilization benefits of
unconventional monetary measures.
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Figure 8: Impulse-response to εTt shock with ZLB

4.2.3 Policy Comparison

We follow the literature (e.g., Woodford (2003) and Coibion et al. (2012)) by computing a
second-order approximation of household utility.

Proposition 1 A second-order approximation of the expected per-period household wel-

fare is given by

EUt − ŪF = Ωn Var(n̂t) + Ωπ Var(π̂t) + t.i.p. + h.o.t.,

where Ωn and Ωπ are coefficients that capture the disutility arising from fluctuations in

labor and inflation, respectively; ŪF denotes the efficient (i.e., flexible-price) steady-state34

utility around which the approximation is centered; and the acronyms t.i.p. and h.o.t. refer

to terms independent of policy and to higher-order terms, respectively.

Proof. See Online Appendix C.

34Due to assumed trend inflation at the steady state (Π > 1), our steady state is not efficient; see Coibion
et al. (2012).
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Based on the welfare criterion provided in Proposition 1, we compare three monetary
policy regimes: (i) conventional policy (i.e., (23)); (ii) yield-curve control (YCC) policy
(i.e., (24)); and (iii) a “mixed” policy in which the central bank adopts YCC only when
the policy rate hits the ZLB.35 We evaluate these regimes using ex-ante per-period welfare,
mean and median ZLB duration, and ZLB frequency.

Conventional Yield-Curve-Control Mixed Policy
Mean ZLB duration 4.5533 quarters 6.2103 quarters 5.5974 quarters

Median ZLB duration 3 quarters 3 quarters 2 quarters
ZLB frequency 15.9596% 13.4242% 17.4141%

Welfare −1.393% −1.2424% −1.3662%

Table 1: Policy Comparisons

Table 1 shows that, compared to conventional policy, both YCC and mixed policies
improve welfare by 0.16 and 0.03 percentage points, respectively. However, YCC extends
ZLB spells (6.2 vs. 4.6 quarters), while mixed policy outcomes lie between the two bench-
marks.

Under mixed policy, stabilization during ZLB episodes is enhanced relative to conven-
tional policy because YCC is activated during ZLB periods. However, due to the household
portfolio rebalancing channel (see Section 4.2.2), mixed policy may also prolong the ZLB
spell. In contrast, YCC allows the central bank to adjust the entire yield curve even outside
ZLB periods. By lowering long-term rates in response to adverse shocks, YCC supports
aggregate demand and reduces the likelihood of entering the ZLB. However, its strong
downward pressure on short-term rates results in the longest average ZLB duration.36

5 Conclusion

This paper presents a New Keynesian model that integrates the term structure of financial
markets and the size and maturity composition of government and central bank balance
sheets as active drivers of the business cycle. Our model highlights that market segmen-
tation across asset classes and maturities—stemming from inelastic financial market de-

35Upon exiting the ZLB, the central bank immediately resets its holdings of f ≥ 2-maturity bonds to their
steady-state levels. This approach differs from Karadi and Nakov (2021), who argue that a gradual exit from
QE is optimal given that banks face reduced recapitalization incentives without additional QE.

36Note that the statistics in Table 1 are ex-ante, reflecting the potential impact of a wide range of shocks;
specific shocks may produce different patterns across regimes.
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mand—and households’ endogenous portfolio reallocation are key for understanding un-
conventional monetary policy.

We show that government debt issuance and central bank purchases of bonds with dif-
ferent maturities are the primary determinants of the yield curve’s level and slope. Further-
more, the issuance of risk-free government bonds can stimulate the economy when conven-
tional monetary policy is constrained by the ZLB, aligning with the literature on safe-asset
shortages. We compare three policy regimes: (i) conventional policy, (ii) yield-curve con-
trol (YCC), where the central bank actively manipulates the entire yield curve, and (iii) a
mixed regime, where YCC is employed only when the ZLB binds. Our results suggest that
YCC interventions offer greater stabilization than conventional policy, both during normal
periods and at the ZLB, though they also tend to extend the duration of ZLB episodes. This
occurs because easing long-term rates induces households to shift their portfolios toward
shorter maturities, further depressing short-term rates. In this sense, unconventional poli-
cies become “addictive”: central banks rely on them for economic stabilization, yet their
use exacerbates conditions that make conventional policy ineffective.

Our model provides a framework for future research on quantitative tightening in high
inflation environments and for examining the political economy and taxpayer risks asso-
ciated with expanding central bank balance sheets. Additionally, we aim to extend this
framework to international macroeconomics, revisiting issues such as global imbalances
(e.g., Caballero et al. (2008, 2021)) and global monetary cycles (e.g., Miranda-Agrippino
and Rey (2021)) with endogenous term structure fluctuations.
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I Shock Processes

We assume that the household portfolio preference shocks {zft }Ff=1 and zKt follow AR(1)

processes, given by zft = ρz z
f
t−1+εz,ft with Var(εz,ft ) = σ2

z , and zKt = ρKz zKt−1+εz,Kt with
Var(εz,Kt ) = (σK

z )2.
For the government spending ratio ζGt and the revenue ratio ζTt , we assume the follow-

ing shock processes:

ζGt =
1

1 + aG exp (−uG
t )

, ζTt =
1

1 + aT exp (−uT
t )

, (I.1)

where aG and aT are constants, and uG
t and uT

t follow AR(1) processes uG
t = ρG uG

t−1+ εGt

and uT
t = ρT uT

t−1 + εTt , with εGt and εTt being i.i.d. shocks.
As the government’s bond shares across maturities, {λG,f

t }Ff=1, are exogenously given,
we specify their processes as follows:

λG,1
t =

1

1 +
F∑
l=2

aB,l exp
(
ũB,l
t

) , λG,f
t =

aB,f exp
(
ũB,f
t

)
1 +

F∑
l=2

aB,l exp
(
ũB,l
t

) , ∀f > 1, (I.2)

where aB,f for all f > 1 are constants. When F is large, we reduce the number of inde-
pendent shocks to J ≤ F by assuming

ũB,f
t =

J∑
j=2

τBfju
B,j
t , (I.3)

where uB,j
t follows an independent AR(1) process, and τBfj is a constant for all j, f .

Similarly, we reduce the state space of shocks in the yield-curve control regime by
representing the monetary policy shocks {ε̃Y Df

t }Ff=1 for different maturities as linear com-
binations of several factors:

ε̃Y Df

t =
L∑
l=1

τY D
f,l εY Dl

t , (I.4)

where τY D
f,l (for all l, f ) are constants, εY Dl

t are i.i.d. shocks, and L ≤ F .
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II Calibration

Steady-state values
C
AN̄

9.0112 Normalized consumption
Y
AN̄

16.3315 Normalized output
K
AN̄

192.6312 Normalized capital
C
Y

0.5518 Consumption per GDP
K
Y

11.7951 Capital per GDP
PK

P
0.0335 Normalized rental price of capital

λHB,f See Figure 1 Household’s bond portfolio
λK 0.5322 Household’s loan share out of total savings
RK 1.0203 Household’s loan rates (quarterly)
Y Df See Figure 1 Equilibrium yield curve

Table II.1: Steady-state values derived from parameter calibration in Table II.2
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Figure II.1: Calibrated scale parameters of the Fréchet distribution, {zf}Ff=1
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Households
(β, η) (0.998, 1) Discount factor and Frisch labor elasticity
GN 1.00275 Population growth rate

Intermediate good firms
µ 0.00375 Technology growth rate
γ 3 Loan-to-GDP ratio
α 0.4 Capital income share
ϵ 10 Elasticity of substitution between differentiated goods
θ 0.45 Calvo price stickiness parameter
σA 0.0036 Standard deviation of technology shock
δ 0.025 Capital depreciation rate

Term structure
{zf}Ff=1 See Figure II.1 Bond maturity scale (mean) parameters (Appendix B.1)

zK 1.0089 Capital scale (mean) parameter (Appendix B.1)
κB 10 Bond maturity shape (volatility) parameter (Appendix B.2)
κS 6 Capital shape parameter: Kekre and Lenel (2023)

(ρz, ρ
K
z ) (0.9, 0.9) Autoregressive coefficient: zft and zKt

(σz, σ
K
z ) 4× 10−9 Standard deviation: zft and zKt

Government
ζF 0.1111 Government’s optimal subsidy to firms
ζG 0.0789 Government expenditure per GDP (net subsidy ζF )
aG 11.6761 Government expenditure coefficient

ζF + ζG − ζT 0.017 Government deficit per GDP
ζT 0.1730 Government tax revenue per GDP

(ρG, ρT ) (0.9, 0.9) Autoregressive coefficient: expenditure and tax shocks
(σG, σT ) 0.00148 Standard deviation: expenditure and tax shocks

Central bank
ζCB −0.18 Central bank’s balance sheet per issued government bond
π̄ 0.023

4
= 0.00575 Trend inflation (steady-state inflation)

γ1
π 2.5 Taylor coefficient of Y D1

t : responsiveness to inflation
γf≥2
π 1.5 Taylor coefficient of Y Df≥2

t : responsiveness to inflation
γy 0.15 Taylor coefficient: responsiveness to output
γf≥2
y 0.15 Taylor coefficient of Y Df≥2

t : responsiveness to output
(ρ1, ρ2) (1.05,−0.13) Autocorrelation in monetary policy: Coibion et al. (2012)
σY D1

9.6× 10−4 Standard deviation: monetary policy shock (for Y D1
t )

σY Df≥2
4× 10−9 Standard deviation: monetary policy shock (for Y Df≥2

t )
τY D IF×F State reduction matrix (for Y Df≥2

t )

Table II.2: Parameter values
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III Additional Figures

f = 1 maturity bond

f = 2 maturity bond

f maturity bond

f = F − 1 maturity bond

f = F maturity bond

One-period loan

Loan Market (Capital Market)

Bond Market (Term-Structure)
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Issue

HouseholdCentral Bank
Monetary policy
({Y Df

t } controls)
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Figure III.2: Markets, Agents, and Mechanisms: households allocate wealth between bonds
and extending loans to intermediate goods producers. The government issues bonds with
f = 1 ∼ F maturities. Under a conventional monetary policy, the central bank manipulates
the yield of f = 1 bond without adjusting the holdings for longer-term bonds. Under the
yield-curve-control, the central bank manages yields of f = 1 ∼ F .
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A Derivation and Proofs

A.1 Detailed Derivations in Section 2

As in (15), an intermediate firm ν resetting its price at period t maximizes

max
∞∑
j=0

Et

[
θjQt,t+j ·

[ [
1− γL ·

(
R̃K

t+j+1 − 1
)]

· (1 + ζF ) · Pt+j(ν)Yt+j(ν)

−Wt+j(ν)Nt+j(ν)− PK
t+j−1Kt+j−1(ν)

]]
,

(A.1)

where Qt,t+j is the firm’s stochastic discount factor between periods t and t + j and ζF is
a production subsidy. Also, we define R̃K

t+j+1 ≡ Et+j[Qt+j,t+j+1R
K
t+j+1]. Solving for the

optimal resetting price at period t, P ∗
t , we obtain

P ∗
t

Pt

=

Et

[∑∞
j=0 θ

jQt,t+j

(
Pt+j

Pt

)ϵ+1

Yt+j

(
(1 + ζF )−1ϵ

ϵ− 1

)(
MCt+j|t(ν)

Pt+j

)]

Et

[∑∞
j=0 θ

jQt,t+j

(
Pt+j

Pt

)ϵ

Yt+j

[
1− γL ·

(
R̃K

t+j+1 − 1
)]] , (A.2)

where subindex t+j|t represents the value of the variable conditional on the firm having re-
set its price last time at period t, and MCt+j|t(ν)/Pt is the real marginal cost of production,
defined as

MCt+j|t(ν)

Pt+j

=

(
PK
t+j

Pt+j

)α(
Wt+j|t(ν)

Pt+jAt+j

)1−α

. (A.3)

A.1.1 Detailed Derivation in Section 2.9

Using equations equation (10), equation (12), equation (13) and equation (A.3) we can
express firm-specific marginal costs as a function of the aggregate variables as in

MCt+j|t(ν)

Pt+j
= (1− α)

1−α
η+α

(
Ct+j

At+jN̄t+j

) η(1−α)
η+α

(
Yt+j

At+jN̄t+j

) 1−α
η+α

(
PK
t+j

Pt+j

)α( η+1
η+α )(

P ∗
t

Pt+j

)−( ϵ(1−α)
η+α )

.

Similarly, we integrate loan and labor demand across the continuum of firms and obtain the

1
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following expressions for the loan and labor aggregation conditions.

Kt

At−1N̄t−1
= α(1− α)

1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)−( η(1−α)
η+α )

∆t, (A.4)

Nt

N̄t
= (1− α)(

η
η+α )

(
Ct

AtN̄t

)−α( η
η+α )( Yt

AtN̄t

)( η
η+α )(PK

t

Pt

)α( η
η+α )

∆
η

η+1

t , (A.5)

where ∆t is a measure of price-dispersion that can be recursively defined as

∆t = (1− θ)

(
P ∗
t

Pt

)−ϵ( η+1
η+α)

+ θΠ
ϵ( η+1

η+α)
t ∆t−1. (A.6)

Plugging the real marginal cost and the expressions for Qt+j into the optimal resetting price
equation (i.e., equation (A.2)), we obtain

(
P ∗
t

Pt

)1+ϵ
(

1−α
η+α

)

=

Et

∑∞
j=0 (θβ)

j (1− α)
1−α
η+α

(1 + ςF )
−1ϵ

ϵ− 1

(
Ct+j

At+jN̄t+j

)−α η+1
η+α

(
Yt+j

At+jN̄t+j

) η+1
η+α

(
Pt+j

Pt

)ϵ η+1
η+α

(
PK
t+j

Pt+j

)α η+1
η+α


Et

[∑∞
j=0 (θβ)

j

(
Pt+j

Pt

)ϵ−1( Ct+j

At+jN̄t+j

)−1( Yt+j

At+jN̄t+j

)[
1− γL ·

(
R̃K

t+j+1 − 1
)]] .

(A.7)

We can simplify this expression as

P ∗
t

Pt

=

(
Ft

Ht

) 1

1+ϵ( 1−α
η+α) , (A.8)

where Ft and Ht are recursively written as

Ft = (1− α)
1−α
η+α

(
(1 + ςF )−1ϵ

ϵ− 1

)(
Ct

AtN̄t

)−α
(

η+1
η+α

) (
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)α
(

η+1
η+α

)
+ θβEt

[
Π

ϵ
(

η+1
η+α

)
t+1 Ft+1

]
,

Ht =

(
Ct

AtN̄t

)−1 Yt

AtN̄t

[
1− γL ·

(
R̃K

t+1 − 1
)]

+ θβEt

[
Πϵ−1

t+1Ht+1

]
.

(A.9)
Using (A.9), we obtain the following equilibrium price-resetting condition:

Ft

Ht

=

(
1− θ

1− θΠϵ−1
t

)( 1
ϵ−1)[1+ϵ( 1−α

η+α)]
. (A.10)
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We now rewrite equation (11) as

1 = β · Et

 RS
t+1

Πt+1GAt+1GN
·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 .

Since RS
t+1 depends on bonds return RHB

t+1 and loans return RK
t+1 while shares of savings that

flow into bonds (1 − λK
t ) and loans (λK

t ) are endogenous, we start from analyzing RHB
t+1 .

We can rewrite the aggregate return indices as functions of the bond yields {Y Df
t }Ff=1 as

Rj
t =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
, j ∈ {H,G,CB},

and also the household’s bond portfolio share as

λHB,f
t =



Et

 β · zft
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) ·

(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f


ΦB

t



κB

, ∀f ,

ΦB
t =

 F∑
j=1

Et

 β · zjt
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) ·
(
Y Dj−1

t+1

)−(j−1)(
Y Dj

t

)−j


κB

1
κB

.

Now we find the equilibrium condition for the bond shares of the agents. Using the bond
market equilibrium condition (i.e., (17)), we obtain

λHB,f
t =

BG,f
t +BCB,f

t

BG
t +BCB

t

=
λG,f
t BG

t + λCB,f
t BCB

t

BG
t +BCB

t

. (A.11)
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We can rearrange the previous expression as

λCB,f
t = λHB,f

t +
(
λHB,f
t − λG,f

t

)
· BG

t

BCB
t

. (A.12)

Summing from f = 2 to F , and using
∑F

f=2 λ
j,f
t = 1− λj,1

t , j ∈ {H,G,CB} we obtain

F∑
f=2

λCB,f
t = 1− λHB,1

t +
(
λG,1
t − λHB,1

t

)
· BG

t

BCB
t

. (A.13)

Plugging (A.13) into (A.12) and after some rearrangements, we obtain

λCB,f
t =

λHB,f
t

(
λCB,1
t − λG,1

t

)
− λG,f

t

(
λCB,1
t − λHB,1

t

)
λHB,1
t − λG,1

t

, f > 1. (A.14)

Now, we can obtain an expression for the central bank’s bond holdings using (A.13) as

BCB
t =

(
λHB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
·BG

t . (A.15)

Combining (17) and (A.15), we obtain

BH
t

AtN̄t

= −

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄t

. (A.16)

Combining Lt = λK
t St and BH

t = (1− λK
t )St with Lt = γL ·

(
1 + ζF

)
· PtYt, we obtain

BH
t

AtN̄tPt

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
. (A.17)

Combining equation (A.16) and equation (A.17), we get the following equation

−

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄tPt

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
. (A.18)
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A.1.2 Conventional Policy in Section 2.9.1

Using the bond market equilibrium (i.e., (17)) with
∑F

f=2 λ
HB,f
t = 1− λHB,1

t , we get

BH
t = −

∑F
i=2

(
BG,i

t +BCB,i
t

)
1− λHB,1

t

. (A.19)

Combining (A.19) with (17) and (23c), we obtain the equilibrium set of equations,

λHB,f
t

1− λHB,1
t

=

BG,f
t

AtN̄tPt

+
BCB,f

AN̄P∑F
i=2

(
BG,i

t

AtN̄tPt

+
BCB,i

AN̄P

) , ∀f > 1. (A.20)

Combining (A.17), (A.19), and (23c) yields the following equilibrium equation:

−

∑F
i=2

(
BG,i

t

AtN̄tPt

+
BCB,i

AN̄P

)
1− λHB,1

t

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
, (A.21)

where normalized bond positions of the central bank are exogenously given. Finally, com-
bining (A.20) and (A.21), we finally obtain

−

(
BG,f

t

AtN̄tPt

+
BCB,f

AN̄P

)
·
(
λHB,f
t

)−1

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
, ∀f > 1.

(A.22)

A.1.3 Steady-State Derivations in Section 3.1

At the steady state, the central bank decides the level of bond holdings of maturities BCB,f

that it wants to hold. It can be calibrated to match the data of the central bank’s balance
sheet. Given

{
λCB,f

}
and the size of its portfolio BCB, which is ζCB fraction of total gov-

ernment bond issuance satisfying BCB = ζCB ·BG, we obtain the steady state households’
bond shares as

λHB,f =
λG,f + λCB,f · ζCB

1 + ζCB
. (A.23)

5
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From the definition of RHB we have

F∑
f=1

λHB,f ·
(

Rf

RHB

)
= 1,

which together with equation (3) can be rearranged as:

λHB,f =

zf · Rf

RHB

Φ̃B


κB

, ∀f, with Φ̃B =

[
F∑

j=1

[
zj · Rj

RHB

]κB
] 1

κB

. (A.24)

The above (A.23) and (A.24) jointly determine the steady state yields and household shares.
Unfortunately, there is no analytical expression for them and we have to solve for the steady
state values numerically. How we proceed, relying on simple iterations:

1. Assume some initial guess for
{

Rf,guess

RHB

}F

f=1
.

2. Construct Φ̃B,old using previous guess with Φ̃B in equation (A.24).

3. Update estimates on
{

Rf

RHB

}F

f=1
with the following rules:

R1,new

RHB
=

1−
F∑

f=2

λHB,f

(
Rf

RHB

)
λHB,1

,
Rf,new

RHB
=
(
λHB,f

) 1
κB

(
zf
)−1

Φ̃B,old, f > 1.

4. Construct new shares of households λHB,f,new by plugging
{

Rf,new

RHB

}F

f=1
into (A.24).

Compute the discrepancy between these shares and the true ones found in (A.23). If
the error is big, set Rf,guess

RHB = Rf,new

RHB and repeat from Step 2 until convergence.

Using (6) and (11), we obtain

RHB =
β−1Π ·GA ·GN

1− λK
− λK

1− λK
RK . (A.25)

We can rewrite RG as

RG = Ξ ·RHB, Ξ =
F∑

f=1

λG,f ·
(

Rf

RHB

)
, (A.26)

6
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and from (A.25), it becomes

RG = Ξ ·
[
β−1Π ·GA ·GN

1− λK
− λK

1− λK
RK

]
. (A.27)

Using (5), we obtain an expression for the steady-state share of loans as

λK =

(
zK · RK

RHB

)κS

1 +
(
zK · RK

RHB

)κS
. (A.28)

Further combining (A.25) and (A.28), we obtain

λK

1− λK
≡
(
zK · RK

RHB

)κS

=
β−1 · Π ·GA ·GN −RHB

RK − β−1 · Π ·GA ·GN
(A.29)

The equilibrium government bonds are obtained from its budget constraint (i.e., (20)) and
written as

BG

AN̄P
= −

(
1− RG

Π ·GA ·GN

)−1 [
ζG + ζF − ζT

]( Y

AN̄

)
. (A.30)

The model needs the government to be a borrower, so BG < 0 at the steady-state. Also, we
would like to match the data in which the government runs primary deficit ζG+ζF−ζT > 0.
The only way to achieve that is by having RG < Π·GA·GN . Combining BCB = ζCB ·BG,
BH

t = −
(
BG

t +BCB
t

)
, (A.17), (A.26), and (A.29) yields

γL =

(
1 + ζCB

1 + ζF

)
·
[
ζG + ζF − ζT

]
·
(
1− Ξ

Π ·GA ·GN
·RHB

)−1

·
[
β−1 ·Π ·GA ·GN −RHB

RK − β−1 ·Π ·GA ·GN

]
.

(A.31)

(A.29) and (A.31) form a nonlinear system of equations on the unknown steady-states of
RK and RHB. After then, we can then simply back out bond returns as

Rf = RHB ·
(

Rf

RHB

)
.

Now that we have found the bond returns, we can recursively obtain the bond yields using

Y Df =
[
Rf ·

(
Y Df−1

)f−1
] 1

f
,

7
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where Y D0 = 1. The price dispersion is given by

∆ =

[
1− θ

1− θΠϵ( η+1
η+α)

](
1− θΠϵ−1

1− θ

)( ϵ
ϵ−1)(

η+1
η+α)

. (A.32)

From the capital producer’s optimization, we obtain an expression for PK

PK

P
= β−1 ·GA ·GN − (1− δ). (A.33)

The steady state representation of firms’ pricing (i.e., (A.9) can be written as

F = ξF ·
(

C

AN̄

)−α( η+1
η+α)( Y

AN̄

) η+1
η+α

, (A.34)

H = ξH ·
(

C

AN̄

)−1(
Y

AN̄

)
, (A.35)

with ξF = (1− α)
1−α
η+α

[
1− θβΠϵ( η+1

η+α)
]−1

(
(1 + ζF )−1ϵ

ϵ− 1

)(
PK

P

)α( η+1
η+α)

,

ξH =

[
1− γL ·

(
RK

RS
− 1

)]
·
[
1− θβ · Πϵ−1

]−1
.

Using (A.34), (A.35) and (A.10), we obtain

(
C

AN̄

)(
(1−α)η
η+α

)
= ξY ·

(
Y

AN̄

)−
(

1−α
η+α

)
, with ξY =

(
ξH

ξF

)(
1− θ

1− θΠϵ−1

)( 1
ϵ−1)

[
1+ϵ

(
1−α
η+α

)]
.

(A.36)

Combining (A.36) and (A.4), we obtain

K

AN̄
= ξK ·

(
Y

AN̄

)
, with ξK = α · (1− α)

1−α
η+α ·GA ·GN ·

(
PK

P

)−( η(1−α)
η+α )

∆ · ξY .

(A.37)

Plugging (A.37) into the aggregate resource constraint, we obtain

C

AN̄
= ξC ·

(
Y

AN̄

)
, with ξC = (1− ζG)− ξK ·

[
1−

(
1− δ

GA ·GN

)]
. (A.38)

8
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Combining (A.36) and (A.38), we obtain

Y

AN̄
=
(
ξY
)( 1

1−α)(
η+α
η+1 ) (ξC)−( η

η+1) . (A.39)

A.1.4 Log-linearization

We start by log-linearizing the equations that are common to the conventional policy model
and the yield-curve-control one, then derive the ones that are different. Log-linearize (I.1),

ĝat = ε̂At , ζ̂Gt =
aG

1 + aG
· ûG

t , ζ̂Tt =
aT

1 + aT
· ûT

t . (A.40)

Equations (34) and (11) with the help of (A.40) can be linearized as

ĉt =

[(
1− ζG

)
· Y
C

] [
ŷt −

1

1 + aG
· ûG

t

]
+

[
1− δ

GA ·GN

K

C

]
(k̂t − ε̂At )−

K

C
k̂t+1, (A.41)

ĉt = Et

[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (A.42)

where we use (A.40) to solve for ζ̂Gt and ĝat. Plugging (A.41) into (A.42), we obtain the
following dynamic IS equation for output ŷt.

ŷt = Et

[
ŷt+1 −

[
(1− ζG)−1(1− δ)

GA ·GN
· K
Y

]
(k̂t − ε̂At ) + (1− ζG)−1

[
1 +

1− δ

GA ·GN

]
K

Y
k̂t+1

− (1− ζG)−1K

Y
k̂t+2 − (1− ζG)−1C

Y

(
r̂St+1 − π̂t+1

)
+

1− ρG
1 + aG

· ûGt

]
. (A.43)

Linearizing the household’s bond portfolio conditions (i.e., (3)) yields

λ̂HB,f
t = κBEt

[
ẑft − π̂t+1 − ĝat+1 + ĉt − ĉt+1 − (f − 1)ŷd

f−1

t+1 + fŷd
f

t − ϕ̂B
t

]
, (A.44)

where

ϕ̂B
t = Et

(
−π̂t+1 − ĝat+1 + ĉt − ĉt+1

)
+

F∑
j=1

[
βzj

(
Y Dj−1

)−(j−1)

Π ·GA ·GN · ΦB (Y Dj)
−j

]κB

ẑjt

+

F∑
j=1

j

[
βzj

(
Y Dj−1

)−(j−1)

Π ·GA ·GN · ΦB (Y Dj)
−j

]κB

ŷd
j

t −
F−1∑
j=0

j

[
βzj+1

(
Y Dj

)−j

Π ·GA ·GN · ΦB (Y Dj+1)
−(j+1)

]κB

Et(ŷd
j

t+1).

(A.45)

9
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Combining (A.44) and (A.45), we obtain the following expression for λ̂HB,f
t :

λ̂HB,f
t =

F∑
j=1

Ψfj
1 ẑjt +

F∑
j=1

Ψfj
2 ŷd

j

t +
F∑

j=1

Ψfj
3 Et

[
ŷd

j

t+1

]
, (A.46)

where

Ψfj
1 =



1− [ β · zj (Y Dj−1)
−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB
 · κB , if f = j,

−

[
β · zj (Y Dj−1)

−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB

· κB , if f ̸= j,

Ψfj
2 = j ·Ψfj

1 ,

Ψfj
3 =



−j ·

1− [ β · zj+1 (Y Dj)
−j

Π ·GA ·GN · ΦB (Y Dj+1)−(j+1)

]κB
 · κB , if j = f − 1,

j ·

[
β · zj+1 (Y Dj)

−j

Π ·GA ·GN · ΦB (Y Dj+1)−(j+1)

]κB

· κB , if j ̸= f − 1,

0 , if j = F .

We can put the system of F equation in matrix format as

−−→
λ̂HB
t = Ψ1 ·

−→
ẑ t +Ψ2 ·

−→
ŷdt +Ψ3 · Et

[−→
ŷdt+1

]
, (A.47)

where {Ψ1,Ψ2,Ψ3} are matrices containing elements of
{
Ψfj

1 ,Ψfj
2 ,Ψfj

3

}
, with f repre-

senting rows and j columns. Linearizing equations (I.2) and (I.3) yields

−→
λ̂G
t = Ξ̃ ·

−→
ˆ̃uB
t ,

−→
ˆ̃uB
t = T B ·

−→
ûB
t .

where Ξ̃ is a matrix whose elements Ξ̃fj (f -rows, j-columns) are

Ξ̃fj =


0 , if f = 1 & j = f,

1− λG,f , if f ≥ 2 & j = f,

−λG,j , if j ̸= f,

10
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and similarly T B is a matrix containing elements τBfj from (I.3). By defining Ξ = Ξ̃ · T B,
we can combine the previous two equations to obtain

−→
λ̂G
t = Ξ ·

−→
ûB
t . (A.48)

Therefore, with the help of (A.48), we obtain

−→
b̂Gt = Ξ ·

−→
ûB
t +

−→
1 Fx1 · b̂Gt , (A.49)

where
−→
1 Fx1 is a unit vector of size F . Log-linearizing the household’s stochastic discount

factor yields:
q̂t,t+1 = ĉt − ĉt+1 − π̂t+1 − ĝat+1. (A.50)

Log-linearizing ΦS
t in the household’s portfolio between loans and bonds (i.e., (5)), we

obtain

ϕ̂S
t =Et [qt,t+1] +

(
zBRHB

)κS

(zBRHB)
κS

+ (zKRK)
κS Et

[
r̂HB
t+1

]
+

(
zKRK

)κS

(zBRHB)
κS

+ (zKRK)
κS

(
ẑKt + Et

[
r̂Kt+1

])
.

(A.51)

Log-linearizing the household’s portfolio decision between loans and bonds (i.e., (5)) and
making use of the previous expression (i.e., (A.51)), we obtain

λ̂K
t = κS ·

[ (
zBRHB

)κS

(zBRHB)κ
S

+ (zKRK)κ
S

] (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
= κS

(
1− λK

) (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
. (A.52)

By linearizing the formula for the effective savings rate of the household (i.e., (6)), we
obtain

r̂St =
λK
(
RK −RHB

)
RS

λ̂K
t−1 +

(1− λK)RHB

RS
r̂HB
t +

λKRK

RS
r̂Kt . (A.53)

Log-linearizing the effective bond rates of households, government, and central bank,

r̂jt =
F∑

f=1

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )−f
·
[
λ̂j,f
t−1 − (f − 1)ŷd

f−1

t + fŷd
f

t−1

]
, j ∈ {HB,G,CB} ,

11
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with which we can express these equations on matrix format as

r̂jt = Ψj,4 ·
−−→
λ̂j
t−1 −Ψj,5 ·

−→
ŷdt +Ψj,6 ·

−−−→
ŷdt−1 , j ∈ {HB,G,CB} , (A.54)

where {Ψj,4,Ψj,5,Ψj,6} are 1xF -sized matrices whose elements are defined as:

Ψj,4
1f =

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )
−f

, Ψj,6
1f =

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )
−f

f.

Ψj,5
1f =


λj,f+1

(
Y Df

)−f

Rj (Y Df+1)
−(f+1)

f , if f < F, j ∈ {HB,G,CB} ,

0 , if f = F,

By plugging (A.48) into r̂G in (A.54), we obtain

r̂Gt = ΨG,4 · Ξ ·
−−→
ûB
t−1 −ΨG,5 ·

−→
ŷdt +ΨG,6 ·

−−−→
ŷdt−1. (A.55)

By plugging (A.47) into r̂HB in (A.54), we obtain

r̂HB
t = ΨHB,4Ψ1 ·

−−→
ẑt−1 +

[
ΨHB,4Ψ2 +ΨHB,6

]
·
−−−→
ŷdt−1 +ΨHB,4Ψ3 · Et−1

[−→
ŷdt

]
−ΨHB,5 ·

−→
ŷdt.

(A.56)

Taking the expectation operator Et on the previous equation (A.56), we obtain

Et

[
r̂HB
t+1

]
= ΨHB,4Ψ1 ·

−→
ẑt +

[
ΨHB,4Ψ2 +ΨHB,6

]
·
−→
ŷdt +

[
ΨHB,4Ψ3 −ΨHB,5

]
Et

[−−−→
ŷdt+1

]
. (A.57)

By plugging (A.52) and (A.57) into (A.53), we obtain the expected effective savings rate
as follows.

Et

[
r̂St+1

]
= Ψ7−→ẑ t +Ψ8

−→
ŷdt +Ψ9Et

[−−−→
ŷdt+1

]
+Ψ10r̂Kt+1 +Ψ11ẑKt , (A.58)

where

Ψ7 = ΨHB,4Ψ1

[
(1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ8 =
[
ΨHB,4Ψ2 +ΨHB,6

] [ (1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ9 =
[
ΨHB,4Ψ3 −ΨHB,5

] [ (1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ10 =

[
1 + κS(1− λK)

]
λKRK − κS(1− λK)λKRHB

RS
, Ψ11 =

κSλK(1− λK)
(
RK −RHB

)
RS

12
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Plugging back the expression of the household’s expected bonds rate (i.e., (A.57)) into her
portfolio decision between loans and bonds (i.e., (A.52)), we obtain

λ̂K
t = κS

(
1− λK

) (
ẑKt + r̂Kt+1

)
−Ψ12 ·

−→
ẑt −Ψ13 ·

−→
ŷdt −Ψ14 · Et

[−−−→
ŷdt+1

]
, (A.59)

where Ψ12 = κS(1 − λK)ΨHB,4Ψ1, Ψ13 = κS(1 − λK)
[
ΨHB,4Ψ2 +ΨHB,6

]
, and Ψ13 =

κS(1−λK)
[
ΨHB,4Ψ2 +ΨHB,6

]
. If we linearize the loan aggregation (A.4) and use (A.40),

we obtain

k̂t = ε̂At +

(
η + 1

η + α

)
ŷt −

(
η(1− α)

η + α

)
·
[
p̂Kt − ĉt

]
. (A.60)

Combining (A.41) and the above (A.60), we obtain

pKt =

[
(1− ζG)

Y

C
+

η + 1

η(1− α)

]
· ŷt −

[
(1− ζG) · Y

C

](
1

1 + aG

)
· uG

t (A.61)

+

[
1− δ

GA ·GN
· K
C

− η + α

η(1− α)

]
·
[
k̂t − ε̂At

]
− K

C
· k̂t+1.

If we linearize the supply block (i.e., (A.9), and (A.10)), we obtain

f̂t =

[
1− θβΠ

ϵ
(

η+1
η+α

)](
η + 1

η + α

)[
ŷt + αEt

[
q̂t,t+1 + p̂Kt − ĉt

]]
+ θβΠ

ϵ
(

η+1
η+α

)
Et

[
ϵ

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
,

ĥt =
[
1− θβΠϵ−1

] [
ŷt − ĉt −

(
γL ·RK

RS − γL · (RK −RS)

)
·
[
r̂Kt+1 + Et [q̂t,t+1]

]]
+ θβΠϵ−1Et

[
(ϵ− 1)π̂t+1 + ĥt+1

]
, (A.62)

f̂t − ĥt =

[
1 + ϵ

(
1− α

η + α

)](
θΠϵ−1

1− θΠϵ−1

)
π̂t. (A.63)

Combining (A.42), (A.50), and (A.60) with (A.62), we obtain:

f̂t =−Ψ16 ·
−→
ẑt −Ψ17 · ẑKt −Ψ18 ·

[
k̂t − ε̂At

]
+Ψ19 · ŷt −Ψ20 ·

−→
ŷdt −Ψ21 · r̂Kt+1 (A.64)

−Ψ22 · Et

[−−−→
ŷdt+1

]
+Ψ23 · Et [π̂t+1] + Ψ24 · Et

[
f̂t+1

]
.

ĥt =Ψ26 ·
−→
ẑt +Ψ27 · ẑKt −Ψ28 ·

[
k̂t − ε̂At

]
+Ψ29 · ûGt +Ψ30 · ŷt +Ψ31 ·

−→
ŷdt (A.65)

−Ψ32 · r̂Kt+1 +Ψ33 · k̂t+1 +Ψ34 · Et

[−−−→
ŷdt+1

]
+Ψ35 · Et [π̂t+1] + Ψ36 · Et

[
ĥt+1

]
.

13
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where

Ψ15 =
[
1− θβΠϵ( η+1

η+α )
]( η + 1

η + α

)
,

Ψ16 = αΨ15Ψ7 ,

Ψ17 = αΨ15Ψ11 ,

Ψ18 = Ψ15

(
α

1− α

)(
η + α

η

)
,

Ψ19 = Ψ15

[
1 +

(
α

1− α

)(
η + 1

η

)]
,

Ψ20 = αΨ15Ψ8 ,

Ψ21 = αΨ15Ψ10 ,

Ψ22 = αΨ15Ψ9 ,

Ψ23 = θβΠϵ( η+1
η+α )ϵ

(
η + 1

η + α

)
,

Ψ24 = θβΠϵ( η+1
η+α ) ,

Ψ25 =
[
1− θβΠϵ−1

]( γL ·RK

RS − γL · (RK −RS)

)
,

Ψ26 = Ψ25Ψ7 ,

Ψ27 = Ψ25Ψ11 ,

Ψ28 =
[
1− θβΠϵ−1

] [ 1− δ

GA ·GN
· K
C

]
,

Ψ29 =
[
1− θβΠϵ−1

]
(1− ζG)

Y

C

(
1

1 + aG

)
,

Ψ30 =
[
1− θβΠϵ−1

] [
1− (1− ζG)

Y

C

]
,

Ψ31 = Ψ25Ψ8 ,

Ψ32 = Ψ25 ·
(
1−Ψ10

)
,

Ψ33 =
[
1− θβΠϵ−1

] K
C

,

Ψ34 = Ψ25Ψ9 ,

Ψ35 = θβΠϵ−1(ϵ− 1) ,

Ψ36 = θβΠϵ−1 .

Linearizing the government’s budget constraint (i.e., (20)) yields

b̂Gt =
RG

Π ·GA ·GN

[
r̂Gt − π̂t − ĝat + b̂Gt−1

]
(A.66)

−
[
ζG + ζF − ζT

]( Y

B/P

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûG
t −

(
ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûT
t

]
.

Using the steady state equilibrium condition (i.e., (A.30)) with (A.40) and (A.55), we can
express the previous (A.66) as

b̂Gt =
RG

Π ·GA ·GN

[
ΨG,4 · Ξ ·

−−→
ûB
t−1 −ΨG,5 ·

−→
ŷdt +ΨG,6 ·

−−−→
ŷdt−1 − π̂t − ε̂At + b̂Gt−1

]
(A.67)

+

(
1−

RG

Π ·GA ·GN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûG
t −

(
ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûT
t

]
.

Linearizing the capital producer’s optimization condition yields

0 = Et

[
q̂t,t+1 + π̂t+1 +

(
PK/P

1− δ + PK/P

)
p̂Kt+1

]
. (A.68)

By plugging (A.42) and (A.50) into the previous (A.68) and rearranging, we get

Et

[
r̂St+1 − π̂t+1

]
=

(
PK/P

1− δ + PK/P

)
Et

[
p̂Kt+1

]
. (A.69)
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Plugging expressions on the effective savings rate (i.e., (A.58)) and the rental price of
capital (i.e., (A.61)) into (A.69) we obtain

r̂Kt+1 =−Ψ37 ·
−→
ẑt −Ψ38 · ẑKt −Ψ39 ·

−→
ŷdt −Ψ40 · Et

[−−−→
ŷdt+1

]
+Ψ41 · Et [π̂t+1] (A.70)

+Ψ42 · Et [ŷt+1] + Ψ43 · k̂t+1 −Ψ44 · Et

[
k̂t+2

]
−Ψ45 · ûGt ,

where we defined

Ψ37 =
(
Ψ10
)−1

Ψ7,

Ψ38 =
(
Ψ10
)−1

Ψ11,

Ψ39 =
(
Ψ10
)−1

Ψ8,

Ψ40 =
(
Ψ10
)−1

Ψ9,

Ψ41 =
(
Ψ10
)−1

,

Ψ42 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)[
(1− ζG)

Y

C
+

(
η + 1

η(1− α)

)]
,

Ψ43 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)[
1− δ

GA ·GN

K

C
−
(

η + α

η(1− α)

)]
,

Ψ44 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)
K

C
,

Ψ45 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)
(1− ζG)

Y

C

(
ρG

1 + aG

)
.

Finally, plugging the effective savings rate (i.e., (A.58)) into the Euler equation (i.e., (A.43)),
we obtain

ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−→
ŷdt −Ψ50 · Et

[−−−→
ŷdt+1

]
(A.71)

−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûG
t

]
,

where we defined

Ψ46 = (1− ζG)−1C

Y
,

Ψ47 = Ψ27Ψ7,

Ψ48 = Ψ27Ψ11,

Ψ49 = Ψ27Ψ8,

Ψ50 = Ψ27Ψ9,

Ψ51 = Ψ27Ψ10,

Ψ52 =
(1− ζG)−1(1− δ)

GA ·GN

K

Y
,

Ψ53 = (1− ζG)−1

[
1 +

1− δ

GA ·GN

]
K

Y
,

Ψ54 = (1− ζG)−1K

Y
,

Ψ55 =
1− ρG
1 + aG

.
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Linearizing the labor aggregation condition (i.e., (A.5)) yields

n̂t = −α

(
η

η + α

)
ĉt +

(
η

η + α

)
ŷt + α

(
η

η + α

)
· p̂Kt . (A.72)

Plugging equation (A.41) and equation (A.61) into equation (A.72), we obtain

n̂t =

(
η

η + α

)[
1 +

(
α

1− α

)(
η + 1

η

)]
· ŷt −

(
α

1− α

)
·
[
k̂t − ε̂At

]
. (A.73)

Log-linearization: the conventional policy specific derivations Linearizing the bond
market equilibrium condition (i.e., (A.22)), we obtain

λ̂HB,f
t =

(
BG,f

BG,f +BCB,f

)
b̂g,ft − ŷt +

1

1− λK
· λ̂K

t , f ≥ 2. (A.74)

From λHB,1
t = 1−

∑F
f=2 λ

HB,f
t we obtain

λ̂HB,1
t = −

F∑
f=2

λHB,f

λHB,1
λ̂HB,f
t . (A.75)

We can rearrange the previous expressions (i.e., (A.74) and (A.75)) in the matrix form as

Θ1 ·
−−→
λ̂HB
t = Θ2 ·

−→
b̂gt −Θ3 · ŷt +Θ4 · λ̂K

t , (A.76)

where {Θ1, Θ2} are FxF -sized matrices with elements Θ1
jf (row j, column f ) and {Θ3, Θ4}

are Fx1 vectors with j−element Θ3
j1. We define their elements as

Θ1
jf =

1 , if j = f,

λHB,f

λHB,1
, if j = 1& f > 1,

Θ2
jf =


BG,f

BG,f +BCB,f
, if j > 1& j = f,

0 , otherwise,

Θ3
j1 =

0 , if j = 1,

1 , otherwise,
,

Θ4 =
1

1− λK
·Θ3 .

By inverting Θ1 in (A.76), we can rewrite (A.76) as

−−→
λ̂HB
t = Θ5 ·

−→
b̂gt −Θ6 · ŷt +Θ7 · λ̂K

t , (A.77)
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where we define Θ5 = (Θ1)
−1

Θ2, Θ6 = (Θ1)
−1

Θ3, Θ7 = (Θ1)
−1

Θ4. Plugging the
government’s bond portfolio (i.e., (A.49)), the household’s loan share (i.e., (A.59)), and the
rental price of capital (i.e., (A.61)) into (A.77), we obtain

−−→
λ̂HB
t =Θ8 · b̂Gt −Θ6 · ŷt +Θ9 ·

(
ẑKt + r̂Kt+1

)
−Θ10 ·

−→
ŷdt −Θ11 · Et

[−−−→
ŷdt+1

]
−Θ12 ·

−→
ẑt +Θ13 ·

−→
ûB
t ,

where we define

Θ8 = Θ5 · −−→1Fx1,

Θ9 = Θ7 · κS
(
1− λK

)
,

Θ10 = Θ7 ·Ψ13,

Θ11 = Θ7 ·Ψ14,

Θ12 = Θ7 ·Ψ12,

Θ13 = Θ5 · Ξ.

By plugging the household’s optimal portfolio (i.e., (A.47)) into the above, we obtain

−→
ŷdt = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−→
ŷdt+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·

−→
ûBt ,

where Θ14 = [Θ10 +Ψ2]
−1

Θ8,Θ15 = [Θ10 +Ψ2]
−1

Θ6,Θ16 = [Θ10 +Ψ2]
−1

Θ9,Θ17 =

[Θ10 +Ψ2]
−1

[Θ11 +Ψ3] ,Θ18 = [Θ10 +Ψ2]
−1

Θ12,Θ19 = [Θ10 +Ψ2]
−1

[Θ9 −Ψ1] ,Θ20 =

[Θ10 +Ψ2]
−1

Θ13.

Log-linearization: the Yield-Curve-Control (YCC) policy specific derivations Lin-
earizing the Taylor rule for f -maturity bond (i.e., (24b)) yields1

ŷd
Y CC,f

t = γf
CP ŷd

CP,f

t +
(
1− γf

CP

) [
γf
π π̂t + ε̃Y Df

t

]
, f ≥ 2. (A.78)

We define a (F−1)×(F−1) matrix ΓCP with ΓCP
ff = γf+1

CP for f = 1 ∼ F−1 and ΓCP
ij = 0

for i ̸= j. From (I.4), we define T Y D
(f≥2), a (F − 1)× L matrix with T Y D

(f≥2),f,l = τY D
f+1,l (row

f , column l) and the vector of Taylor coefficients −→γπ(f≥2) =
[
γ2
π, . . . , γ

F
π

]′. If we construct
such vectors as

−−−−→
ˆydY CC
t (f≥2) =

[
ŷd

Y CC,2

t , . . . , ŷd
Y CC,F

t

]′
,
−−−→
ˆydCP
t (f≥2) =

[
ŷd

CP,2

t , . . . , ŷd
CP,F

t

]′
, (A.79)

then above equation (A.78) can be written in vector form as

−−−−→
ˆydY CC
t (f≥2) = ΓCP

−−−→
ˆydCP
t (f≥2) + (I − ΓCP ) ·

[−→γπ(f≥2) · π̂t + T Y D
(f≥2) ·

−−→
εY D
t

]
, (A.80)

1If ρ1 ̸= 0 or ρ2 ̸= 0 in (24b), then the policy rule in (A.78) should account for them and target output as
well. We intentionally assume that the policy rule here targets inflation only for simplicity of expressions.
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where I is the identity matrix of size F − 1. Since
−−−→
ˆydCP
t is the yield vector that prevails in

the counterfactual scenario where the current yield is determined by conventional monetary
policy, its dynamics will follow

−−−→
ŷd

CP

t = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−→
ŷd

CP

t+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·

−→
ûBt ,

where coefficients Θi for i = 14 ∼ 20 are the same as in the conventional policy case, and−−−→
ˆydCP
t and

−−−−→
ˆydY CC
t are defined as

−−−−→
ˆydY CC
t = [ŷd

Y CC,1

t ,
−−−−→

ˆydY CC
t

′
(f≥2)]

′,
−−−→
ˆydCP
t = [ŷd

Y CC,1

t ,
−−−→
ˆydCP
t

′
(f≥2)]

′.

where ŷd
Y CC,1

t follows the Taylor rules in (23a) and (23b). Now that
−−−−→

ˆydY CC
t governs house-

holds’ intertemporal decisions, (A.71) becomes

ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−−−−→
ŷd

Y CC

t −Ψ50 · Et

[−−−−→
ŷd

Y CC

t+1

]
−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûG

t

]
.

B Calibration and Estimation Strategy

B.1 Calibrating {zf}Ff=1 and zK at the Steady State

Calibration of
{
zf
}F
f=1

We explain how to calibrate
{
zf
}F
f=1

to match the yield curve.
Based on data on yields of bonds with different maturities, we calculate each f -maturity
bond’s average holding returns

{
Rf
}

, which we would use as our calibration target.

1. Compute the return ratio
{

RF

RHB

}
.2

2. Back out steady state bond shares
{
λHB,f

}
using equation (A.23).

3. Normalize z1 = 1 and obtain initial guess for {zj,guess}. Set zj,old = zj,guess in the
iteration below.

4. Construct Φ̃old using the following formula, where the return ratios { Rf

RHB } across

2To determine the return on the household’s bond portfolio RHB , we combine the data on the average
returns by maturity {Rf}Ff=1 with the portfolio shares {λHB,f}Ff=1.
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maturities are obtained from the data:

Φ̃old =

[
1 +

F∑
f=2

[
zj
(

Rf

RHB

)]κB
] 1

κB

.

5. Back out new zf,new, f = 2, . . . , F estimates using:

zf,new =
(
λHB,f

) 1
κB

(
Rf

RHB

)−1

Φ̃old.

6. If difference with Φ̃old is large, set zf,old = zf,new and start again from the step 4.

Calibration of zK We calibrate zK such that the model’s steady-state return on the house-
hold’s bond portfolio, RHB, matches with the observed data average. This alignment is
achieved by finding the steady-state value of RK from (A.31),3 and subsequently replacing
the values of RHB and RK into equation (A.29), which enables us to recover the zK value
consistent with the model’s moment.

B.2 Elasticity Estimation, κB

Combining the log-linear approximation of equation (3), we obtain

̂
log
(
λH,f
t

)
= κB ·

(
1− λH,f

)
· Et

[
r̂f−1
t+1

]
− κB ·

∑
j ̸=f

λH,j · Et

[
r̂j−1
t+1

]
+ εft ,

where εft ≡ κB ·
∑

j ̸=f λ
H,j
t ·

[
̂

log
(
zft

)
− ̂log

(
zjt
)]

is a residual term containing the effects

on the households’ bond portfolio of shocks to different maturity preferences along the
yield curve. Differentiation across maturities yields the following expression

log
(
λH,f
t

)
− log

(
λH,l
t

)
= αfl + κB · Et

[
rf−1
t+1 − rl−1

t+1

]
+ εflt , (B.1)

where αfl denotes a constant, and εflt = εft − εlt represents a residual term embodying the
discrepancy between the preference shocks for bond maturities f and l. The expected bond

3In the context of our present calibration, the derived RK is situated within the range corresponding to
the average corporate debt rate across varied ratings.
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return spread, denoted as Et

[
rf−1
t+1 − rl−1

t+1

]
, poses challenges for empirical observation.

Therefore, we turn to the following approximation centered on the bond yield spread:

Et

[
rf−1
t+1 − rl−1

t+1

]
=ydft − ydlt

− (f − 1) · Et

[
ydft+1 − ydft

]
︸ ︷︷ ︸

add as control

+(l − 1) · Et

[
ydlt+1 − ydlt

]︸ ︷︷ ︸
add as control

+ (f − 1) · Et

[
ydft+1 − ydf−1

t+1

]
︸ ︷︷ ︸

≈0 (by assumption)

−(l − 1) · Et

[
ydlt+1 − ydl−1

t+1

]︸ ︷︷ ︸
≈0 (by assumption)

,

where the spread ydft − ydlt in the initial line is directly observable from the data, the ex-
pected yield change in the subsequent line can be approximated by employing the realized
changes as control variables, and the terms in the final line may be assumed to be close to
zero over short time intervals. The final equation used for the empirical estimation of the
elasticity parameter κB becomes:

log
(
λH,f
t+h

)
− log

(
λH,l
t+h

)
= αfl

h + κB,h ·
[
ydft − ydlt

]
+ x′

tβ
fl
h + εflt+h, h ≥ 0 , (B.2)

where xt denotes a vector of control variables accompanied by the corresponding coef-
ficients βfl

h , and the time subindex h ≥ 0 accommodates a lagged effect from the yield
spread to the bond portfolio composition which might occur in practice. Equation (B.2)
is estimated across various horizons h utilizing Jordà local projection methods, thereby
facilitating the determination of a plausible range for the elasticity parameter κB.

The unbiased estimation of κB in equation (B.2) requires the fluctuations in the bond
yield spread ydft − ydlt to be uncorrelated with shocks in the relative preferences for each
maturity, as captured by εflt+h. This implies that any other aggregate shocks, uncorrelated
to the contemporaneous (and/or future) maturity preferences of households, could serve
as potentially valid instruments for the yield spread. Following this rationale, we instru-
ment the changes in the contemporaneous yield spread with its own lagged value, while
at the same time, we incorporate the lags of the dependent variable as controls to elimi-
nate any potential serial correlation of the preference shocks. The dependent variable is
defined as the log-difference between the aggregate household portfolio shares in a group
of long-maturity bonds and a group of short-maturity bonds, respectively. For the long-
maturity group, we calculate the share of bonds with maturities ranging from 5 to 10 years
within the households’ portfolio, whereas for the short-maturity group, bonds with maturi-
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Figure B.1: Impulse-Response to a shock in the yield spread, ydft −ydlt. The figure presents
the coefficient estimates for the bond portfolio elasticity, κB, in equation (B.2), following
the estimation methodology detailed in appendix B.2. The solid black line illustrates the
estimate from the instrumental variables (IV) regression, with dashed lines indicating the
95% robust confidence intervals. The red line exhibits alternative OLS estimates. The
sample period is from 2003m3 to 2019m3.

ties spanning from 15 to 90 days are considered. For both groups, the aggregate household
portfolio holdings are computed on a monthly basis by deducting the U.S. Treasury secu-
rities held by the Federal Reserve from the Government’s outstanding Treasury amounts
within the selected maturity ranges.4 The principal regressor employed is the spread be-
tween the market yields of the 7-year and the 1-month constant maturity U.S. Treasury
securities, which lie within the maturity bands of the selected portfolio shares in the de-
pendent variable. Additionally, we control for the one-month-ahead changes in the 7-year
and the 1-month constant maturity yields, along with the first three lags of the dependent
variable. The regressions are estimated across the sample period extending from 2003m3
to 2019m3.5

Figure B.1 delineates the IV and OLS estimates derived from Jordà local projections
across a fifty-month horizon, accompanied by the 95% robust confidence bands pertinent

4The outstanding amounts of Government Treasuries are reported in the U.S. Treasury Monthly State-
ment of the Public Debt (MSPD).

5The lower bound of the sample period is dictated by the availability of maturity-disaggregated statistics
concerning the Federal Reserve’s Treasury bond portfolio, commencing from 2002m12.
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to the primary IV regression. Both estimates largely align with the anticipated reaction of
aggregate household portfolio shares, as posited by the model, in response to a shock to the
yield spread. For calibration purposes, we select a value of κB = 10, which is consistent
with the short-term portfolio response observed in the Figure B.1.

C Welfare

C.1 Deriving a second-order welfare approximation

In order to approximate welfare up to a second-order, we cannot discard ∆̂t, which is the
price dispersion’s log-deviation from its steady-state value in the presence of trend inflation.

Step 1: For any variable X , we define X̄ as its steady-state value (with the positive trend
inflation Π̄ > 1) and X̄F as its flexible price steady-state value. Also define (small) letter
x̃ as log-deviation of X around X̄F , and x̂ as log-deviation of X around X̄ .

Constrained efficient (i.e., flexible-price) steady state With the optimal production sub-
sidy ζF = (ϵ − 1)−1 that eliminates the monopolistic competition distortion, there is no
distortion other than the firms’ financing constraint in the flexible-price steady state econ-
omy anymore.6 In particular, each firm’s price resetting condition (i.e., (A.2)) becomes

1 =
P ∗
t

Pt

=
(1 + ζF )−1ϵ

ϵ− 1︸ ︷︷ ︸
=1

·MCt

Pt

=
MCt

Pt

, (C.1)

where we use the fact that all firms become identical, and thus MCt(ν) = MCt for all
ν ∈ [0, 1]. Therefore, the real marginal cost becomes 1 for all firms. Plugging the unit
real marginal cost (i.e., (A.3)) into the individual firm’s labor demand (i.e., (16)) with
Wt(ν) = Wt for ∀ν, and defining nt =

Nt

N̄t
and yt =

Yt

AtN̄t
, we obtain

nt = (1− α)yt

(
PK
t

Pt

)α(
Wt

PtAt

)−α

= (1− α)yt

(
Wt

PtAt

)−1

, (C.2)

which, with the household’s intra-temporal consumption-labor decision (i.e., (10)), be-
6The capital producing firm is competitive and thus our economy features no friction other than the firms’

financing constraint if it were not nominal rigidity nor trend inflation. Still, the constraint on loan issuance
does not affect firms’ marginal decisions on labor and capital.
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comes:
n

1
η

t

c−1
t

= (1− α)
yt
nt

, (C.3)

which is the social efficiency condition that ensures that the household’s marginal rate
of substitution matches with the marginal rate of technical substitution. Therefore, at the
flexible-price steady state, the new constant Φ, which will turn out to enter in the per-period
welfare later, can be calculated as

Φ ≡ (n̄F )1+
1
η = (1− α)

ȳF

c̄F
= (1− α)

Ȳ F

C̄F
, (C.4)

where n̄F , ȳF , and c̄F are values of normalized labor, output, and consumption, respec-
tively.

Step 2: With aggregation equations (A.5) and (A.4), we obtain

(
Nt

N̄t

)1−α(
Kt

At−1N̄t−1

)α

= αα(1−α)1−α(GAt ·GN)α
(

Yt

AtN̄t

)
∆

(1−α)[ η
η+1

+ α
1−α ]

t , (C.5)

which is the aggregate production function with the price dispersion ∆t. Plugging steady-
state (with trend-inflation) capital (i.e., A.37)) and output (i.e., (A.39)) into (C.5) yields

N

N̄
=
[
αα(1− α)1−α (GA ·GN)α

(
ξK
)−α
] 1

1−α
∆

η+α
(η+1)(1−α)

(
ξY
) 1

1−α(
η+α
η+1 ) (ξC)− η

η+1

(C.6)
where ξK in (A.37), ξY in (A.39), and ξC in (A.38) all depend on θ and the trend inflation
Π. Therefore, we see that n̄ ̸= n̄F and define logXn ≡ log n̄− log n̄F , which will turn out
to be useful later when we calculate the household’s first-order labor cost.

Step 3: Price dispersion with positive trend inflation

Delta method Before we start, we would use this approximation throughout this section.
For a random variable X with E(X) = µX , we have

Var (f(X)) = f ′(µX)
2 · Var(X) + h.o.t. (C.7)
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Price dispersion We use lower-case pt and pt(ν) as logarithms of Pt and Pt(ν). By
applying the above delta method to P 1−ϵ

t = Eν (Pt(ν)
1−ϵ), we obtain

pt =

∫ 1

0

pt(ν)dν︸ ︷︷ ︸
≡p̄t

+
1

2

(
1

1− ϵ

)
Varν (Pt(ν)

1−ϵ)

Eν (Pt(ν)1−ϵ)2
+ h.o.t. (C.8)

where we define p̄t ≡ Eν(pt(ν)). Applying the delta method to Varν(Pt(ν)
1−ϵ), we have

Varν
(
Pt(ν)

1−ϵ
)
= (1− ϵ)2 · [exp((1− ϵ)p̄t)]

2 · Varν(pt(ν)), (C.9)

where we define Dt ≡ Varν(pt(ν)). Applying the delta method to Eν(Pt(ν)
1−ϵ), we obtain

Eν

(
Pt(ν)

1−ϵ
)
= exp((1− ϵ)p̄t)

[
1 +

(1− ϵ)2

2
Dt

]
. (C.10)

Plugging (C.9) and (C.10) into (C.8), we obtain

pt = p̄t +
1− ϵ

2
· Dt[

1 + (1−ϵ)2

2
Dt

]2 , (C.11)

which we linear-approximate around Dt = D̄ and obtain

pt − p̄t =
1− ϵ

2
· D̄[

1 + (1−ϵ)2

2 D̄
]2

︸ ︷︷ ︸
≡Θp

1

+
1− ϵ

2
·

1− (1−ϵ)2

2 D̄[
1 + (1−ϵ)2

2 D̄
]3

︸ ︷︷ ︸
≡Θp

2

·(Dt − D̄) = Θp
1 +Θp

2(Dt − D̄).

(C.12)

Now from our original definition of the price dispersion ∆t (i.e., (28)), we take logarithm
on both sides, linear-approximate around D̄, and plug (C.12) into it to attain

ln∆t = ln

∫ 1

0

(
Pt(ν)

Pt

)−ϵ(η+1)
η+α

dν

=
ϵ(η + 1)

η + α
(pt − p̄t) + ln

(
1 +

1

2

(
ϵ(η + 1)

η + α

)2

D̄

)
+

1
2

(
ϵ(η+1)
η+α

)2
1 + 1

2

(
ϵ(η+1)
η+α

)2
D̄
(Dt − D̄)

= Θ∆
1 +Θ∆

2 · (Dt − D̄) + h.o.t,
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where

Θ∆
1 ≡ ϵ(η + 1)

η + α
· 1− ϵ

2
· D̄[

1 + (1−ϵ)2

2
D̄
]2 + ln

(
1 +

1

2

(
ϵ(η + 1)

η + α

)2

D̄

)
, (C.13)

Θ∆
2 ≡ ϵ(η + 1)

η + α
· 1− ϵ

2
·

1− (1−ϵ)2

2
D̄[

1 + (1−ϵ)2

2
D̄
]3 +

1
2

(
ϵ(η+1)
η+α

)2
1 + 1

2

(
ϵ(η+1)
η+α

)2
D̄
. (C.14)

If we define bt as the logarithm of the newly price-resetting firm’s relative price P ∗
t /Pt and

b̄ as its steady state value, we have b̄ ̸= 0 due to the trend inflation. Combining (A.8) and
(A.10) and linearizing, we obtain

bt ≡ p∗t −pt = b̄+
θΠϵ−1

1− θΠϵ−1︸ ︷︷ ︸
≡M

π̂t = b̄+M · π̂t, with b̄ =
1

ϵ− 1
ln

(
1− θ

1− θΠϵ−1

)
. (C.15)

With Dt = Varν(pt(ν)) = Eν((pt(ν)− pt + pt − p̄t)
2), we can write it as

Dt =

∫ 1−θ

0

(p∗t − pt)
2dν + 2

(∫ 1−θ

0

(p∗t − pt)dν

)
(pt − p̄t) (C.16)

+ (1− θ)(pt − p̄t)
2 +

∫ 1

1−θ

(pt−1(ν)− p̄t)
2dν

= (1− θ)(p∗t − pt)
2 + 2(1− θ)(p∗t − pt)(pt − p̄t) + (1− θ)(pt − p̄t)

2 + θDt−1 + θ(p̄t − p̄t−1)
2,

(C.17)

where we use ∫ 1

1−θ

(pt−1(ν)− p̄t)
2dν = θDt−1 + θ(p̄t−1 − p̄t)

2. (C.18)

Conjecture Following Coibion et al. (2012), we conjecture the dynamics of Dt up to a
second-order as7

Dt−D̄ = κDπ̂t+ZD(π̂t)
2+FD(Dt−1−D̄)+GD(Dt−1−D̄)π̂t+HD(Dt−1−D̄)2. (C.19)

7Following Coibion et al. (2012), we assume κD is of the same order as the shock processes, so that the
first term becomes of a second-order. Then our log-linearized model derivation without price dispersion term
is valid.
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with

D̄ = (b̄+Θp
1)

2 +
θ

1− θ
(π̄)2 (i.e., steady state value of Dt),

κD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)M(b̄+Θp
1) + 2θπ̄

]
,

ZD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

(1− θ)M2 + 2(1− θ)MΘp
2κD + (Θp

2)
2(κD)2 + θ − 2θΘp

2κD

]
,

FD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

θ + 2θΘp
2π̄

]
, (C.20)

GD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)MΘp
2FD + 2(Θp

2)
2κDFD − 2θΘp

2FD

+ 2θΘp
2 − 2θ(Θp

2)
2κD

]
,

HD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

(Θp
2)

2(FD)2 + θ(Θp
2)

2 − 2θ(Θp
2)

2FD

]
.

With no trend inflation, we would have π = 0 and D̄ = 0, thus Dt becomes the second-
order variable around 0 and we would have κD = 0. However with steady-state inflation
π > 0 and the price dispersion measure D̄ > 0, as we see in (C.19), Dt includes π̂t term
as one of its components, with κD being of the first-order. Our objective is to derive (C.19)
from firms’ optimal pricing behaviors and the price dispersion’s effects on the aggregate
price itself. Plugging (C.12) and (C.15) into (C.16) and replace (Dt − D̄) with the conjec-
tured form in (C.19) up to a second-order,8 and comparing coefficients, we obtain the set
of coefficients in (C.20).

Consumption utility We can second-order approximate the utility of consumption as

u(ct) = log ct = u(c̄F ) + u′
c̄F · c̄F ·

(
ct − c̄F

c̄F

)
︸ ︷︷ ︸
=c̃t+���1

2 (c̃t)
2

+
1

2
u′′
c̄F · (c̄F )2 ·

(
ct − c̄F

c̄F

)2

︸ ︷︷ ︸
=��(c̃t)

2

+h.o.t = u(c̄F ) + c̃t + h.o.t.

(C.21)

Step 4: Labor aggregation and cost
By applying the delta method (i.e., (C.7)) to the labor aggregator, we can obtain9

ñt − Eν(ñt(ν)) =

1
2

(
η+1
η

)
∇

1 + 1
2

(
η+1
η

)2
∇︸ ︷︷ ︸

≡Θn
1

+
1

2

(
η + 1

η

) 1− 1
2

(
η+1
η

)2
∇[

1 + 1
2

(
η+1
η

)2
∇
]3

︸ ︷︷ ︸
≡Θn

2

·(∇t −∇) (C.22)

8In the right-hand side of the expression, (pt− p̄t)
2 appears and has a second-order term (Dt−D̄)2 from

(C.12), and we use (C.19) to replace this term with terms related to (π̂t)
2, (Dt−1 − D̄)2, and π̂t(Dt−1 − D̄).

9In the flexible-price steady-state, there is no heterogeneity among firms, i.e., n̄F (ν) = n̄F for ∀ν.
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where ∇t ≡ Varν(log nt(ν)). The second-order approximation to the firm ν-specific labor
cost around the flexible-price steady state yields

η

η + 1

(
Nt(ν)

N̄t

) η+1
η

=
η

η + 1
(n̄F )

η+1
η +Φ

[
ñt(ν) +

1

2

(
η + 1

η

)
ñt(ν)

2

]
+ h.o.t (C.23)

where the constant Φ is from (C.4). Aggregating (C.23) over firms ν ∈ [0, 1] and plugging
(C.22) results in

η

η + 1

∫ 1

0

(
Nt

N̄t

) η+1
η

dν −
η

η + 1
(n̄F )

η+1
η = Φ

[
Eν(ñt(ν)) +

1

2

(
η + 1

η

)∫ 1

0
ñt(ν)

2dν

]
= −Φ

(
Θn

1 −
1

2

(
η + 1

η

)
(Θn

1 )
2

)
+Φ

[(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2 )
2
(
Varν(ñt(ν))−∇

)2 −
η + 1

η
Θn

2 ñt
(
Varν(ñt(ν))−∇

)
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇
]
.

(C.24)

Labor dispersion From individual firm’s labor and capital demand (i.e., (16)) and the
household’s intra-marginal condition (i.e., (10)), we obtain

k̃t(ν) =

(
1 +

1

η

)
ñt(ν) + aggregate, (C.25)

where ‘aggregate’ stands for aggregate variables. Therefore, we obtain

ỹt(ν) =

(
1 +

α

η

)
ñt(ν) + aggregate, (C.26)

by plugging (C.25) into each firm’s production function ỹt(ν) = αk̃t(ν) + (1 − α)ñt(ν).
From the Dixit-Stiglitz good demand (i.e., (13)) and with (C.26), we can get

Varν(ñt(ν)) =

(
ϵ

1 + α
η

)2

Varν(pt(ν)), with ∇ =

(
ϵ

1 + α
η

)2

D̄. (C.27)

Step 5: Constructing a welfare function: Combining the consumption utility (i.e., (C.21))

27



Online Appendix: For Online Publication Only

and the labor disutility (i.e., (C.24)), we can construct welfare as

EUt − ŪF = E

[
c̃t +Φ

(
Θn

1 − 1

2

(
η + 1

η

)
(Θn

1 )
2

)
− Φ

{(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2 )
2
(
Varν(ñt(ν))−∇

)2 − η + 1

η
Θn

2 ñt

(
Varν(ñt(ν))−∇

)
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇

}]
,

(C.28)

with from (A.38), (A.39), and (C.6) the flexible-price steady-state utility given as

Ū
F

= c̄
F −

η

η + 1

(
NF

N̄

) η+1
η

=
1

η + 1

[
log
(
ξ
C,f
)
+

η + α

1 − α
log
(
ξ
Y,f
)]

−
η

η + 1

[
α

α
(1 − α)

1−α
(GA · GN)

α
(
ξ
K,f
)−α

] η+1
(1−α)η

(
ξ
Y,f
) η+α

(1−α)η
(
ξ
C,f
)−1

,

where

ξ
F,f

= (1 − α)
1−α
η+α

[
β
−1 · GA · GN − (1 − δ)

]α( η+1
η+α

)
, ξ

H,f
= 1 − γL

(
RK

RS
− 1

)
, ξ

Y,f
=

ξH,f

ξF,f
,

ξ
K,f

= α(1 − α)
1−α
η+α · GA · GN ·

[
β
−1 · GA · GN − (1 − δ)

]− η(1−α)
η+α ξ

Y,f
,

ξ
C,f

= 1 − ζ
G − ξ

K,f

(
1 −

1 − δ

GA · GN

)
.

ξC,f , ξY,f , and ξK,f are levels of ξC , ξY , and ξK when θ = 0 (i.e., flexible price steady
state). With

log
ξY

ξY,f
= log

(
1− θβΠϵ( η+1

η+α)

1− θβΠϵ−1

)
+

1

ϵ− 1

[
1 + ϵ

(
1− α

η + α

)]
log

(
1− θ

1− θΠϵ−1

)
, (C.29)

and

log
ξK

ξK,f
= log

(
ξY

ξY,f

)
+ log∆, (C.30)

log
ξC

ξC,f
= log

1− ζG − ξK
(
1− 1− δ

GA ·GN

)
1− ζG − ξK,f

(
1− 1− δ

GA ·GN

) , (C.31)
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where ∆ at the steady state with trend inflation is defined in (A.32), which gives

log∆ = log

(
1− θ

1− θΠϵ( η+1
η+α)

)
+

ϵ

ϵ− 1

(
η + 1

η + α

)
log

(
1− θΠϵ−1

1− θ

)
. (C.32)

If we define logXc = c̃t− ĉt as the log-difference in consumption between our steady state
(with trend-inflation) and the flexible price steady state, we obtain

logXc ≡ c̄− c̄F =
1

η + 1

[
log

(
ξC

ξC,f

)
+

η + α

1− α
log

(
ξY

ξY,f

)]
. (C.33)

For labor, we define logXn as the log-difference in labor between our steady state with
trend inflation and the flexible price steady state, which is, with the help of (C.6), given by

logXn ≡ n̄− n̄F = −
α

1− α
log

ξK

ξK,f
+

1

1− α

(
η + α

η + 1

)
log

ξY

ξY,f
−

η

η + 1
log

ξC

ξC,f
+

η + α

(η + 1)(1− α)
log∆. (C.34)

With c̃t = ĉt+logXc, ñt = n̂t+logXn, and the stationarity assumption (following Coibion
et al. (2012)), we can get

E
[
c̃t − Φ

(
1−

(
η + 1

η

)
Θn

1

)
ñt

]
= logXc − Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn. (C.35)

Second order terms: With ñt = n̂t + logXn, second-order terms can be collected as

− Φ

[
η + 1

2η
E
(
n̂2
t

)
+

η + 1

2η
(Θn

2 )
2E
((

Varν(ñt(ν))−∇
)2)− η + 1

η
Θn

2E
(
n̂t

(
Varν(n̂t(ν))−∇

))
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2 − η + 1

η
Θn

2 logXn

)
E
(
Varν(n̂t(ν))−∇

) ]]
, (C.36)

which, after we can plug (C.27) into, becomes

− Φ

[
1

2

(
η + 1

η

)
Var (n̂t) +

1

2

(
η + 1

η

)
(Θn

2 )
2

(
ϵ

1 + α
η

)4

E(Dt − D̄)2

− η + 1

η
Θn

2

(
ϵ

1 + α
η

)2

Cov(n̂t, Dt)

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

(
1 +

η + 1

η
logXn

))(
ϵ

1 + α
η

)2

E(Dt − D̄)

]]
. (C.37)

Finally, by plugging (C.19) into (C.37), we get the following proposition. Sine κD is of the
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same order as shock processes, up to a second-order, we can ignore covariance terms and
the square term of Dt. Therefore, a 2nd-order approximation to the expected per-period
welfare would be given as

EUt − ŪF = Ω0 + ΩnVar(n̂t) + ΩπVar(π̂t) + h.o.t, (C.38)

with

Ω0 = logXc − Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn +Φ

(
Θn

1 − 1

2

(
η + 1

η

)
(Θn

1 )
2

)
− Φ

1

2

η + 1

η
(logXn)

2

− Φ
1

2

(
η + 1

η

)( ϵ

1 + α
η

)2
D̄,

Ωn = −Φ
1

2

(
η + 1

η

)
, (C.39)

Ωπ = −Φ

[(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

(
1 +

η + 1

η
logXn

))( ϵ

1 + α
η

)2 ZD

1− FD

]
,

where logXc and logXn are defined in (C.33) and (C.34), respectively; the coefficients
Θn

1 and Θn
2 are given in (C.22); and D̄ is determined by jointly solving (C.12) (i.e., the

definition of Θp
1) and (C.20). The parameters κD, ZD, FD, GD, and HD are specified in

(C.20). Higher-order terms are denoted by h.o.t. Finally, the coefficient Ω0 is part of the
policy-independent terms (t.i.p.) that appear in Proposition 1.

D Microfoundation for Demand Systems

In this section, we provide a microfounded model for our demand systems represented by
equations (3) and (5).

As explained in Section 2.1.1, the representative household chooses optimal consump-
tion, employment, and savings St, which are allocated between government bonds BH

t =∑F
f=1B

H,f
t and firm loans Lt, so that St = BH

t + Lt. To generate a downward-sloping
demand curve for each asset—preventing the linearized model from equalizing expected
returns across different maturities (see, e.g., Froot (1989))—we introduce a mechanism
based on preference heterogeneity. Once the household determines its savings St, it is par-
titioned into a continuum of families (indexed by m ∈ [0, 1]), each favoring either loans or
government bonds. This diversity arises from optimal portfolio allocation under imperfect
and heterogeneous information about future asset returns.

For families that invest in bonds, we further subdivide each family into a continuum of
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members (indexed by n ∈ [0, 1]), with each member preferring a specific bond maturity f

(where f = 1, . . . , F ). These variations in preference, reflecting differences in expectations
regarding future bond returns and price revaluations, determine the demand across bond
maturities. All families and their members share the same overall household savings St;
moreover, perfect consumption insurance holds within each family, as in the literature (Del
Negro et al., 2017), and no trading is allowed among members or between families. We
address this allocation problem recursively in the subsequent sections.

Bond Family Suppose that family m selects bonds as its preferred savings vehicle. Each
member n then maximizes the expected discounted return:

max
F∑

f=1

Em,n,t

[
Qt,t+1R

f−1
t+1B

H,f
m,n,t

]
s.t. BH

m,n,t ≡
F∑

f=1

BH,f
m,n,t = St, BH,f

m,n,t ≥ 0,

Here, Em,n,t is the individual expectation operator and Qt,t+1 the stochastic discount factor.
Due to the linearity of the problem, the optimal allocation is a corner solution: member n
invests her entire savings in the bond with the highest expected discounted return,

BH,i
m,n,t =

St if i = argmax1≤j≤F{Em,n,t[Qt,t+1R
j−1
t+1 ]},

0 otherwise.

Under benchmark rational expectations, all members of family m choose the same bond,
thereby equalizing the expected discounted returns Et[Qt,t+1R

f−1
t+1 ] across maturities—consistent

with the expectation hypothesis in log-linearized models.10 In this case, long-term yields
are solely determined by conventional monetary policy, leaving little room for alternative
policies such as quantitative easing (QE), despite empirical evidence (e.g., Krishnamurthy
and Vissing-Jorgensen (2011)).

To generate a downward-sloping demand curve for bonds, we depart from the expecta-
tions hypothesis by introducing heterogeneity in individual expectations. Specifically, we
assume that each member n forms expectations as

Em,n,t

[
Qt,t+1R

f−1
t+1

]
= zfn,t · Et

[
Qt,t+1R

f−1
t+1

]
, ∀f = 1, . . . , F,

10In the linearized setting, omitting the covariance between Qt,t+1 and Rf−1
t+1 equalizes expected returns

across maturities.
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where zfn,t is a maturity-f shock reflecting imperfect and heterogeneous information (cf.
Angeletos and La’O (2013)). We assume that family m cannot aggregate these individual
signals and therefore divides its savings equally among its members, who then choose their
preferred bond maturity independently.

For analytical tractability, we model zfn,t as i.i.d. Fréchet-distributed with location zero,
scale parameter zft , and shape parameter κB (see, e.g., Eaton and Kortum (2002) and Dordal
i Carreras et al. (2023)). The shape parameter governs the dispersion of expectation shocks,
with κB → ∞ implying convergence to rational expectations. Each member n then selects
the maturity f that maximizes zfn,t Et[Qt,t+1R

f−1
t+1 ].

Let λHB,f
t denote the probability that a member chooses the f -maturity bond. By the

properties of the Fréchet distribution, this probability is given by

λHB,f
t =

(
zft Et[Qt,t+1R

f−1
t+1 ]

ΦB
t

)κB

, (D.1)

where ΦB
t ≡

[∑F
j=1

(
zjt Et[Qt,t+1R

j−1
t+1 ]
)κB
] 1

κB . An increase in the f -maturity return or in

the scale parameter zft thus raises the probability of choosing that maturity.
Aggregating over families and individuals, the household’s total holdings of f -maturity

bonds are
BH,f

t = λHB,f
t ·BH

t , ∀f = 1, . . . , F, (D.2)

where BH
t is the aggregate bond holding. Consequently, the aggregate return on the house-

hold’s bond portfolio is

RHB
t+1 =

F−1∑
f=0

λHB,f+1
t Rf

t+1 . (D.3)

Bond vs. Loans Family After allocating savings across bond maturities, family m chooses
between bonds and loans by maximizing its expected savings return:

max Em,t

[
Qt,t+1R

HB
t+1B

H
m,t

]
+ Em,t

[
Qt,t+1R

K
t+1Lm,t

]
s.t.

BH
m,t + Lm,t = St, BH

m,t ≥ 0, and Lm,t ≥ 0.

If family m selects bonds, it follows the investment strategy in (D.1) and earns the aggre-
gate bond return RHB

t+1 (see (D.3)). Under benchmark rational expectations, families would
equalize Et[Qt,t+1R

HB
t+1 ] and Et[Qt,t+1R

K
t+1], rendering them indifferent. We depart from
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this by assuming family m’s expectation for loans deviates from rational expectations:

Em,t

[
Qt,t+1R

K
t+1

]
= zKm,t Et

[
Qt,t+1R

K
t+1

]
,

where zKm,t is modeled as a Fréchet-distributed shock with zero location, scale parameter
zKt , and shape parameter κS (with limκS→∞ Var(zKm,t) = 0). Setting zKt = Γ(1− 1/κS)

−1

ensures E(zKm,t) = 1, so that as κS → ∞ the model converges to rational expectations.
Aggregating across families, the share of aggregate savings allocated to loans is

λK
t =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS

t

)κS

, (D.4)

with ΦS
t =

[(
Et

[
Qt,t+1R

HB
t+1

] )κS

+
(
zKt Et

[
Qt,t+1R

K
t+1

] )κS
] 1

κS . 11 The scale parameter
zKt governs the overall portfolio preference for loans.

Using (D.4), the aggregate bond holdings by maturity f become

BH,f
t =

(
1− λK

t

)
λHB,f
t St, ∀f = 1, . . . , F,

and the aggregate return on household savings is

RS
t =

(
1− λK

t−1

)
RHB

t + λK
t−1R

K
t . (D.5)

Thus, RS
t is a weighted average of returns from bonds (across maturities) and loans. The

household’s budget constraint (2) can then be rewritten as

Ct +
St

Pt

=
RS

t St−1

Pt

+

∫ 1

0

Wt(ν)Nt(ν)

Pt

dν +
Λt

Pt

. (D.6)

Despite the richer asset structure and market segmentation, the representative household’s
problem ultimately resembles that of a conventional New-Keynesian model.

Remarks on Aggregation Modeling individual deviations from rational expectations as
extreme Fréchet shocks generates market segmentation both between bond and loan mar-
kets and among bonds of different maturities. The shape parameters κB and κS control

11Equation (D.4) implies that a family’s preference for loans increases when the return on loans RK
t+1

exceeds the aggregate bond return RHB
t+1 .
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the degree of segmentation; as κB, κS → ∞, our framework nests the conventional ex-
pectations hypothesis. Importantly, the nested CES structure facilitates extension to a wide
range of assets and maturity structures. These parameters summarize the demand elasticity
for financial products in response to movements in expected returns (see (D.1) and (D.4)),
and can be empirically estimated—for instance, we estimate κB in Appendix B.12

Remarks on Assumptions and Differences with the Literature Household members
act as agents with evolving preferred habitats (cf. Modigliani and Sutch (1966)), with their
choice of bond maturity—or the decision between bonds and loans—responsive to antic-
ipated one-period returns. In equilibrium, the heterogeneity in asset return information
induces a margin of habitat-switchers, yielding a downward-sloping asset demand curve
that reflects relative returns and aggregate information shocks {zKt , {zft }Ff=1}. This con-
trasts with frameworks such as Ray (2019) and Droste et al. (2021), who assume that the
household’s aggregate portfolio distribution along the yield curve is exogenously given and
only arbitrageurs constant change their portfolios.

12Note that our specification assumes a constant elasticity across bond maturities; see Droste et al. (2021)
for evidence that substitution elasticities may vary with maturity proximity. Our model can be extended to
allow for heterogeneous κB without altering its qualitative features.
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E Summary of Equilibrium Equations

E.1 Equilibrium Equations: Conventional Policy (CP)

(i).
Ct

AtN̄t
=
(
1− ζGt

)( Yt
AtN̄t

)
+

(
1− δ

GAt ·GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(E.1)

(ii). 1 = β · Et

 RS
t+1

Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (E.2)

(iii). λHB,1
t = 1−

F∑
f=2

λHB,f
t (E.3)

(iv). −

(
BG,f

t

AtN̄tPt
+

BCB,f

AN̄P

)
·
(
λHB,f
t

)−1
= γL ·

(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
, ∀f > 1

(E.4)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(E.5)

(vi). Y D1∗
t = Y D

1 ·
(
Πt

Π̄

)γπ (Yt
Ȳ

)γy

· exp
(
ε̃Y D1

t

)
(E.6)

(vii). λHB,f
t =



Et

 βzft
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f


ΦB
t



κB

, ∀f

(E.7)

(viii). ΦB
t =

 F∑
j=1

Et

 βzjt
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Dj−1

t+1

)−(j−1)

(
Y Dj

t

)−j


κB

1
κB

(E.8)

(ix). λK
t =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS

(E.9)

(x). ΦS
t =

[(
Et

[
Qt,t+1R

HB
t+1

])κS
+
(
zKt Et

[
Qt,t+1R

K
t+1

])κS
] 1

κS (E.10)
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(xi). Rj
t =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
, j ∈ {HB,G,CB} (E.11)

(xii). RS
t =

(
1− λK

t−1

)
RHB

t + λK
t−1R

K
t (E.12)

(xiii). 1 = Et

[
Qt,t+1Πt+1

[
(1− δ) +

PK
t+1

Pt+1

]]
(E.13)

(xiv). Ft = (1− α)
1−α
η+α

(
(1 + ςF )

−1ϵ

ϵ− 1

)(
Ct

AtN̄t

)−α
(

η+1
η+α

)(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)α
(

η+1
η+α

)
+ θβEt

[
Π

ϵ
(

η+1
η+α

)
t+1 Ft+1

]
(E.14)

(xv). Ht =

(
Ct

AtN̄t

)−1 Yt
AtN̄t

[
1− γL ·

(
R̃K

t+1 − 1
)]

+ θβEt

[
Πϵ−1

t+1Ht+1

]
(E.15)

(xvi).
Ft

Ht
=

(
1− θ

1− θΠϵ−1
t

)( 1
ϵ−1)

[
1+ϵ

(
1−α
η+α

)]
(E.16)

(xvii). ∆t = (1− θ)

(
1− θΠϵ−1

t

1− θ

)( ϵ
ϵ−1)

(
η+1
η+α

)
+ θΠ

ϵ
(

η+1
η+α

)
t ∆t−1 (E.17)

(xviii).
Nt

N̄t
= (1− α)

(
η

η+α

)(
Ct

AtN̄t

)−α
(

η
η+α

)(
Yt

AtN̄t

)(
η

η+α

)(
PK
t

Pt

)α
(

η
η+α

)
∆

η
η+1

t (E.18)

(xix).
Kt

At−1N̄t−1
= α(1− α)

1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)−
(

η(1−α)
η+α

)
∆t

(E.19)

(xx).
BG

t

PtAtN̄t
=

RG
t

Πt ·GAt ·GN
·

BG
t−1

Pt−1At−1N̄t−1
−
[
ζGt + ζF − ζTt

]( Yt
AtN̄t

)
(E.20)

(xxi). λG,1
t =

1

1 +
F∑
l=2

aB,l exp
(
ũB,l
t

) , λG,f
t =

aB,f exp
(
ũB,f
t

)
1 +

F∑
l=2

aB,l exp
(
ũB,l
t

) , ∀f > 1 (E.21)

(xxiii). ũB,f
t =

J∑
j=1

τBfju
B,j
t (E.22)

(xxiv). uB,j
t = ρBu

B,j
t−1 + εB,j

t (E.23)

(xxv). BG,f
t = λG,f

t BG
t , ∀f = 1, . . . , F (E.24)

(xxvi). GAt = exp(µ+ εAt ) (E.25)

(xxvii). ζGt =
1

1 + aG exp
(
−uGt

) (E.26)

(xxviii). ζTt =
1

1 + aT exp
(
−uTt

) (E.27)

(xxix). uGt = ρG · uGt−1 + εGt (E.28)

(xxx). uTt = ρT · uTt−1 + εTt (E.29)
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E.2 Equilibrium Equations: Yield-Curve-Control Policy (YCC)

Summary of relevant equilibrium conditions:

(i).
Ct

AtN̄t
=
(
1− ζGt

)( Yt
AtN̄t

)
+

(
1− δ

GAt ·GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(E.30)

(ii). 1 = βEt

 RS
t+1

Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (E.31)

(iii). −

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄tPt
= γL ·

(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
(E.32)

(iv). λCB,f
t =

λHB,f
t ·

(
1−

∑
i ̸={f,1} λ

CB,i
t − λG,1

t

)
− λG,f

t ·
(
1−

∑
i ̸={f,1} λ

CB,i
t − λHB,1

t

)
(
λHB,1
t + λHB,f

t

)
−
(
λG,1
t + λG,f

t

) , f = 2, . . . , F

(E.33)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(E.34)

(vi). Y D1∗
t = Y D

1 ·
(
Πt

Π̄

)γ1
π
(
Yt
Ȳ

)γ1
y

· exp
(
ε̃Y D1

t

)
(E.35)

(vii). Y DY CC,f
t = Y D

Y CC,f ·

(
Y DCP,f

t

Y D
CP,f

)γf
CP
[(

Πt

Π̄

)γf
π
(
Yt
Ȳ

)γf
y

· exp
(
ε̃Y Df

t

)]1−γf
CP

, f ≥ 2

(E.36)

(viii). λHB,f
t =



Et

 βzft
Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f


ΦB
t



κB

, ∀f

(E.37)

(ix). ΦB
t =

 F∑
j=1

Et

 βzjt
Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Dj−1

t+1

)−(j−1)

(
Y Dj

t

)−j


κB

1
κB

(E.38)

(x). λK
t =

(
zKt · Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS

(E.39)
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(xi). ΦS
t =

[(
Et

[
Qt,t+1R

HB
t+1

])κS
+
(
zKt Et

[
Qt,t+1R

K
t+1

])κS
] 1

κS (E.40)

(xii). Rj
t =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
j ∈ {HB,G,CB} (E.41)

(xiii). RS
t =

(
1− λK

t−1

)
RHB
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(xx).
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E.3 Summary of Conventional Policy Linearized Equations

Those are the essential equations to solve the model, other variables can be found on the
equations above.

(i). ŷt = Et

[
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ẑ t −Ψ48 · ẑKt −Ψ49 ·

−→
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1

t = max
{
ŷd
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(xi). uGt = ρG · uGt−1 + εGt
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E.4 Summary of Yield-Curve Control Policy Linearized Equations

Those are the essential equation to solve the model, other variables can be found on equa-
tions above.

(i). ŷt = Et

[
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ŷd

CP
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F Additional Results: Steady-State Comparative Statics

Comparative statics with κB Figure F.2 demonstrates the behavior of the steady-state
yield curve as κB increases, as explained in Section 2.1.1. With RK > RHB at the steady
state and low levels of zf for high f in Figure II.1, an increase in κB lowers the household’s
demand for long-term bonds (as markets are more competitive with higher κB), pushing up
long-term yields. When κB → ∞, we revert to the expectations hypothesis case, resulting
in a flat yield curve in the steady-state.
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Figure F.2: Variations in κB (i.e., scale parameter): as κB → ∞, the model converges to the
expectation hypothesis, wherein all discounted expected returns become equalized. With
current RK > RHB at the steady state and low levels of zf for high f in Figure II.1, higher
κB lowers the household’s demand for long-term bonds, pushing up their yields.

Comparative statics with zK Figure F.3 illustrate comparative statics with respect to the
scale parameter zK , which is incorporated into the savings allocation between the Treasury
and loan markets (i.e., (5)). Given the calibrated {zf}Ff=1 and for zK ∈ [0.8, 1.3], a higher
zK suggests that the household is more inclined to provide loans to firms rather than invest
in the bond market, raising λK . This leads to higher capital, output, and consumption in the
steady-state allocation. As households increase their loan investment, the average marginal
propensity to consume and the equilibrium loan rate RK decline, causing the entire yield
curve to shift downward due to the household’s endogenous portfolio reallocation —para-
doxically raising credit spreads. Falling RG lowers the government bond share with respect
to GDP.
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Figure F.3: Variations in zK

Comparative statics with κS Figure F.4 depicts comparative statics of the shape parame-
ter κS , which appears in the same savings allocation condition between bond and loan mar-
kets (i.e., equation (5)). Given the calibrated {zf}Ff=1 and zK values, and for κS ∈ [0, 25],
a higher κS raises λK , as RK > RHB at the steady state and higher κS implies that the
market is more competitive. This results in a lower loan rate RK , higher capital demand (as
firms face lower interest costs), increased output and consumption while reducing the aver-
age marginal propensity to consume. Credit spreads widen, with a lower RK depressing the
government’s effective bond return RG and the entire yield curve even more. Consequently,
the government’s debt-to-GDP ratio falls.
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G Additional Results: Impulse-Responses

G.1 Without ZLB

Technology shock, εAt : Figure G.5 displays the impulse-responses to a εAt shock. A
positive shock in technology growth GAt yields similar effects as documented in prior lit-
erature under conventional policy,13 with output increasing14 as inflation decreases. Under
the yield-curve-control regime, the normalized output decreases less: since inflation falls,
bond yields shift downwards, boosting consumption and reducing both the return on capital
and the wage.
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Figure G.5: Impulse response to a εAt shock: A positive technology growth shock generates
effects in line with the existing literature, resulting in an increase in output and a decline in
inflation. As inflation decreases, all yields undergo a downward shift, which in turn lowers
both the capital return and wage relative to the conventional scenario.

13For effects of technology shocks in a canonical New-Keynesian model, see Ireland (2004).
14Even if the ‘normalized’ output drops under our calibration, the output level rises.
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Monetary policy shock, εY D1

t : Figure G.6 presents the impulse-response to a εY D1

t shock.
Under the conventional policy, a contractionary monetary policy shock paradoxically re-
sults in an increase in output, inflation, and capital. One potential channel is from increases
in the household’s interest incomes from higher rates on both bonds and loans. The yield-
curve-control policy insulates the economy as before: in response to the shock, the central
bank pushes down the entire yield curve, preventing input prices (i.e., loan rates and wages)
from rising too high, and thereby mitigating changes in output and inflation.
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Figure G.6: Impulse response to a εY D1

t shock: A conventional contractionary monetary
policy shock paradoxically leads to increases in output, inflation, and capital due to higher
amounts of interest incomes that households earn from bonds and loans. The yield-curve-
control policy insulates the economy against the shock through the central bank’s purchases
of long-term bonds.
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G.2 With ZLB

With mixed policy, zKt : In Figure G.7, the mixed policy actually features the longest
ZLB spell.
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Figure G.7: Impulse-response to zK shock with ZLB and mixed policy
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H Additional Results: Model Determinacy

Under the conventional policy (23) and the yield-curve control policy (24), we derive con-
ditions for model determinacy in terms of the Taylor coefficients—(γπ, γy) for the conven-
tional policy and ({γf

π}Ff=1, {γf
y }Ff=1) for the yield-curve control policy. For illustration,

we assume that γf
π = γπ and γf

y = γy for all f = 1, . . . , F .
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Figure H.8: Determinacy Regions

Figures H.8a and H.8b show the determinacy regions in the (γπ, γy) plane for the con-
ventional and yield-curve control policies, respectively. Under the conventional policy,
determinacy requires that the output responsiveness coefficient γy exceeds a specific neg-
ative threshold, largely independent of the inflation responsiveness γπ. In contrast, the
yield-curve control policy’s determinacy depends on both coefficients. Notably, even when
both coefficients are negative, the model can yield a unique, stable equilibrium under cer-
tain calibrations. These findings differ from those of the traditional New Keynesian model,
which typically requires an aggressive inflation-targeting response (or a combination of re-
sponses to inflation and output) to ensure a unique and stable equilibrium. This difference
arises from the portfolio rebalancing channel on the households’ side and the input substi-
tution channel on the firms’ side: with a negative γπ, a negative inflation shock leads the
central bank to raise the entire yield curve, prompting households to reallocate funds to-
ward bonds and increasing the loan rate RK , which in turn incentivizes firms to raise prices
and stabilize inflation.
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